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Département d’Informatique
Ecole Normale Supérieure

Paris, France

Abstract

Today’s category-level object recognition systems
largely focus on fronto-parallel views of objects with char-
acteristic texture patterns. To overcome these limitations,
we propose a novel framework for visual object recognition
where object classes are represented by assemblies ofpar-
tial surface models(PSMs) obeying loose local geometric
constraints. The PSMs themselves are formed of dense,
locally rigid assemblies of image features. Since our model
only enforceslocal geometric consistency, both at the level
of model parts and at the level of individual features within
the parts, it is robust to viewpoint changes and intra-class
variability. The proposed approach has been implemented,
and it outperforms the state-of-the-art algorithms for object
detection and localization recently compared in [14] on the
Pascal 2005 VOC Challenge Cars Test 1 data.

1. Introduction

Object recognition—or, in a broader sense, scene
understanding—is the ultimate scientific challenge of com-
puter vision. After 40 years of research, robustly identify-
ing the familiar objects (chair, person, pet) and scene cat-
egories (beach, forest, office) depicted in family pictures
or news segments is still far beyond the capabilities of to-
day’s vision systems. Despite the limitations of current
scene understanding technology, tremendous progress has
been accomplished in the past five years, due in part to
the formulation of object recognition as a statistical pattern
matching problem. The emphasis is in general on the fea-
tures defining the patterns and the machine learning tech-
niques used to learn and recognize them, rather than on the
representation of object and scene categories, or the inte-
grated interpretation of the various scene elements. Mod-
ern pattern-matching approaches largely focus on fronto-
parallel views of objects with characteristic texture patterns,
and they have proven successful in that domain for im-
ages with moderate amounts of clutter and occlusion. Most

methods represent object classes as assemblies of salient
parts—that is, (groups of) image features whose appear-
ance remains stable over exemplars. By and large, geomet-
ric constraints among parts are either completely ignored
(bag-of-parts models [10, 19]), or imposed in a rigid man-
ner (constellation/star models [3, 11, 12]). We believe that,
as demonstrated by others in thespecificobject recognition
domain [9, 16], geometric constraints are just too powerful
to be ignored. For object categories without characteristic
textures (e.g., cows, people, etc.), they are also the main im-
age cues available. On the other hand, rigid assemblies of
features [3, 11, 12] cannot accommodate the image variabil-
ity due to significant changes in viewpoint or shape within
a category.

In this paper, we propose a novel object model based on
the following observation: Even though the geometric rela-
tionship between “distant” parts of an object may vary due
to intra-class variability and changes in viewpoint, the rela-
tive affine transformations among nearby parts are robust to
these factors (this is related to the well known fact that ar-
bitrary smooth deformations —including those induced by
viewpoint changes for affine cameras or perspectives ones
far from the scene relative to its relief— are locally equiva-
lent to affine transformations [8]).

Thus, we represent object parts aspartial surface mod-
els (or PSMs) which aredense, locally rigidassemblies of
texture patches. These PSMs are learned by matching re-
peating patterns of features across training images of each
object class (Section 3). Pairs of PSMs which regularly oc-
cur near each other at consistent relative positions are linked
by edges whose labels reflect the local geometric relation-
ships between these features. These local connections are
used to construct a probabilistic graphical model for the ge-
ometry and appearance of the PSMs making up an object
(Section 4). In turn, the correspondingPSM graphis the
basis for an effective algorithm for object detection and lo-
calization (Section 5), which outperforms the state-of-the-
art methods recently compared in [14] on the Pascal 2005
VOC Challenge Cars Test 1 data (Section 6).
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2. Related Work

Fergus et al. [3] model the joint probability distribution
of the relative positions of object parts (which are individ-
ual features in their case) as a Gaussian distribution with a
full covariance matrix. However, they model each part’s lo-
cation using itsx, y image coordinates, making the model
highly viewpoint specific. In addition, the learning time is
exponential in the number of parts, which limits the num-
ber of parts in the model to a maximum of 6 or 7. Loeff et
al. [12] propose a “star” model in which an object generates
a number of parts, each of which generates features with a
certain appearance and location relative to the object center.
The appearance of the features is modeled as a multinomial
distribution over a codebook of feature types and the rel-
ative location is modeled as a Gaussian with a mean and
covariance for each part. The appearance model of a sin-
gle part is rather weak in this case since all the features for
a given part are generated with independent locations rela-
tive to the part center. In addition, the star model enforces
rigid geometric constraints among the different object parts
and so is viewpoint dependent. Leibe et al. [11] construct
implicit shape models (ISMs) by clustering object features
in the training images, and storing for each cluster center
the location of the object center and scale relative to the
corresponding feature. During recognition, each feature de-
tected on the test image essentially casts probabilistic votes
for object centers and scales, and a mean shift procedure is
used to find the maxima in this space. The geometric model
is again rigid, hence highly viewpoint dependent, and the
appearance model is relatively weak since each feature oc-
currence is considered independently of all others.

Lazebnik et al. [10] propose a bag-of-parts model in
which the parts are composed of multiple features linked
together in an affinely rigid structure. These parts are quite
discriminative and relatively stable against intra-classvaria-
tions; however, large viewpoint variations result in the affine
model no longer holding for the object parts. In this pa-
per, we learn object parts by only enforcinglocal geometric
consistency among the features that make up the part. We
also augment the “primary” interest point features of [10]
with more general “secondary” texture patches to generate
dense and highly discriminative PSMs. Using dense mod-
els as opposed to just interest points has been shown to im-
prove matching and recognition performance by [5, 9] in
the context of specific 3D object recognition. Dense PSM
matches provide an extremely stable coordinate frame to
compute the relative positions of other PSM matches ro-
bustly. Since our PSMs consist of multiple overlapping fea-
tures, and some features are more discriminative than others
we train a logistic regression model to evaluate the quality
of a PSM match based on the individual feature matches.

Recently, Thomas et al. [18] have proposed a technique
which deals with the viewpoint change problem by com-

bining models learned for different viewpoints. They use a
highly supervised dataset that consists of images of mul-
tiple motorbike instances, each from a set of up to16
viewpoints. First, they construct separate viewpoint depen-
dent ISMs [11] for each of the different viewing directions.
Then, they use the method of [4] to match the images of
the same motorbike instance across different viewpoints and
construct region tracks that are later used to transfer the ISM
votes from one viewpoint to its neighboring viewpoints.
This is an interesting setup, but it requires highly supervised
training data and a dense sampling of viewpoints since the
ISMs themselves are highly viewpoint dependent. In addi-
tion, since each of the ISMs is learned independently, there
is no sharing of parts among the different viewpoints. In
contrast, we use a single model that shares its parts (PSMs)
among different viewpoints.

3. Learning PSMs

We use ahypothesize and validateapproach to learn
PSMs, similar to [10]. A critical difference, however, is
that the (relatively) sparse and affinely rigid parts of [10]
are replaced bydenseandlocally rigid PSMs.

3.1. PSM Formation

The learning process starts by selecting two images at
random from the training set and computing appearance-
basedprimary matchesbetween pairs of salient image re-
gions. To avoid an excessive reliance on characteristic tex-
ture patterns, we use a simple operator (essentially a Hough
transform) to detect circles in edge maps [7], and output
the smallest squares enclosing them as candidate regions.
Candidate matches between these regions are then com-
puted using the SIFT operator [13], and a non-linear refine-
ment process is used to correct the initial alignment of these
matches. This process considers the patch in the second im-
age as a deformable parallelogram, and optimizes the affine
transformation mapping the first patch onto its match so as
to minimize the error between the SIFT descriptors of the
matched patches. This is essential for matching images of
the same patch viewed from different directions.
• Initialization: Once candidate matches have been found,
they are partitioned into locally consistentPSM hypothe-
sesusing a greedy approach: A PSM hypothesis is ini-
tialized with a single match, and nearby matches are iter-
atively added until the corresponding affine transformations
are no longer close enough to those associated with nearby
matches already in the PSM hypothesis. An unused match
is then chosen at random, and a new PSM hypothesis is
grown using the leftover candidates. This process partitions
the matches into a set of PSM hypotheses. The hypotheses
that contain more matches than a given threshold are passed
along to the expansion stage. The composition of the large
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Figure 1.Expansion: match prediction and refinement.

PSM hypotheses is almost unaffected by the choice of the
match used for initialization.
• Expansion: The first image of the training image pair
is covered with overlapping square-shaped “secondary”
patches, and an expansion step is used to densely cover a
region surrounding the PSM hypothesis. Each match in the
current PSM hypothesis tries to expand into nearby sec-
ondary patches by predicting a match for the secondary
patch based on its own affine transformationτ . The “best”
predicted match (in terms of SIFT matching score) for each
secondary patch is then refined using a non-linear refine-
ment process similar to the one used to align the initial
matches. However, now the refinement process also pe-
nalizes the deviation of the refined location from the pre-
dicted location to prevent the match from drifting too far
from its predicted location.1 Finally, the secondary match is
added to the PSM hypothesis if the SIFT matching score ex-
ceeds a given threshold. The process is illustrated in Fig. 1.
The algorithm continues to expand around the newly added
matches until no more secondary matches can be added.
The PSM hypothesis consists of all the patches in the first
image that were matched successfully.

3.2. PSM Matching

A PSMu can be matched to a target imageI using a sim-
ilar process. First, the circle detector is used to detect can-
didate regions inI and appearance-based matches are com-
puted between the primary patches inu and the detected
regions inI. Next, an expansion step uses these initial
matches to hypothesize matches for the nearby unmatched
patches ofu. The hypothesized matches are first refined (as
described before) and are iteratively added to the current
matches as long as their matching score exceeds a threshold.
Finally, all the feature matches are partitioned into groups
of PSM matches in the same way as was done for the ini-
tially selected image pair. If the number of patch matches
within a PSM match exceeds a certain ratio (R = 0.5) of
the total number of patches in the corresponding PSM, it is
considered correct.

1Since match refinement is relatively time consuming, it is done once
for the “best” expansion attempt for each secondary patch, instead of doing
it for each expansion attempt and choosing the best match later.

Figure 2.Left column: the two base images for a PSM; Right: a few
validation matches for the same PSM. The outline of the PSM, defined as
the union of matched feature regions, is shown in white.

3.3. PSM Validation and Selection

The PSM hypotheses learned in Section 3.1 are scored
by matching them to a set of validation images containing
the object as well as a set of background images. LetN+

u

(resp. N−
u ) be the number of times a PSM candidateu is

matched in the validation (resp. background) images. We
compute the discriminative power of a PSMu as the ratio
Ru = N+

u /N−
u and use it to select PSMs for the object

model. The PSM candidates are processed in a decreasing
order ofRu and are selected only if their validation matches
do not have a significant overlap with those of previously
selected PSMs. This process helps avoid repeated PSMs.
Figure 2 shows a PSM found in training images from the
PASCAL VOC 2005 dataset. The two images on the left of
the figure are the base images used to hypothesize the PSM,
and the images on the right are some validation images.

3.4. PSM Appearance Model

We train a logistic regression model to evaluate the qual-
ity of individual detections (PSM matches). Concretely, we
attach to each matchm of a PSMu consisting ofn features,
a binaryappearancevectora = (a1, . . . , an), whereai is
equal to1 if the corresponding feature has been matched,
and−1 otherwise. We also associate a labelℓ ∈ {obj, bkg}
with every matchm for a PSM u based on whether it
matches the object part corresponding tou or some back-
ground texture in the image. Let us definePu(a|ℓ) as the
probability that a PSM match ofu has appearance vector
a given that it has labelℓ. Since a PSM consists of multi-
ple overlapping features, the individual feature matches (the
components ofa) are not independent, making their proba-
bilistic modeling difficult. Thus, instead of learningPu(a|ℓ)

directly, we learn a parametric model forPu(a|obj)
Pu(a|bkg) , which

will prove sufficient for object detection.
To simplify the learning task, we assume that the train-

ing data is generated from a joint distributionPu(a, ℓ) as
follows: First, the label is generated fromP (ℓ = obj) =
P (ℓ = bkg) = 0.5 and then the appearancea is generated
given the label from the probability distributionPu(a|ℓ).
We begin by training a logistic regression classifier on this
data to construct the probability distributionPu(ℓ|a). This
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now allows us to compute the desired probability ratio as

Pu(a|obj)
Pu(a|bkg)

=
Pu(obj|a)Pu(a)

Pu(obj)
×

Pu(bkg)
Pu(bkg|a)Pu(a)

=
Pu(obj|a)

Pu(bkg|a)
.

We now describe the generation of the training data sam-
ples(a, ℓ) and the classifier training procedure.
• Generating data from the joint distribution: Every
matchm of the PSMu provides us with a data point, la-
beled as obj or bkg depending on whether it has been found
in a validation or background image. However, since the
number of background instances available is typically much
smaller than the number of object instances, we repeatedly
sample the background matches as necessary to create as
many data points labeled bkg as there are points labeled
obj. We assume that the matches observed in the valida-
tion images correctly match the corresponding object parts
and that the observed appearancesa of the matches in the
validation (resp. background) images are random samples
from Pu(a|obj) (resp.Pu(a|bkg)).
• Training the classifier: We train the logistic regression
model to output the probabilityPu(ℓ|a) that a data point has
labelℓ given that it has appearancea. The binary features
used by the logistic regression model are simply the com-
ponents ofa. The weights associated with the features of
the model are learned so as to maximize the log-likelihood
of labels observed on the training data. This is a convex op-
timization problem and can be solved efficiently. Since the
amount of training data is limited we regularize the maxi-
mum likelihood parameter learning process to avoid over-
fitting by adding a penalty proportional to the squared norm
of the weight vector of the logistic regression model [17].
Once the PSMs and the corresponding logistic regression
models have been learned, the matching process can essen-
tially be thought of as running a set of PSM detectors that
fire at certain locations in an image and provide an estimate
of the quality of the match based on its appearance. As
argued before, since these detectors enforce only local ge-
ometric consistency, they are robust to viewpoint changes
and intra-class variability.

4. Learning Object and Background Models

4.1. The PSM Graph

We can associate with any instanceu′ of a PSMu de-
tected in an image the 2D affine transformation which is
the “mean” of the affine transformations mapping the in-
dividual patches ofu in the base image roughly to their
detected matchesu′. Intuitively, this transformation repre-
sents the affine deformation of the PSM from its base image
to its matched location. We denote byAu, the random vari-
able associated with the affine deformation corresponding
to PSMu, and we model the joint probability distribution
of the variablesAu associated with all PSMs in an object

model as a MRF (Markov Random Field) structure dubbed
the PSM graph. The vertices of this graph are identified
with the random variablesAu. Nearby PSMs are linked
by edges that enforce local consistency between them. An
edge joins two PSMs when they co-occur within a speci-
fied range from each other in a sufficient number of vali-
dation images. Figure 3 shows the PSM graph model for a
car learned from the PASCAL VOC 2005 dataset using the
technique described in the rest of this section.

The Hammersley-Clifford theorem [1] allows us to write
the joint probability distribution of the variablesAu as a
product of functions over maximal cliques in the graph.
For efficiency reasons, we ignore the cliques of size greater
than two while modeling the intra-PSM relations. The pair-
wise consistency constraints between adjacent PSMs are
modeled using normal distributions on the relative affine
transformations. Concretely, letRu:v ≡ Au

−1Av denote
the affine transformation between the patches ofv andu,
or equivalently the vector of IR6 representing the location,
scale, skew and orientation ofv in the coordinate frame of
u, and letµu:v ∈ IR6 andσu:v ∈ IR6×6 denote the cor-
responding mean vector and covariance matrix. We model
the joint distribution of the PSM positions as

pg(A1,A2 . . .AN ) =
1

Z

∏
(u,v)∈E

N (Ru:v; µu:v, σu:v),

whereN (R; µ, σ) is the normal distribution with meanµ
and covariance matrixσ, andZ is a normalization constant.
We assume a diagonal form for the covariance matrixσu:v.

It is important to note that this model isnot equivalent
to a joint Gaussian model on all the random variablesAu.
This would indeed be true if the model was constraining
the PSM positions instead of relative affine transformations
between the PSMs. In that case, the model would be equiv-
alent to a Gaussian model on the random variables with a
specific structure imposed on the inverse covariance matrix
(the only non-zero entries would be the ones corresponding
to the edges in the graph). However, since we impose Gaus-
sian constraints on therelativetransformations of PSMs, the
model can no longer be written as a joint Gaussian density
on theAu. However, as discussed in the introduction, con-
straining only the relative affine transformations (and not
the relativex, y locations) is important to make the model
robust to viewpoint and intra-class variations.

4.2. Learning the PSM Graph Parameters

Both µu:v andσu:v are estimated from the training im-
ages in whichu andv are seen together. We initializeµu:v

using the mean of the observed relative affine transforms
andσu:v as a diagonal matrix containing the observed vari-
ance of each of the entries inµu:v. However, this estimate is
biased and the variances estimated are extremely small. In-
tuitively, the observed variance between two adjacent nodes
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Figure 3.An example of learned PSM graph. The top row shows the outlines of the PSM instances corresponding to nodes with the same color in the PSM
graph below it. The black nodes represent other nodes in the PSM graph. Please view in color.

occurs as a result of all the constraints in the graph connect-
ing the2 nodes acting together and attributing the variance
to a single constraint makes it too tight. Hence, we use a
gradient ascent procedure to optimize the variance param-
etersσu:v so that the log likelihood of the PSM matches
observed in the validation set is maximized. Let{i1 . . . ip}
be the indices of PSMs observed in some validation image
I and let{j1 . . . jq} be the indices of the PSMs that are not
observed inI. The likelihood of the geometrical configura-
tion observed in theith validation image can be computed
by integrating out the unobserved PSMs:

pg(Ai1 , . . .Aip
) =

∫
j1...jq

pg(A1,A2 . . .AN ).

We use loopy belief propagation [15] toapproximately
compute the log-likelihood for the observed configurations
in the validation images. The total log-likelihood of the val-
idation set is just the sum of the log-likelihoods for the in-
dividual validation images since the images are assumed to
be independent. Computing the “exact” gradient of the log-
likelihood on the validation images is not computationally
feasible since it requires running a belief propagation step
for each validation image for every variance parameter on
every edge after each iteration. Hence, we compute an ef-
ficient approximation to this gradient and use it to optimize
the log-likelihood. The details of the gradient ascent pro-
cedure are described in Algorithm 1. This algorithm runs
a single belief propagation on every validation image after
every iteration. Each belief propagation is initialized using
the state at the end of the previous iteration and hence con-
verges extremely quickly. In practice, the algorithm con-
verges in less than10 iterations and the entire optimization
process takes less than10 minutes on a desktop machine for
a model with about30 PSMs and50 edges. Also, it is usu-
ally sufficient to optimize just a single scaling ratio for the
entire covarianceσu:v on each edge instead of optimizing
the6 parameters independently.

4.3. Object and Background Models

Our object model is generative: First, a PSM graph in-
stance, with an affine transformationAu for every compo-

Algorithm 1 Optimization of Variance Parameters.

Input: A set of validation images with detected PSMs, initial es-
timate of the PSM graph and step lengthτ .
Output: Optimized PSM Graph.

for all validation imagesI do
• Initialize the observed PSMs inI ;
• Run BP on I and store the state of messages;

end for
repeat
• Set gradientGu:v of σu:v on all edges(u, v) to 0;
for all validation imagesI do

for all observed nodesv in I do
• Assumev is not observed and compute the belief atv
using the incoming messages;
• Compute gradient∂L/∂Mu:v of the log-likelihood of
the observedv w.r.t. the incoming messagesMu:v;
• Compute gradient ∂L/∂σu:v by multiplying
∂L/∂Mu:v and the JacobianJ(Mu:v, σu:v);
• Add gradient toGu:v for edges(u, v) incident onv;

end for
end for
• Updateσu:v ← σu:v + τ ·Gu:v;
• Run BP and update the messages on all validation images
using the updatedσu:v;

until convergence.

nent PSMu, is chosen from the above distribution. Next,
each PSM independently chooses its occlusion state, with
probability Pvis(u) to be visible, and probablyPocc(u) =
1 − Pvis(u) to be hidden. If a PSMu is visible it then gen-
erates a PSM matchm at the locationAu. Finally, the ap-
pearance ofm is chosen independently from the distribution
p(m|obj) for each visible PSM.Pvis, Pocc are learned by just
measuring the statistics of the PSM on the validation data.

The background model generates matches for each
model PSMu from a Poisson distributionPpoiss(n|Ku)
with meanKu. The location for each PSM match is selected
from a uniform pdf over the size of the image (for position)
and a reasonable range of scale, orientation and skew pa-
rameters. These ranges are estimated from the background
dataset. Finally, the appearance of the PSM match is cho-
sen from the distributionp(m|bkg). The meansKu of the
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Poisson distribution are learned using the statistics observed
on the background data. Note that the appearance models
P (m|obj) andP (m|bkg) are not learned explicitly. Instead,
the logistic regression model associated with every PSM is
used to predict their ratioP (m|obj)

P (m|bkg) for the PSM. Finally, we
assume that the background is present in every image and
the number of objects present in it follows a Poisson distri-
bution with meanλO. Again, this meanλO may be learned
from the training data.

5. Object Detection/Localization

5.1. Object Detection

We start by matching all the PSMs in the object model
to the test image independently to obtain a set of PSM
matches. Each PSM matchm is assigned a probability ratio
P (a|obj)
P (a|bkg) based on its appearance by the logistic regression
model for the corresponding PSM. LetD represent the set
of all the PSM matches detected in the test image. Every
match inD is generated either by the corresponding PSM
from an object or by the background. We denote byOi

the subset ofD corresponding to instance numberi of the
object in the image (there may be no such instances, or sev-
eral ones). Even thoughD may contain multiple matches
for a single PSM, each object instance contains at most one
match per PSM. LetΦ denote the set of all the PSMs in the
object model, and letΦS ⊂ Φ for any set of PSM matches
S denote the set of PSMs that are matched at least once by
matches inS. Finally, let us denote the PSM correspond-
ing to a PSM matchm by um and the appearance ofm by
am. Recall that the appearance of a PSM matchm is a bi-
nary vector containing one coordinate for every feature in
am whose value is either1 or −1 depending on whether
the corresponding feature is matched inm or not. An ex-
planationE = {O1,O2 . . .Ok,B} of D is a partition2 of
D where the matches inOi correspond to theith object in-
stance andB is the set of background matches. LetP(D)
be the set of all the possible explanations ofD.

The probability distributionp(E,D) represents the prob-
ability that an explanationE generates the matchesD in
the image. In other words, ifE = {O1, . . .Ok,B}, then
p(E,D) represents the probability that 1) there arek object
instances present in the scene, 2) theith object instance gen-
erates the matches inOi, and 3) the background generates
the matches inB. Since all the objects in the image and the
background generate matches independently of each other,

2E is not a partition in the strict sense, since it may contain empty
blocks. An empty block for an object instance corresponds tothe case
when the object is present in the image but does not generate any matches
(i.e. none of its PSMs are detected in the image). Such an explanation
would have a low (but non-zero) probability. Similarly, thebackground
block could also be empty indicating that the background does not generate
matches for any of the PSMs.

O2

µu:v, σu:v

v

u

Bkg

ObservedImage

O1

PSMs

Figure 4.Explanation using two object instances.

we can write the distributionp(E,D) as

p(E,D) = pb(B) Ppoiss(k|λO)
∏

1≤i≤k

po(Oi), where:

• The termpb(B) represents the probability that the PSM
matches inB and only these matches are generated from
the background. Since the background model assumes inde-
pendence of the matches generated by the different PSMs,
we can again decomposepb(B) as a product

∏
u∈Φ pb(Bu),

whereBu is the set ofnu matches inB associated with
u. Since the background model also assumes independence
in the geometry and appearance for all the matches corre-
sponding to any PSM we can write,

pb(Bu) = Ppoiss(nu|Ku)
∏

m∈Bu

pg(m|bkg)Pum
(am|bkg).

The termpg(m|bkg) is the uniform pdf for the background
model described earlier.
• The termPpoiss(k|λO) represents the prior probability of
the image containingk object instances.
• The termpo(Oi) is the probability distribution that the
matches inOi and only these matches are generated by
the ith instance of the object model. Since the appearance,
the geometry and the occlusion state of the PSM matches
are independent, we can writepo(Oi) as a product of an
appearance termPa(Oi|obj), a geometry termpg(Oi|obj)
and the visibility termPvis(ΦOi

)Pocc(Φ \ ΦOi
). Since

we assume that the appearances of the PSMs generated by
the object are independent, we can writePa(Oi|obj) =∏

m∈Oi
Pum

(am|obj). The term Pg(Oi|obj) represents
the probability of the geometric configuration of the PSM
matches inOi and is computed using the PSM graph. Fi-
nally, since the occlusion variables for each PSM are inde-
pendent, we can writePvis(ΦOi

) =
∏

u∈ΦOi

Pvis(u) and

Pocc(Φ \ ΦOi
) =

∏
u∈Φ\ΦOi

Pocc(u).
We want to find the most likely explanation of the scene:

E∗ = argmax
E∈P(D)

P (E|D) = argmax
E∈P(D)

p(E,D).

It is not feasible to search to over all possible explanations
of D, and we use a greedy algorithm to build up the “best”
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explanation. The algorithm is initialized with the explana-
tion E0 = {D}, assuming that all the matches inD are
generated by the background. We then add a single ob-
ject to the explanation and compute the most likely ex-
planationE1 = {O1,B1}, assuming that a single object
generates the matches inO1 and the remaining matches
in B1 = D \ O1 are generated by the background. If
p(E1,D) > p(E0,D), we fix the matches inO1 as be-
longing to the first object instance. Next, the most proba-
ble explanationE2 = {O1,O2,B2} with 2 objects is con-
structed by splitting the matches inB1 intoO2 andB2. The
algorithm iteratively adds theith object instance to the ex-
planation ifp(Ei,D) > p(Ei−1,D), and terminates when
adding more objects decreases the probability of the expla-
nation. Figure 4 shows an explanation containing two object
instances. During theith iteration, the algorithm has fixed
the matches inO1, . . .Oi−1 and needs to compute the most
likely split of the matches inBi−1 into Oi andBi. Since it
is not feasible to search over all the possible splits ofBi, we
use a greedy scheme to populateOi starting from an empty
set. We move matches fromBi to Oi one at a time so as
to achieve the maximum increase inp(Ei,D) at each step.
We compute the ratio ofp(Ei,D) before and after moving
a single matchm fromBi toOi, and use this ratio to choose
the best match to move. The process terminates when the
best ratio drops below1. While computing this ratio, the
contributions of the terms corresponding to the firsti − 1
object instances cancel out and we obtain:

p({O1...Oi−1,Oi∪{m},Bi\{m}})
p({O1...Oi−1,Oi,Bi})

=
pum (am|obj)
pum (am|bkg) ×

pvis(m|obj)
pocc(m|obj)

×Ppoiss(nm−1|Kum )
Ppoiss(nm|Kum ) × pg(Oi∪m|obj)

pg(Oi|obj)·pg(m|bkg)

wherenm denotes the number of timesm is matched inBi.
The first term can be computed using the logistic regression
model for the PSM. The second and third terms are com-
puted using the learned occlusion parameterspvis, pocc and
background Poisson distribution parameterKu. The final
term is computed (approximately) by running loopy belief
propagation on the graph. In fact, what we need to com-
pute is the ratiopg(Oi∪m|obj)

pg(Oi|obj) which can be computed as fol-
lows. The nodes inΦOi

are fixed and belief propagation
is run to compute the “approximate” marginal distributions
pg(Au|ΦOi

) on all the nodesu ∈ Φ\ΦOi
. The required ra-

tio is justpg(Aum
|ΦOi

). The termpg({m}|obj) for an ob-
ject instance containing a single PSM matchm is assumed
to be the same aspg(m|bkg).

5.2. Localization

Once we have computed an explanationE for the image,
we use the PSM matches within each object instanceOi to
predict a bounding box for it. For every PSM matchmu

in Oi, we transform the bounding box in the base image of
u to the test image usingAu. The predicted bounding box
for Oi is just the mean of these bounding boxes for all the
matchesm ∈ Oi. We compute a scoreβOi

(needed to plot
Precision-Recall curves) for eachOi using the appearance
and visibility terms for the PSMs withinOi as

βOi
= log [Pa(Oi)Pvis(ΦOi

)Pocc(Φ \ ΦOi
)] .

6. Experiments and Discussion

We have conducted experiments on the PASCAL VOC
Challenge 2005 Cars Test 1 dataset [14], which consists of
275 images containing one or more cars (in a variety of
poses) and414 background images with no cars present.
The training data consisted of272 positive images with320
annotated cars, and412 background images.
• Pre-processing of the training data: Since images of
cars facing left are identical (up to a flip about the ver-
tical) to cars facing right, we learn a model for detect-
ing cars facing right. The detector is run on the origi-
nal image as well as its flipped version to be able to de-
tect cars facing both to the left and to the right. To sim-
plify the learning of the object model we correct each im-
age of the training set so that the car is pointing towards
the right (by flipping the image, if required). Then we an-
notate the images with a rough viewing direction from the
set{Rear, RearSide, Side, SideFront, Front}. Images
from a given class are only matched to others from the same
class or from neighboring classes during the PSM valida-
tion phase. Since our method first learns the object part
appearances “independently” and later learns the geometry,
it requires a reasonably “clean” set of validation matches
while building the model. Thus, we prune the validation
image matches based on whether the location of the match-
ing patches within the bounding box in the base image is
roughly consistent with the location of the corresponding
matches in the bounding box of the validation image.
• Results: Qualitative detection and localization results on
the Test 1 data are shown in Fig. 5. As per the rules of the
VOC Challenge [14], a detection is considered correct if the
intersection area of the predicted bounding box and the an-
notated bounding box is at least50% of the union of the
two. Also, multiple detections for the same object instance
are considered false positives. We have implemented a sim-
ple baseline method to judge the performance of the PSMs
without the geometric model: Each PSM matchmu in the
test image casts a vote for its predicted bounding box using
Au (similar to Section 5.2) and a mean shift procedure is
used to find the modes in this space. The VOC Challenge
competition used the average precision (AP) score [14] to
rank the results submitted by the participants. Our baseline
approach achieves an AP score of0.590, which is just below
the best score of of0.613 obtained by Dalal and Triggs [2]
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Figure 5.Successful detections on the PASCAL VOC 2005 Cars Test 1. Thelast two images in the bottom row show correct detections (small red
rectangles) showing up as false positives because they werenot annotated in the dataset. Please view in color.
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Figure 6.Precision/recall curves (left), and AP score comparison (right).
The results for Dalal and Triggs, Fritz et al., and Garcia andDuffner are
taken from [14]. The references in brackets are the publications where the
methods used in the challenge have been first described.

in the competition. The PSM graph approach achieves an
even higher score of0.628—the highest obtained so far for
this dataset. Figure 6 shows the precision/recall curves cor-
responding to the baseline method and the full PSM graph
algorithm, and compares our AP scores with those obtained
by the participants in the VOC 2005 Challenge [14].
• Discussion: These experimental results demonstrate the
strength of our model: First, we can see that PSMs are very
discriminative, since when combined with a simple voting
scheme, they significantly outperform comparable methods
based on individual local features [11]. This style of voting
can be thought of as a (simple) implementation of a rigid
star model. Our experiments also demonstrate the power
added by our loose geometric model, which significantly
outperforms all other methods on the Cars Test 1 data of the
Pascal 2005 VOC Challenge.
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