
 

 

 

Abstract 
 

Gait is an attractive biometric for vision-based human 

identification. Previous work on existing public data sets 

has shown that shape cues yield improved recognition rates 

compared to pure motion cues. However, shape cues are 

fragile to gross appearance variations of an individual, for 

example, walking while carrying a ball or a backpack.  We 

introduce a novel, spatiotemporal Shape Variation-Based 

Frieze Pattern (SVB frieze pattern) representation for gait, 

which captures motion information over time. The SVB 

frieze pattern represents normalized frame difference over 

gait cycles.  Rows/columns of the vertical/horizontal SVB 

frieze pattern contain motion variation information 

augmented by key frame information with body shape. A 

temporal symmetry map of gait patterns is also constructed 

and combined with vertical/horizontal SVB frieze patterns 

for measuring the dissimilarity between gait sequences. 

Experimental results show that our algorithm improves gait 

recognition performance on sequences with and without 

gross differences in silhouette shape. We demonstrate 

superior performance of this computational framework 

over previous algorithms using shape cues alone on both 

CMU MoBo and UoS HumanID gait databases. 

1. Introduction 

Human gait recognition starts from the observation that 

an individual’s walking style is unique and can be used for 

human identification. Gait recognition involves visual cue 

extraction and classification to identify individual walking 

characteristics. Gait is easier to perceive from a long 

distance than other biometrics like face and fingerprint. This 

makes gait a more attractive biometric for human 

identification from a far. However, gait features have a high 

intra-personal variation in shape influenced by external 

conditions like footwear, clothing and load carrying. The 

variation of gaits is also influenced by mood, ground surface 

condition and time difference. We therefore need to take 

both shape and motion variations into consideration for 

robust gait recognition. 

Previous work over many years has achieved significant 

performance on several well known test data sets, such as 

Carnegie Mellon University’s MoBo database [12], 

University of Southampton’s HumanID image database 

[13], and University of South Florida’s HumanID gait 

challenge database [7]. Previous work has also studied the 

effects of external conditions on the recognition rate. 

However, state of the art algorithms using shape cues alone 

show weakness to gross appearance variations of an 

individual. 

In this paper, we propose a new spatiotemporal pattern 

that represents gait shape variation information and the 

relation between temporally separated gait motions based 

on sequences of body silhouettes. Our algorithm shows 

robust and improved test results over previous algorithms 

using shape cues on test sequences containing significant 

changes in an individual’s body shape. 

2. Previous work on Gait recognition 

There are basically two different types of gait recognition 

algorithms: those that primarily use motion information and 

those that rely more on shape. The first class of methods 

includes those that use body part moments extracted from a 

human body silhouette [1, 2], eigengait space [3] and 

Hidden Markov models [4, 5, 6]. However, experimental 

results of these algorithms on the MoBo database [12] show 

worse performance compared to methods using mainly 

shape information [7]. 

Several recent studies show that shape cues in silhouette 

based gait recognition contribute more to the recognition 

results than motion cues [8, 9]. Average silhouette is one of 

the most well known shape features for gait recognition [9, 

10]. A collection of clustered silhouette stances with a 

population HMM is another shape based gait feature. The 

work in [11] adopts dynamics-normalized shape cues, seven 

stance shapes, which are not enough to represent dynamics 

of the entire gait. Using shape cues like body height, width, 

part proportions combined with motion cues like stride 

length and the amount of arm swing provides improved 

results [14]. 

Even though shape-based cues empirically give good 

recognition results [7], it has been observed that body shape 

cues work poorly on sequences like ‘Walk with ball’ of the 
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MoBo gait database, which exhibits significant shape 

change between gallery and probe silhouette for the same 

person [8]. This shows that we can not ignore motion 

information for gait recognition.  

Spatiotemporal pattern matching for gait recognition is 

an interesting approach, because they contain both shape 

and temporal variation information inside the pattern, 

converting the gait recognition problem into a pattern 

recognition problem. A self similarity plot is one example of 

these patterns for gait recognition [17, 18]. Self-similarity 

plots are obtained by computing difference values of all 

pairs of images. In [17], a normalized self-similarity plot for 

each person is used for recognition. Their work shows that 

shape variation information has the ability to discriminate 

between individual human gaits that have large variance in 

the real world. However, their test results are worse than 

other silhouette based algorithms. This is because the self 

similarity plot sums up all difference values over the whole 

non-rigid human body, losing the detailed local motion 

information. 

Frieze patterns are another spatiotemporal pattern 

proposed for gait recognition [15, 16]. By projecting 

(summing) silhouette images along the horizontal and 

vertical axis respectively, a repeating spatiotemporal frieze 

pattern is computed over time. Frieze patterns, however, 

contain a shape component that is sensitive to gross 

appearance variations of an individual, for example, 

walking while carrying a ball or a backpack.  

We hypothesize that appropriate shape cues combined 

with motion cues will give improved recognition results on 

sequences where the same person has different appearances, 

and that spatiotemporal patterns are a good tool for this 

purpose. We develop a novel Shape Variance-Based frieze 

pattern (SVB frieze pattern) representing self similarity of 

each row/column of a silhouette. Figure 1 (b) and (c) show n 

examples of the SVB frieze pattern of a gait sequence. 

3. Shape Variance-Based Frieze pattern 

The algorithm for extracting an SVB frieze pattern from 

silhouette images of gait sequence mainly consists of two 

parts. First we need to extract key frames for each gait cycle. 

We define one gait cycle as the period starting from a 

double support stance frames with left foot forward to the 

next. To do this, we seek reliable detection of frames 

occurring at the same relative offset within each gait cycle 

(for example, double support stance frames with left foot 

forward). Secondly, difference frames based on subtracting 

these key frames from silhouettes at other times are 

calculated and the SVB frieze pattern is computed based on 

these difference frames. Figure 2 shows this process over 

one cycle. 

Figure 1: (a) Width variation of lower body silhouette. The lower body portion of each aligned silhouette is projected perpendicular to 

the horizontal axis and the width is obtained.  (b) Horizontal SVB frieze pattern extracted automatically.  

(c) Vertical SVB frieze pattern extracted automatically. 



 

 

3.1. Key frame selection 

An SVB frieze pattern is a self similarity cue computed 

from the body silhouette, using a key frame as a reference 

frame to calculate self similarity over each walking cycle. 

We define the key frame as the starting frame of one 

walking cycle, which is one of the two double-support 

positions (two feet on the ground). Each walking cycle starts 

from the key frame and ends before the next key frame. First, 

we align all silhouette images by center of mass. To find the 

start point of each cycle, we project the lower body portion 

of each aligned silhouette perpendicular to the horizontal 

axis and obtain its width. Figure 1 (a) is the plot of this width 

over time. From this width we can robustly determine 

double-support key frames by detecting local maxima over 

time. However, there are two different types (left leg front 

and right leg front) of double-support positions, and it is 

difficult to tell which peak is for which. If camera viewing 

angle is not exactly plane-parallel and fronto-parallel, these 

two different double-support positions will create different 

SVB frieze patterns. Therefore, detecting the two different 

types is important. Among the six CMU MoBo database 

[12] viewing angle conditions, side view sequences are used 

for our experiments. This provides an easy case because the 

camera views the human body from the upper left side and, 

as a result, the left foot is always located lower in its 

double-support frame. UoS [13] or USF test sets [7] are shot 

from longer distances than MoBo database and are almost 

plane-parallel and fronto-parallel, so left or right 

foot-forward can be ignored, or else features for both 

left/right conditions can be extracted simultaneously and 

classified separately, as what was done in [17]. 

After the key frame is obtained, a series of difference 

frames        are computed using a minimum absolute 

correlation method with small search region inside r, similar 

to [17].  
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                       is a key frame, (dx,dy) is the offset for 

minimum frame difference and                   is the frame at 

time t inside a given cycle. Figure 2 shows the process of 

computing difference frames based on a key frame.  

3.2. SVB frieze pattern extraction 

SVB frieze patterns can be obtained by projecting pixel 

values of difference frames along horizontal or vertical axes 

in exactly the same way as the original frieze pattern method 

in [15]. Each 2D difference frame is converted by the 

projection into 1D summed “energy” values. The SVB 

frieze pattern is obtained by interpreting these energy values 

over time. 
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Figure 1 (b) shows a horizontal SVB frieze pattern. The 

X-axis is time and Y-axis is column-axis of the original 

body silhouette image. Figure 1 (c) is a vertical SVB frieze 

pattern. The Y-axis is now the row-axis of the original body 

silhouette image. Each column of a SVB frieze pattern at 

time t represents the difference frame at time t. 

All corresponding columns of key frames in the SVB 

frieze pattern should have zero values, which is the 

characteristic of a self similarity plot. Along the time axis, 

the SVB frieze pattern captures the variation of silhouette 

shape based on each key frame. From the normalized and 

aligned SVB frieze pattern, an average SVB frieze pattern 

unit is extracted, which is used to represent the shape 

variation characteristic of each subject.  
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series of subsequent frames.   
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Figure 3: (a) key frame. (b) SVB frieze pattern. (c) Original frieze 
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3.3. SVB frieze pattern vs Frieze pattern  

SVB frieze patterns are similar to the original gait frieze 

patterns [15]. Both patterns are spatiotemporal plots 

showing variation of silhouettes over time. Since the 

original frieze pattern is computed over the complete 

silhouette image, it is sensitive to body appearance changes. 

Figure 3 shows that an SVB frieze pattern emphasizes the 

pure shape variation component of the original shape 

pattern. If we project each key frame to the Y-axis and add 

that to each column of the SVB frieze pattern, we can 

recover the original frieze pattern. This means that the 

original frieze pattern can be decomposed into a key frame 

representing the shape component and an SVB frieze 

pattern representing the motion component after subtracting 

the key frame. 

3.4. SVB frieze pattern vs SSP 

SVB frieze pattern is also related to the self-similarity 

plot [17] obtained by computing difference values of all 

pairs of images. Where, both X-axis and Y-axis are time 

axes representing image frames. With this characteristic, all 

point values along the diagonal are zero, and the lower 

triangle below the diagonal is an exact reflection of the 

upper triangle (Figure 4 (b)). Furthermore, each row of the 

upper triangle is a linear transformation of the first row, 

which means all values of a specific row can be obtained by 

linear combinations of values of the first row (figure 4 (C)). 

We can conclude that, with any arbitrary row, all other 

values of a self similarity plot can be recomputed. Figure 4 

(C) shows one selected row that contains the same 

information as the whole self similarity plot (Figure 4 (a)). 

The black point represents the reference frame for that row 

(Figure 4 (c), (d)). 

We can decompose each row into several small rows 

(Figure 4 (d)) for each walking cycle starting from the 

diagonal line. Now each small row has its own reference key 

frame. These key frames correspond to the key frames of 

each SVB frieze pattern cycle. Likewise, if we decompose 

each small row vertically, we can obtain the horizontal SVB 

frieze pattern (Figure 4 (e)). In other words, if we project 

horizontal SVB frieze patterns along the X-axis, we can 

obtain one row of the self similarity plot, from which the 

entire self similarity plot can be recovered.  

We conclude that SVB frieze pattern is a type of self 

similarity plot and each row of the horizontal SVB frieze 

pattern represents self similarity values of the 

corresponding row of a silhouette image.  

4. Classification     

4.1. Symmetry map of frieze pattern 

One gait cycle consists of two translation-symmetric half 

cycles. These two half cycles have almost the same pattern 

and period. Half of a single unit frieze pattern is nearly a 

shifted version of the second half, representing a temporal 

translation symmetry. However, it may not always be an 

exact symmetry and not an exact frieze pattern. Some 

people could swing one arm but not the other arm or a step 

on one side could be longer than the other. Different 

amounts of symmetry will be observed for different people, 

which can be used as a feature for recognition. The original 

frieze pattern approach [15] introduced the use of symmetry 

distance to make better decisions for classification. 

In this paper, we use a symmetry map obtained from SVB 

frieze patterns. By computing the difference between two 

half motion cycles of SVB frieze patterns we can obtain a 

symmetry map. Figure 6 shows the symmetry maps for 

different individuals in the MoBo database. Each person has 

a different symmetry map and it is an additional shape 

variance-based feature for gait recognition used in our 

algorithm. High values of the symmetry map represent 

highly non-symmetric motion of the corresponding 

spatiotemporal region. In other words, the symmetry map 

not only gives a measure of gait dynamics symmetry, but 

also quantifies which spatiotemporal point of the gait 

motion has a non-symmetric nature. 

Note that although we obtain a symmetry map from an 

SVB frieze pattern, it provides us new information about 

gait motion. Classification only with SVB frieze patterns 

matches the entire gait cycle of one sequence with the 

corresponding cycle of other sequences. It is an inter-cycle 

cue where the relation between different gait cycles is a 

concern. In contrast, the symmetry map represents 

intra-cycle correlation, which tells how two half cycles in a 

gait sequence are related to each other. 

Figure 4: (a) Self-similarity plot [17] (b),(c) Redundancy  

elimination (d) New reference frame for each cycle which 

corresponds to the key frame (e) SVB frieze pattern  

(a) (b) 

(d) (e) 

(c) 



 

 

4.2. Cost function for matching 

We obtain four cues from each gait sequence: horizontal 

& vertical SVB frieze pattern and horizontal & vertical 

symmetry map. We then define and compute the following 

distance values from the i’th gallery to j’th probe along all 

four feature dimensions:  
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 Where            and            represent horizontal and vertical 

SVB frieze pattern.            and          represent the symmetry 

map for the horizontal and vertical SVB frieze pattern 

respectively. A single cost function is computed by 

summing up all four parameterized cue distance values: 

 

(9) 

  

5. Experiments 

For recognition experiments we need a training sequence 

(Gallery) and a test sequence (Probe).  There are many gait 

test databases that are well organized and have different 

types of challenging conditions. However, few of them 

contain sequences with significant shape change for the 

same subjects between gallery and probe.  

We test our algorithm using two well known gait 

databases, the CMU MoBo (CMU) database [12] and 

University of Southampton’s HumanID image database 

[13]. 

5.1.  CMU MoBo database 

 The CMU MoBo (CMU) database is a well-known 

public data set used by many previous researchers. It 

records 25 subjects for each of four gait types (slow walk, 

fast walk, ball walk, inclined walk). It is useful for 

comparing performance against other gait recognition 

algorithms. Furthermore, it has a test sequence where the 

subject is carrying a ball, which changes body silhouette 

appearance considerably. The MoBo database is suitable 

for checking the performance of the shape variation cue 

compared to the previous shape-only cues. The number of 

walking cycles is large, which is also appropriate for 

training our features. In this paper, ‘slow walk’, ‘fast walk’ 

and ‘ball walk’ types are used for both gallery and probe. 

MoBo images have large and well segmented silhouette 

images thanks to the background information provided. 

This also gives good information for body dynamics 

computation. Figure 5 (a) shows 25 normalized horizontal 

SVB frieze pattern units and figure 5 (b) shows normalized 

vertical SVB frieze pattern units trained on the ‘slow walk’ 

sequence. 

Table 1 shows test results comparing our algorithm 

against five existing methods. Previous algorithms show 

high recognition rates for the first five probes where shape 

variations between gallery and probe sequences are 

relatively small.  
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Figure 5: Normalized SVB frieze patterns of the 25 CMU MoBo 

subjects (a) Horizontal (b) Vertical  
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 CMU 

[14] 

UMD 

[8] 

MIT 

[1] 

Frieze 

[15]* 

SSP 

[17] 

SVB 

frieze 

S/S 100% 100% 100% 100% 100% 100% 

F/F - 100% - 100% 100% 100% 

B/B - 92% - 100% - 100% 

S/F 76% 80% 64% 100% 54% 82% 

F/S - 84% - 84% 32% 80% 

S/B 92% 48% 50% 81% - 77% 

B/S - 68% - 50% - 89% 

F/B - 48% - 50% - 61% 

B/F - 48% - 50% - 73% 

 

 

 

 

 

However, for the last four test results including ‘ball 

walk’ sequence, they have relatively low recognition rates, 

which tells us that their algorithms are not robust to 

appearance changes. In contrast, our algorithm yields good 

performance across all types of gallery/probe combinations 

showing best or second best classification rate. Especially, 

the performance of our algorithm on the ‘ball walk’ related 

tests is better than any previous algorithm. Figure 7 

compares three selected algorithms across all types of test 

result. 

5.2. UoS HumanID image database 

We also tested our algorithm with University of 

Southampton’s HumanID image database [13]. It shows 

116 people under different conditions. Silhouettes are clean 

and large enough to show detailed human body motion. 

However, it does not provide multiple sequences for the 

same person. To check the robustness of our gait 

recognition algorithm, multiple test sequences of the same 

person having different silhouette appearance conditions 

are necessary.  

We simulated new sequences with gross changes in body 

shape by adding a square blob on the back of the body 

(Probe B) and by dilating the torso part of the silhouette 

(Probe C1 ~ C8) by different disk elements of radius from 3 

to 17. Figure 9 (a) shows selected single frames for each 

sequence. Horizontal body center and vertical torso part 

center values are used to place the newly added square blobs 

(Probe B) at every frame.   

Probe A represents both training and testing with original 

database images. The first 5 gait cycles for each sequence 

are used for training and all other cycles are used for testing. 

Probes B and C represent training with the first 5 cycles of 

each sequence of original data and testing with other cycles 

after adding a blob or dilating the sequence. Probe B looks 

Table 1: CMU MoBo recognition results with S (slow walk), F 

(fast walk) and B (ball walk) sequences. S/F represents Gallery S 

and Probe F. 

*Test results for frieze pattern are based on internal experiments. 

Figure 7: Top rank result of MoBo database. Last four test results 

for ‘ball walk’ sequences are notably improved. 
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Figure 7: Cumulative match score  
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Figure 8: Cumulative Match Score (CMS) of six gallery/probe 

combination test results using proposed SVB frieze pattern on the 

CMU MoBo database. 

(a) 

(b) 

Figure 9: (a) sample frame from probe B and C (b) Average 

silhouette of probe B and C  

B          C1      C2     C3      C4     C5     C6     C7     C8 

B          C1      C2     C3      C4     C5     C6     C7     C8 



 

 

like carrying a backpack, and changes a small part of the 

human body by adding a rigid object that does not reflect 

human body local dynamics. Only global periodic motion 

affects the location of the added blob. Probe C has 8 

gradually dilated sequences that look like wearing heavy 

clothes. Previous work [11] using stance shape cues also 

reports an algorithm robust to overall dilation or erosion of 

silhouette. However, their concern is recovering clean and 

consistent silhouettes from those contaminated by noise or 

background clutter. Real intra-personal shape variation due 

to clothing can have partial changes or non-linear 

characteristics. The head part could be changed by wearing 

a cap or only body parts could be changed by wearing a 

heavy coat. No eigen-shape is preserved in this case, and 

only eigen shape variation can be kept, which is represented 

by the SVB frieze pattern. 

 

 Avg. 

silhouette [9] 

Frieze 

Pattern [15] 

SVB Frieze 

Pattern 

A 100% 96% 84% 

B 94% 78% 82% 

C1 100% 95% 82% 

C2 96% 82% 78% 

C3 53% 56% 74% 

C4 35% 47% 73% 

C5 28% 41% 73% 

C6 22% 39% 73% 

C7 22% 38% 72% 

C8 18% 37% 72% 

 

 

 

 

Figure 9 (b) shows corresponding average silhouettes, 

which are basic shape cues used in many previous works [9, 

10, 11]. Average silhouette, original frieze pattern and SVB 

frieze pattern are compared in Figure 10. Absolute 

difference is used for classification of each feature. For test 

sequences with the added square blobs, all features still 

show high recognition rates, but the previous two features, 

average silhouette and frieze pattern, show larger 

degradation in performance than our proposed method 

using the SVB frieze pattern (Table 2). Our SVB frieze 

pattern is not affected by drastic appearance change as much 

as those two existing methods (Figure 10). We also can 

observe that the original frieze pattern still works better than 

average silhouette under appearance change because it also 

contains a component of shape variation in it. Notice that 

the frieze pattern has a time axis in its representation, but an 

average silhouette just has two spatial axes. 

6. Conclusion 

We propose a novel shape variation-based frieze pattern 

representation and a symmetry map representation for gaits 

that capture the intra and inter-shape variations, 

respectively. Jointly using these features for gait recognition 

enhances recognition performance, especially when there is 

a serious silhouette appearance variation between gallery 

and probe sequences. We verify our algorithm 

experimentally and compare it with several recent published 

gait recognition systems on the CMU MoBo database and 

UoS HumanID image database. Unfortunately, not enough 

public data is available with multiple sequences of 

significant appearance change for the same person. 

Therefore we simulated appearance change in the UoS 

silhouette data. These new data sets enable us to show the 

strength of our algorithm.  

Our test results using only key frames for human 

identification show how the shape component contributes to 

gait recognition. Table 3 shows the recognition rates using 

CMU MoBo ‘Slow’ and ‘Fast’ sequences, which has low 

appearance change. 

 

 
Slow 

/Slow 

Fast 

/Fast 

Slow 

/Fast 

Fast 

/Slow 
Key 

frame 
99% 96% 90% 86% 

 

 

 

A key frame is a single silhouette image that does not 

contain any gait dynamics. So we can not consider an 

algorithm based only on key frames gait recognition. It is 

nothing but body shape recognition. We can conclude from 

the good recognition results (Table 3) using only key frames 

that if we include this body shape information inside the 

feature used for gait recognition, test results will be 

significantly helped by the shape recognition information. 

Indeed, imagine that all frames of a gait sequence are 

Table 2: UoS HumanID database recognition results. Original 

silhouette A is used for gallery. A, B and C1~C8 are used for 

probe. 

   

Table 3: Identification result with MoBo database using only key 

frames  
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Figure 10: Test result of C1~C8 probe sequences. SVB frieze 

pattern shows robust recognition result with appearance change. 
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randomly shuffled. Now no more gait motion exists with 

these shuffled frames. However, the average silhouette or 

similar average stance features of the original sequence and 

new shuffled sequence will be exactly the same. Normalized 

dynamics algorithms [11] will suffer this problem less, 

however their seven stance-shapes still are an average of 

clustered silhouettes for periods shorter than one gait cycle. 

Although shape cues could be a good component for gait 

recognition, gait is a kind of body activity and gait 

recognition starts from the observation that gait dynamics 

can be treated as a biometric. Our SVB frieze pattern 

incorporates both key frame shape and motion variation 

information with respect to key frame values. The key frame 

plays a role of DC component of this variation, so as to keep 

the body structure and define its distribution. In other words, 

the key frame is a human body shape model over one gait 

cycle on which motion of gait is superimposed. 

 SVB frieze patterns improve overall recognition 

performance under gross changes in body shape, however 

they are not the best performing algorithm if body shape 

does not change so much (Table 1). To achieve better 

performance across all types of sequences, we propose to 

combine shape cues with SVB frieze patterns in a 

hierarchical system for gait recognition in our future work. 

    Instead of the absolute distance we used for classification, 

other distance measures like cross correlation or sum of 

squared distance can be used. It is also possible to use 

Linear Discriminant Analysis (LDA) with absolute distance 

to improve recognition rates [11]. 
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