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Abstract

A fundamental issue in differential motion analysis is the
compromise between the flexibility of the matching crite-
rion for image regions and the ability of recovering the mo-
tion. Localized matching criteria, e.g., pixel-based SSD,
may enable the recovery of all motion parameters, but it
does not tolerate much appearance changes. On the other
hand, global criteria, e.g., matching histograms, can ac-
commodate dramatic appearance changes, but may be blind
to some motion parameters, e.g., scaling and rotation. This
paper presents a novel differential approach that integrates
the advantages of both in a principled way based on a
spatial-appearance model (SAM) that combines local ap-
pearances variations and global spatial structures. This
model can capture a large variety of appearance variations
that are attributed to the local non-rigidity. At the same
time, this model enables efficient recovery of all motion pa-
rameters. A maximum likelihood matching criterion is de-
fined and rigorous analytical results are obtained that lead
to a closed form solution to motion tracking. Very encour-
aging results demonstrate the effectiveness and efficiency of
the proposed method for tracking non-rigid objects that ex-
hibit dramatic appearance deformations, large object scale
changes and partial occlusions.

1. Introduction
One of the major challenges of appearance-based track-

ing lies in the large variations of the visual appearances,
which may be caused by many reasons, such as non-rigid
deformations, and partial occlusions, etc. Such large uncer-
tainties in the visual appearance significantly complicate the
matching of the visual appearances. Inappropriate matching
results in the inability of motion recovery and tracking fail-
ure.

Existing solutions to appearance-based tracking have
different treatment and exploitation of the spatial structure
of the appearance. Two opposite extremes are template
matching that requires a fine localized match [9, 12, 2, 11],

and histogram matching that completely discards the spatial
structure [5, 4, 14, 10].

Template tracking with SSD measure requires strict
pixel-wise alignments between the object template and the
candidate object region [9]. This is fine to handle rigid ob-
jects, while having a very limited power to handle non-rigid
objects. To allow more appearance variations, improve-
ments have been made by generalizing the template to be
a template manifold, which can be linearly expanded by a
set of eigenvectors [3], or support vectors [2]. Such a tem-
plate manifold has to be learned off-line.

Histogram, on the other hand, completely discards
the spatial information, thus allows dramatic appearance
changes. Histogram-based tracking methods have demon-
strated their superb performance in handling the non-rigid
deformation, pose change and partial occlusions [5, 14].
However, the ignorance of the spatial layout also brings
difficulties, e.g., less discriminative to appearance changes
and thus less sensitive to certain motions. For example, the
mean-shift tracker is awkward to handle scaling and rota-
tion. Improvements have been made by using multiple ker-
nels [10, 8].

This paper presents a novel differential approach based
on a spatial-appearance model (SAM) that combines local
appearances variations and global spatial structures, thus in-
tegrating the advantages of both. SAM is in the form of a
Gaussian mixture model. This model can capture a large
variety of appearance variations that are attributed to the
local non-rigidity. At the same time, this model enables
efficient recovery of all motion parameters. A maximum-
likelihood estimation is defined for tracking, and is solved
by a proposed variant of Expectation-Maximization (EM)
algorithm. The analytical derivations lead to a closed-form
solution for motion estimation. The proposed EM iterations
guarantee the continuous increase of the likelihood, and re-
sult in a differential approach to motion recovery. The phys-
ical meaning of our solution indicates that the exact pixel-
wise alignment is relaxed and the pixels in the candidate ob-
ject region are weighted by their nearby spatial-appearance
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Gaussian components in motion estimation.
Besides the ability of handling the appearance variations

of non-rigid objects, another advantage of the proposed
method is its ability of estimating various motions (e.g.,
translation, rotation, scaling, and affine) in a unified and
principled manner, rather than having different mechanisms
to handle them individually. It is actually a very appealing
property comparing with mean-shift that only copes with
translation in a principal manner. The new method proves
very powerful to handle non-rigid objects.

The proposed method is different from some recent ap-
proaches that also make use of spatial and appearance mod-
els. For example, a model based on the pixel spatial-color
features is proposed and is constructed by kernel density
estimation [7]. An entropy-based similarity measure be-
tween two kernel densities is used for matching. A recent
study [17] showed that this approach might not be suitable
for the handling of complex motions and the entropy-based
similarity measure is difficult to compute. Our approach
differs greatly in the matching criteria, the analysis and thus
the solutions.

2. Spatial-Appearance Model (SAM)
Recall the two extremes of appearance modelling vary

from the approaches that strictly obey the spatial lay-
out of object appearance (rigid template representation)
to the ones where spatial locations of appearance features
are completely discarded (histogram-based representation).
Both of the modelling approaches have their merits and lim-
itations. We choose to seek a tradeoff between the two
approaches, and arrive at an intermediate level appearance
modelling, which not only maintains a rough global spatial
structure of object appearance as in template representation,
but also preserves the simplicity of the histogram-based rep-
resentation by only keeping some dominant feature values
in the object region.

Given an initial object region R0 = {xi, i = 1, . . . , N},
selected manually or automatically, a d dimensional spatial-
appearance feature vector is extracted from each pixel and
denoted by xi. N is the total number of pixels within the ini-
tial object region. A K-component Gaussian mixture model
(GMM) is adopted to fit to the collected data points, leading
to a spatial-appearance model characterized by GMM with
parameters θ = (pk, μk,Σk), k = 1, . . . ,K. pk, μk,Σk

represent the prior probability, mean and variance of Gaus-
sian component k in the mixture model. Each Gaussian
component is denoted by g(x;μk,Σk). The likelihood of a
pixel x within a candidate object region is simply the mix-
ture probability as:

p(x|θ) =
K∑

k=1

pkg(x;μk,Σk) (1)

Depending on different features, the model dimension d

could take different values with the first two dimensions oc-
cupied by the pixel spatial coordinate features (u, v). For
example, we may take d = 3 by augmenting the spatial fea-
tures with the intensity feature, or when color features are
preferred, we may add dimensions with pixel feature values
from (r, g, b) color channels.

Similar to the de-correlation strategy of spatial-
appearance features as in [7, 15], we assume the spatial
and appearance dimensions of the GMM model are decou-
pled, i.e., the covariance matrix of the Gaussian component

takes the block diagonal form, Σk =
(

Σk,s 0
0 Σk,c

)
,

where s and c stand for spatial and appearance features re-
spectively. Thus the joint feature x of each pixel can be
written as x = (xs, c(xs)), with the spatial xs and the ap-
pearance c(xs) features of a pixel at the location xs. Each
GMM Gaussian component then has the following factor-
ized form:

g(x;μk,Σk) = g(xs;μk,s,Σk,s)g(c(xs);μk,c,Σk,c) (2)

The appearance feature c(xs) is actually the function of
pixel location xs, implying the intrinsic correlations be-
tween the spatial and appearance features although the de-
coupled Gaussian distribution.

Figure 1. The fitted spatial-appearance Gaussian mixture model to
the object region.

An illustrative example of fitting the spatial-appearance
model to the object region (a kid face) with 40-component
mixture model is shown in Figure 1, where the left image
is the original video frame, and in the right image each red
ellipse represents a spatial Gaussian component fitted using
Expectation-Maximization (EM) [6].

3. Expectation-Maximization (EM) Tracking

3.1. Maximum-Likelihood Formulation

Assume the object undergoes a motion transform char-
acterized by a general motion model T (xs; at). at is the
transform parameter at time t that warps a pixel at location
xs from reference frame to the location T (xs; at) in the cur-
rent frame. Without losing the generality, we can assume
the considered motion model having a general linear form

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 
0-7695-2597-0/06 $20.00 © 2006 IEEE 



as follows:

T (xs; at) =
(

a1,t a2,t

a3,t a4,t

)
xs +

(
a5,t

a6,t

)
= Atxs + Bt

(3)

which can actually cover a broad spectrum of object mo-
tions, such as translation, scaling, rotation, and affine mo-
tion, etc.

With the SAM object model initialized in the reference
frame, the likelihood of an object pixel xi, warped from the
reference frame to the current frame by motion transform
T (xs; at), is evaluated as:

p(T (xi; at)|θ)
= p(T (xi,s; at), c(T (xi,s; at))|θ)

=
K∑

k=1

pkg(T (xi,s; at);T (μk,s,Σk,s; at))

× g(c(T (xi,s; at));μk,c,Σk,c)

=
K∑

k=1

pkg(xi,s;μk,s,Σk,s)g(c(T (xi,s; at));μk,c,Σk,c)

(4)

Note from Eq. 4 that not only the pixel spatial coor-
dinate xi,s is transformed to T (xi,s; at), but also the
Gaussian parameter values on the spatial dimension are
changed from (μk,s,Σk,s) to T (μk,s,Σk,s; at). With the
general linear motion model defined in Eq. 3, such that
T (xi,s; at) = Atxi,s + Bt, and T (μk,s,Σk,s; at) =
(Atμk,s + Bt, AtΣk,sA

τ
t ), this generally leads to a can-

celled out effect on the Gaussian function evaluations on the
spatial GMM components. However, since the appearance
features of each pixel are coupled with the transformed po-
sition of the pixel in the current frame, i.e., c(T (xi,s; at)),
it essentially correlates the pixel likelihood evaluation with
the unknown object motion estimation at.

To ease the derivations, define the data component prob-
ability q(k, xi; at) as

q(k, xi; at) = pkg(xi,s;μk,s,Σk,s)g(c(T (xi,s; at));μk,c,Σk,c)
(5)

We propose a matching criterion to recover the object mo-
tion at based on the integration of the pixel data logarithm
likelihood over the object region.

E(at; θ) =
∑

xi∈R0

log p(T (xi; at)|θ)

=
∑

xi∈R0

log{
K∑

k=1

q(k, xi; at)}
(6)

This joint data likelihood term measures the data fitness of
a candidate object region Rt at current time t, warped from

the reference object region R0, to the object SAM model
characterized by model parameter θ. Thus the problem of
object tracking becomes an essential optimization problem,
where the objective is to look for an optimal value a∗

t that
maximizes the joint likelihood energy function E(at; θ),
i.e.,

a∗
t = max

at

E(at; θ) (7)

3.2. Closed-Form Tracking with EM

Treating the motion transform parameter at as the only
unknown value in the above maximum likelihood estima-
tion of Eq. 6, the Expectation-Maximization (EM) algo-
rithm is well suitable to be adopted here to recover the un-
known value of at for the current frame, with simultaneous
achievement of energy function maximization.

Unlike the general EM algorithm for the parameter fit-
ting of GMM model, where the objective is to find an op-
timal model parameter set θ∗ that best explains the training
data set. Here we assume that the GMM model parame-
ter θ remains unchanged during this optimization process,
while only deriving a solution to incrementally update the
motion parameter at embedded into the EM iterations. We
should clarify that our assumption that the GMM model pa-
rameter stays constant during this one frame EM iteration
is a quite valid assumption. It actually has been intrinsi-
cally utilized by most existing tracking approaches, where
the object model, once firstly initialized, will generally re-
main fixed during the whole tracking sequence, unless some
online updating mechanism is adopted in order to handle the
non-stationary visual process [12, 11, 16].

In fact, it is interesting to point out that our mixture
framework does allow a straight-forward incorporation of
an online updating process to handle the problem of track-
ing non-stationary object appearance. Although the current
version of the algorithm does not take such a further step,
we leave this issue for the future improvements. All the
experiments reported in this paper do not take an online up-
dating step, while still achieving very encouraging tracking
results.

Similar to the general EM algorithm, an initial value for
the unknown parameter must be specified in order to start
the EM iterations. In our case we simply take the recovered
motion estimation a∗

t−1 from previous frame as the initial-
ization of at, i.e., a

(0)
t = a∗

t−1. The superscript indexes the
EM algorithm iteration. Assume that we have already ob-
tained an estimation of at during the jth EM iteration, i.e.,
a
(j)
t , the E-step involves the computation of pixel assign-

ment probability to each Gaussian component as

p(j)(k|xi; a
(j)
t ) =

q(k, xi; a
(j)
t )∑K

m=1 q(m,xi; a
(j)
t )

(8)
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with the data component probability q(k, xi; a
(j)
t ) defined

in Eq. 5.
From the Jensen’s inequality, we have the following

lower bound to the original energy function E(at; θ):

E(at; θ)

=
∑

xi∈R0

log{
K∑

k=1

q(k, xi; at)}

=
∑

xi∈R0

log{
K∑

k=1

p(j)(k|xi; a
(j)
t )

q(k, xi; at)

p(j)(k|xi; a
(j)
t )

}

≥
∑

xi∈R0

K∑
k=1

p(j)(k|xi; a
(j)
t ) log

q(k, xi; at)

p(j)(k|xi; a
(j)
t )

=
∑

xi∈R0

K∑
k=1

p(j)(k|xi; a
(j)
t ) log q(k, xi; at)−

∑
xi∈R0

K∑
k=1

p(j)(k|xi; a
(j)
t ) log p(j)(k|xi; a

(j)
t )

= E(j)(at; θ)

(9)

Maximizing E(at; θ) can be achieved by maximizing the
lower bound function E(j)(at; θ), and subsequently maxi-
mizing the first term of E(j)(at; θ) in Eq. 9, since the old
pixel assignment probabilities p(j)(k|xi; a

(j)
t ) are known

provided the value a
(j)
t at jth EM iteration, thus the sec-

ond term is unrelated to the objective function maximiza-
tion over at.

we define the first term of lower bound function by
Ẽ(j)(at; θ),

Ẽ(j)(at; θ) =
∑

xi∈R0

K∑
k=1

p(j)(k|xi; a
(j)
t ) log q(k, xi; at)

(10)
Iteratively maximizing Ẽ(j)(at; θ) by finding an updated
estimation a

(j+1)
t has the same effect on the incremental

maximization of the original objective function E(at; θ).
Rather than the logarithm of a sum as in E(at; θ), the
derived Ẽ(j)(at; θ) only contains a linear combination of
K logarithms, which breaks the coupling of the equations
when setting the derivatives of Ẽ(j)(at; θ) over the param-
eter at to zero.

We take an incremental updating form by assuming that
a
(j+1)
t = a

(j)
t + Δat, then the above maximization can be

written as

max
Δat

Ẽ(j)(Δat; θ)

=
∑

xi∈R0

K∑
k=1

p(j)(k|xi; a
(j)
t ) log q(k, xi; a

(j)
t + Δat)

(11)

Taking the partial derivative of Ẽ(j)(Δat; θ) over Δat and
setting it to zero, we can obtain a series of linear updating
equations to incrementally maximize the objective function
depending on what motion model is used.

To ease the exposition, we firstly show the updating
equations for the simple case, where a translational motion
model is adopted, and object appearance feature is simply
the pixel intensity. Then we generalize the discussions to
handle more complex motion model, including scaling, ro-
tation, or affine transform, and multi-dimension appearance
features such as pixel values in (r, g, b) color channel are
also considered there.

Recall that the motion parameter at = {At, Bt} as de-
fined in Eq. 3, when translational motion model is taken,
At becomes an Identity matrix, we only need to consider
the second term, i.e., at = Bt. By taking the incremental
updating form, we have Δat = ΔBt.

Ẽ(j)(ΔBt; θ)

=
∑

xi∈R0

K∑
k=1

p(j)(k|xi;B
(j)
t ) log q(k, xi;B

(j)
t + ΔBt)

(12)

Taking the partial derivative over ΔBt

∂Ẽ(j)(ΔBt; θ)
∂ΔBt

=
∑

xi∈R0

K∑
k=1

p(j)(k|xi;B
(j)
t )

∂ log q(k, xi;B
(j)
t + ΔBt)

∂ΔBt

=
∑

xi∈R0

K∑
k=1

p(j)(k|xi;B
(j)
t )

× ∂ log g(c(xi,s + B
(j)
t + ΔBt);μk,c,Σk,c)
∂ΔBt

(13)

where the spatial component probability g(xi,s;μk,s,Σk,s)
and component priori pk in q(k, xi;B

(j)
t + ΔBt) disappear

due to their uncorrelation with motion update ΔBt. How-
ever, please note that their effects on the motion estimation
do reflect on the computation of pixel assignment probabil-
ity p(j)(k|xi;B

(j)
t ).

Following the small motion assumption, c(xi,s +B
(j)
t +

ΔBt) can be linearized by taking the first order Taylor ex-
pansion as

c(xi,s +B
(j)
t +ΔBt) = c(xi,s +B

(j)
t )+H

(j)
i,t

τ
ΔBt (14)

where H
(j)
i,t is the Jacobian matrix of the appearance feature

over motion estimation evaluated at its current value B
(j)
t .
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When the appearance feature is simply the pixel intensity,
H

(j)
i,t takes the form as

H
(j)
i,t =

(
cu(xi,s + B

(j)
t )

cv(xi,s + B
(j)
t )

)
(15)

where (cu(xi,s + B
(j)
t ), cv(xi,s + B

(j)
t )) are the horizontal

and vertical intensity gradients at location xi,s +B
(j)
t of the

current frame.
Recall that the probability distribution in appearance di-

mension g(c(xi,s + B
(j)
t + ΔBt);μk,c,Σk,c) also takes the

Gaussian form, in combination with the linearized form of
c(xi,s +B

(j)
t +ΔBt) in Eq. 14, the partial derivative of the

objective function Ẽ(j)(ΔBt; θ) over ΔBt can be eventu-
ally reached as

∂Ẽ(j)(ΔBt; θ)
∂ΔBt

=
∑

xi∈R0

K∑
k=1

p(j)(k|xi;B
(j)
t )

× H
(j)
i,t Σ−1

k,c[(c(xi,s + B
(j)
t ) − μk,c) + H

(j)
i,t

τ
ΔBt]

=0
(16)

i.e., the following linear system equation can be derived to
solve ΔBt

UΔBt = V

ΔBt = U−1V
(17)

where matrix U and V are defined as follows

U =
∑

xi∈R0

K∑
k=1

p(j)(k|xi;B
(j)
t )H(j)

i,t Σ−1
k,cH

(j)
i,t

τ
(18)

V = −
∑

xi∈R0

K∑
k=1

p(j)(k|xi;B
(j)
t )H(j)

i,t Σ−1
k,c(c(xi,s+B

(j)
t )−μk,c)

(19)
The form of linear system equation implies that the con-

tribution of each pixel to motion estimation is weighted
by its nearby spatial-appearance Gaussian components,
through assignment probability p(j)(k|xi;B

(j)
t ), and ap-

pearance mean μk,c and variance Σk,c. Thus exact pixel-
wise alignment between initial object region R0 and warped
candidate Rt is relaxed, leading to a more flexible frame-
work of tolerating large appearance deformation during
tracking. The extent of deformation tolerance is governed
by the variance coverage of each mixture component. The
contributions of all pixels to motion estimation are com-
bined and voted for the optimal solution of motion update.

With the estimated motion update ΔBt solved from
Eq. 17, a new circle of EM iteration starts with the updated
estimation of the motion parameter B

(j+1)
t as

B
(j+1)
t = B

(j)
t + ΔBt (20)

In summary, the proposed EM tracking approach takes
the following two-step iterative procedure.

E-Step: compute the mixture component assignment
probability for each pixel xi by Eq. 8.

M-Step: obtain a motion update estimation Δat by solv-
ing the linear system equation as in Eq. 17.

The above EM iterations are iteratively computed to in-
crease the joint data likelihood until convergence.

3.3. Tracking under General Motion Transform

The proposed EM tracking procedure could be easily
generalized to handle more complex motion model, and in-
corporate more informative appearance features, while the
same M-Step updating equation as in Eq. 17 could still
be derived. The only difference between these variations
lies on the computations of Jacobian matrix of the appear-
ance feature over motion estimation, i.e., H

(j)
i,t . For ex-

ample, for similarity motion model, handling translation,
scaling, and rotation, the 4-dimensional motion vector at =
(a1,t, a2,t, a3,t, a4,t)τ has the following form:

At =
(

a1,t −a2,t

a2,t a1,t

)
, Bt =

(
a3,t

a4,t

)
(21)

the corresponding Jacobian matrix H
(j)
i,t with intensity fea-

ture is defined as

H
(j)
i,t =⎛⎜⎜⎜⎝

cu(A(j)
t xi,s + B

(j)
t )ui,s + cv(A(j)

t xi,s + B
(j)
t )vi,s

−cu(A(j)
t xi,s + B

(j)
t )vi,s + cv(A(j)

t xi,s + B
(j)
t )ui,s

cu(A(j)
t xi,s + B

(j)
t )

cv(A(j)
t xi,s + B

(j)
t )

⎞⎟⎟⎟⎠
(22)

When color appearance features are used, the Jacobian ma-
trix H

(j)
i,t becomes multi-columns with each column having

the same form as in Eq. 22 but in a different color chan-
nel. More complex motion model, such as affine transform,
can be derived in a similar manner, therefore we omit the
discussion here.

It is clear that our framework allows tracking object un-
der any general linear motion transforms that are solved in
a unified way. The more complex motion recovery puts
no more computation overhead than the simple ones. It is
actually a very appealing property in comparison with the
kernel-based tracking approaches using mean-shift, where
only object translation is principally handled.
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As guaranteed by the Jensen’s inequality in Eq. 9, the
lower bound optimization in the proposed EM iterations
will subsequently lead to a continuous maximization of the
original objective function, i.e., the data likelihood, thus
driving the motion estimation towards the optimal candi-
date object region. Compared with the Kernel-based track-
ing [5], where a line search procedure is usually required
for the optimal step length decision of mean shift iteration,
our closed-form linear solution derived in Eq. 17 enjoys
a Newton-style iteration as in template matching [9] and
Kernel-based tracking with SSD [10]. It reaches a local op-
timum in an one-step jump, thus avoiding the tedious pro-
cess of line search.

Figure 2 shows an illustrative example of one-frame EM
iterations. The left figure represents the iterative motion es-
timations, illustrated by a series of colorized quadrangles
overlapping on the original frame, with pure red to pure yel-
low depicting this sequential iteration procedure. The right
figure clearly demonstrates the continuous increase of the
data logarithm likelihood, as provably guaranteed in Eq. 9.
In this example, 10 EM iterations are performed to reach
the algorithm convergence, where we declare a convergence
when there is no significant change between the motion es-
timations in two consecutive iterations.

Figure 2. Logarithm likelihood evaluation of the candidate object
region during one frame iterations.

4. Experiments
In this section, we present extensive experiments tested

under challenging real-world sequences. A differential
tracker based on the proposed approach is implemented, ca-
pable of handling object translation, scaling, and rotation.
Comparisons are made with simple template tracker and
Kernel-based tracker, demonstrating the very encouraging
performance of our unified approach for tracking non-rigid
objects under dramatic appearance deformations, large ob-
ject scale changes and partial occlusions.1

Depending on the availability of color channels from the
input video, the appearance features in the SAM model vary
from intensity feature to color features in the RGB color
space. The number of mixture components used to model
objects may take different values depending on the rela-
tive size of objects. It is actually a trade-off factor to gov-

1Please see the supplemental video for the detailed tracking results.

ern the model flexibility to appearance deformation, where
more components imply more localized component cover-
age, thus more strict observance of rigid structure assump-
tion, while less components allow more relaxed alignment
between the candidate region and object model. Our expe-
rience shows that 20-40 components usually work well for
a broad spectrum of non-rigid objects we are testing on. We
leave the investigation on optimal number of components
selection for future study. Some related work along this
direction includes [1, 11]. To speed up the model initializa-
tion, we take the tracked object regions in the first 50 frames
of each sequence to update the mixture model, with one
frame one EM iteration to obtain the model. After that, the
model is fixed without further updating, and used for track-
ing the rest of video frames. The current unoptimized C++
implementation of the algorithm runs comfortably around
5-10 fps on average on Pentium 3G.

4.1. Large Appearance Deformation

Figure 3 shows the tracking results over a home video
sequence, where a kid presents significant expression
changes, thus dramatic appearance deformations. Consider-
ing the relative large size of object, a 40-component mixture
model is adopted here to initialize the differential tracker
with similarity transform motion model. The first row gives
the result from a template matching tracker. It loses a tight
tracking of the kid face at the early stage of the sequence,
when the kid starts to behave his exaggerating expression
and simultaneously shows the significant head movement.
The second row of the Figure 3 shows the iterative mo-
tion estimations in each frame via the proposed differential
tracker, with colorized quadrangles from pure red to pure
yellow depicting the series of updating as before. The thick-
ened boundaries due to multiple iterations clearly reflect the
large motion effects, which are not only from translation,
but also through rotation and scaling. Albeit the difficulties,
the proposed differential tracker successfully keeps localiz-
ing the non-rigid face with correct motion estimations until
the kid completely turns his head to the right side, thanks
to the intrinsic deformation tolerance of the proposed ap-
proach.

Figure 4 demonstrates our tracking results on the famous
but challenging Dudek sequence2, which has been tested
over several approaches addressing online tracking adap-
tation [12, 13]. The person in this sequence presents not
only large appearance variations by changing pose during
movement, but also several short periods of severe occlu-
sions. Without counting on the online adaptation, which is
acknowledged hard to find the balance between the model
adaptability and resistance to noise [11], our approach still
achieves very encouraging results, that the improved robust-

2We acknowledge Dr. El-Maraghi [12] for allowing us to download
this sequence from his website for testing.
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(a) tracking with template matching.

(b) differential tracking via SAM, iterative motion estimations of each frame.

(c) differential tracking via SAM, final tracking result of each frame overlapped by spatial mixture components.

Figure 3. Tracking a kid face under large appearance deformation. (560 Frames)

(a) differential tracking via SAM, iterative motion estimations of each frame.

(b) differential tracking via SAM, final tracking result of each frame overlapped by spatial mixture components.

Figure 4. Tracking a human face under large scale change and severe occlusions (1145 Frames).

ness to partial occlusions could be attributed to the some ex-
tent model tolerance on spatial-appearance misalignments
in the SAM model.

4.2. Large Scale Change

Figure 5 shows a real-world surveillance video to
demonstrate our tracker capacity of handling large object
scale change3. A person enters the scene distantly with a
quite small scale. Our tracker is initialized on this small ob-
ject region, and robustly tracks the person for the remaining
1000 frames. Note the accurate scale estimations of the per-
son during most of the tracking period. Two severe occlu-
sions happen when the person is coming across with other
pedestrians, which shortly affects the tracker’s scale estima-
tions during occlusion. After the person re-appearance from
occlusion, the tracker recovers itself and starts to report the

3We acknowledge the source data is provided from the
EC Funded CAVIAR project/IST 2001 37540, found at URL:
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.

accurate motion estimations again.

Figure 5. Tracking a pedestrian under large scale change and par-
tial occlusions with the proposed differential tracker via SAM. Re-
sults overlapped by spatial mixture components. (1230 Frames)

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 
0-7695-2597-0/06 $20.00 © 2006 IEEE 



The last example in Figure 6 also shows a home video
filming the same kid as in Figure 3. Now the kid demon-
strates a dramatic scale change, and also brings the trou-
ble to the tracker by intentionally presenting serious occlu-
sion. Our tracker again robustly tracks the kid face with the
correct scale estimations for the whole sequence as shown
in Figure 6 (b). In comparison, the results obtained from
a color-based mean-shift tracker in Figure 6 (a) reports an
incorrect scale estimation, and consequently loses tracking
the object.

(a) mean shift tracking.

(b) differential tracking via SAM, iterative motion estimations of each frame.

Figure 6. Tracking a kid face under large scale change. (690
Frames)

5. Conclusion

In summary, this paper presents a novel differential ap-
proach for non-rigid object tracking under the general mo-
tion transform. A spatial-appearance model (SAM) is in-
troduced to model both the object appearance variations
and its global spatial structures. A maximum likelihood
matching criterion is defined and rigorous analytical results
are obtained through Expectation-Maximization (EM) al-
gorithm, leading to a closed form solution to motion track-
ing. The derived linear system equation also suggests us to
take a new view to look at the connections between the two
standard tracking paradigms, template tracking and Kernel-
based tracking. Our ongoing research will mainly focus on
a deeper investigation on the intrinsic relations of the pro-
posed approach with them, and their more recent advances,
such as [10, 8].
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