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Abstract methods represent object classes as assemblies of salient

parts—that is, (groups of) image features whose appear-

Today's category-level object recognition systems ance remains stable over exemplars. By and large, geomet-
largely focus on fronto-parallel views of objects with char ric constraints among parts are either completely ignored
acteristic texture patterns. To overcome these limitatjon (bag-of-parts models [10, 19]), or imposed in a rigid man-
we propose a novel framework for visual object recognition ner (constellation/star models [3, 11, 12]). We believe,tha
where object classes are represented by assembligarof ~ as demonstrated by others in thgecificobject recognition
tial surface model§PSMs) obeying loose local geometric domain [9, 16], geometric constraints are just too powerful
constraints. The PSMs themselves are formed of denseto be ignored. For object categories without characteristi
locally rigid assemblies of image features. Since our model textures (e.g., cows, people, etc.), they are also the main i
only enforcedocal geometric consistency, both at the level age cues available. On the other hand, rigid assemblies of
of model parts and at the level of individual features within features[3, 11, 12] cannot accommodate the image variabil-
the parts, it is robust to viewpoint changes and intra-class ity due to significant changes in viewpoint or shape within
variability. The proposed approach has been implemented,a category.

and it outperforms the state-of-the-art algorithms foreatij In this paper, we propose a novel object model based on
detection and localization recently compared in [14] on the the following observation: Even though the geometric rela-
Pascal 2005 VOC Challenge Cars Test 1 data. tionship between “distant” parts of an object may vary due

to intra-class variability and changes in viewpoint, thiare
tive affine transformations among nearby parts are robust to
these factors (this is related to the well known fact that ar-
Object recognition_or, in a broader sense, scene bitrary Smooth deformations —inC|Uding those induced by

understanding—is the ultimate scientific challenge of com- Viewpoint changes for affine cameras or perspectives ones
puter vision. After 40 years of research, robustly identify far from the scene relative to its relief— are locally equiva
ing the familiar objects (chair, person, pet) and scene cat-lent to affine transformations [8]).

egories (beach, forest, office) depicted in family pictures  Thus, we represent object parts@atial surface mod-

or news segments is still far beyond the capabilities of to- els (or PSM$ which aredense, locally rigicassemblies of
day’s vision systems. Despite the limitations of current texture patches. These PSMs are learned by matching re-
scene understanding technology, tremendous progress haseating patterns of features across training images of each
been accomplished in the past five years, due in part toobject class (Section 3). Pairs of PSMs which regularly oc-
the formulation of object recognition as a statistical @att  cur near each other at consistent relative positions akedin
matching problem. The emphasis is in general on the fea-by edges whose labels reflect the local geometric relation-
tures defining the patterns and the machine learning tech-ships between these features. These local connections are
nigues used to learn and recognize them, rather than on theised to construct a probabilistic graphical model for the ge
representation of object and scene categories, or the inteometry and appearance of the PSMs making up an object
grated interpretation of the various scene elements. Mod-(Section 4). In turn, the correspondii®BM graphis the

ern pattern-matching approaches largely focus on fronto-basis for an effective algorithm for object detection and lo
parallel views of objects with characteristic texture pais, calization (Section 5), which outperforms the state-a-th
and they have proven successful in that domain for im- art methods recently compared in [14] on the Pascal 2005
ages with moderate amounts of clutter and occlusion. MostVOC Challenge Cars Test 1 data (Section 6).

1. Introduction



2. Related Work bining models learned for different viewpoints. They use a
- S highly supervised dataset that consists of images of mul-
Fergus ?t al. [31 _model theljomt probab|I.|ty dlstr!bupc')n tiple motorbike instances, each from a set of uplt®
of the relative positions of object parts (which are individ viewpoints. First, they construct separate viewpoint depe
ual features in their case) as a Gaussian distribution with a4ent ISMs [11] for each of the different viewing directions
full covariance matrix. However, they model each part’s lo- Then, they use the method of [4] to match the images 6f
cation using itsr, y image C°°rd'T‘f"“eS’ making _the _mod_el the same motorbike instance across different viewpoirds an
highly weyvp_omt specific. In addition, the 'e_arf“”g time Is constructregion tracks that are later used to transfeiShe |
Expo?entltal n ttr?e nurgbﬁr of partg, Wh'cr; gmlts7thLe n#mt- votes from one viewpoint to its neighboring viewpoints.
Ierfz parts In e“mo "e odalmaxwuhm 0 bpr - LOCTTel hisis an interesting setup, but it requires highly supsadi
al | ]bpropfose? star hmc; ehl_nr\]/v Ic anto ercttgenergiﬁs training data and a dense sampling of viewpoints since the
a number of parts, each ot which generates 1eatures with &g, themselves are highly viewpoint dependent. In addi-
certain appearance and Iocat|on_relat|ve to the obJecgcent_ ion, since each of the ISMs is learned independently, there
The appearance of the features is modeled as a multmomla[S no sharing of parts among the different viewpoints. In

dl.strltiutlo:) overa CdOdleZOOk ofoeaturg Wp?tf] and the rel- OIcontrast, we use a single model that shares its parts (PSMs)
ative location is modeled as a Gaussian with a mean an mong different viewpoints.
covariance for each part. The appearance model of a sin-
gle part is rather weak in this case since all the features for

a given part are generated with independent locations rela-3- Learning PSMs

tive to the part center. In addition, the star model enforces We use ahypothesize and validatepproach to learn
rigid geqmgtric cqnstraints among the different objectspar PSMs, similar to [10]. A critical difference, however, is
and so is viewpoint dependent. Leibe et al. [11] construct {4t the (relatively) sparse and affinely rigid parts of [10]

implicit shape models (ISMs) by clustering object features are replaced bylensendlocally rigid PSMs.
in the training images, and storing for each cluster center

the Iocation_ of the object genter and' §ca|e relative to the3.1. PSM Formation
corresponding feature. During recognition, each featere d
tected on the test image essentially casts probabilistesvo The learning process starts by selecting two images at
for object centers and scales, and a mean shift procedure isandom from the training set and computing appearance-
used to find the maxima in this space. The geometric modelbasedprimary matchedetween pairs of salient image re-
is again rigid, hence highly viewpoint dependent, and the gions. To avoid an excessive reliance on characteristic tex
appearance model is relatively weak since each feature octure patterns, we use a simple operator (essentially a Hough
currence is considered independently of all others. transform) to detect circles in edge maps [7], and output
Lazebnik et al. [10] propose a bag-of-parts model in the smallest squares enclosing them as candidate regions.
which the parts are composed of multiple features linked Candidate matches between these regions are then com-
together in an affinely rigid structure. These parts aregquit puted using the SIFT operator [13], and a non-linear refine-
discriminative and relatively stable against intra-chessa- ment process is used to correct the initial alignment oféhes
tions; however, large viewpoint variations result in thienef matches. This process considers the patch in the second im-
model no longer holding for the object parts. In this pa- age as a deformable parallelogram, and optimizes the affine
per, we learn object parts by only enforcilogal geometric transformation mapping the first patch onto its match so as
consistency among the features that make up the part. Wedo minimize the error between the SIFT descriptors of the
also augment the “primary” interest point features of [10] matched patches. This is essential for matching images of
with more general “secondary” texture patches to generatethe same patch viewed from different directions.
dense and highly discriminative PSMs. Using dense mod- e Initialization: Once candidate matches have been found,
els as opposed to just interest points has been shown to imthey are partitioned into locally consisteREM hypothe-
prove matching and recognition performance by [5, 9] in sesusing a greedy approach: A PSM hypothesis is ini-
the context of specific 3D object recognition. Dense PSM tialized with a single match, and nearby matches are iter-
matches provide an extremely stable coordinate frame toatively added until the corresponding affine transformagio
compute the relative positions of other PSM matches ro- are no longer close enough to those associated with nearby
bustly. Since our PSMs consist of multiple overlapping fea- matches already in the PSM hypothesis. An unused match
tures, and some features are more discriminative than®theris then chosen at random, and a new PSM hypothesis is
we train a logistic regression model to evaluate the quality grown using the leftover candidates. This process panttio
of a PSM match based on the individual feature matches. the matches into a set of PSM hypotheses. The hypotheses
Recently, Thomas et al. [18] have proposed a techniquethat contain more matches than a given threshold are passed
which deals with the viewpoint change problem by com- along to the expansion stage. The composition of the large
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Figure 1.Expansion: match prediction and refinement. Figure 2.Left column: the two base images for a PSM; Right: a few
validation matches for the same PSM. The outline of the PS#ined as
the union of matched feature regions, is shown in white.

PSM hypotheses is almost unaffected by the choice of the
match used for initialization. 3.3. PSM Validation and Selection

e Expansion: The first image of the training image pair

is covered with overlapping square-shaped “secondary” The PSM hypotheses learned in Section 3.1 are scored
patches, and an expansion step is used to densely cover Ry matching them to a set of validation images containing
region surrounding the PSM hypothesis. Each match in thethe object as well as a set of background images. N gt
current PSM hypothesis tries to expand into nearby sec-(résp- N,;) be the number of times a PSM candidates
ondary patches by predicting a match for the secondarymatChed in the validation (resp. background) images. We
patch based on its own affine transformatioriThe “best” ~ compute the discriminative power of a PSMas the ratio
predicted match (in terms of SIFT matching score) for each Ru = N,/ /N, and use it to select PSMs for the object
secondary patch is then refined using a non-linear refine-model. The PSM candidates are processed in a decreasing
ment process similar to the one used to align the initial order ofR,, and are selected only if their validation matches
matches. However, now the refinement process also pedo not have a significant overlap with those of previously
nalizes the deviation of the refined location from the pre- Selected PSMs. This process helps avoid repeated PSMs.
dicted location to prevent the match from drifting too far Figure 2 shows a PSM found in training images from the
from its predicted locatioA.Finally, the secondary matchis PASCAL VOC 2005 dataset. The two images on the left of
added to the PSM hypothesis if the SIFT matching score ex-the figure are the base images used to hypothesize the PSM,
ceeds a given threshold. The process is illustrated in Fig. 1 @nd the images on the right are some validation images.
The algorithm continues to expand around the newly added

matches until no more secondary matches can be added3.4. PSM Appearance Model

The PSM hypothesis consists of all the patches in the first

image that were matched successfully. We train a logistic regression model to evaluate the qual-

ity of individual detections (PSM matches). Concretely, we
. attach to each mateh of a PSMu consisting of: features,
3.2. PSM Matching a binaryappearancevectora = (as, ..., ay), wherea, is
equal tol if the corresponding feature has been matched,
and—1 otherwise. We also associate a label {obj, bkg}
with every matchm for a PSM « based on whether it

A PSMw can be matched to a targetimafyesing a sim-
ilar process. First, the circle detector is used to deteat ca
didate regions id and appearance-based matches are com X ‘
puted between the primary patchesirand the detected ~Matches the object part correspondinguitor some back-
regions in1. Next, an expansion step uses these initial 9r0Und texture in the image. Let us defifig(a|¢) as the
matches to hypothesize matches for the nearby unmatched"oPability that a PSM match af has appearance vector
patches of.. The hypothesized matches are first refined (as @ 91Ven that it has label. Since a PSM consists of multi-
described before) and are iteratively added to the currentP!® Overlapping features, the individual feature matchies (

matches as long as their matching score exceeds a threshol§@MPONeNts o) are not independent, making their proba-
Finally, all the feature matches are partitioned into geoup PHlistic modeling difficult. Thus, instead of Iearglrjg(aw)

of PSM matches in the same way as was done for the ini-directly, we learn a parametric model fg#-%g2l, which
tially selected image pair. If the number of patch matches Will prove sufficient for object detection.

within a PSM match exceeds a certain ratio £ 0.5) of To simplify the learning task, we assume that the train-

the total number of patches in the corresponding PSM, it is ing data is generated from a joint distributid? (a, () as
considered correct. follows: First, the label is generated froM(¢ = obj) =

P(¢ = bkg) = 0.5 and then the appearancés generated
1Since match refinement is relatively time consuming, it iselonce given the label from the probability distributioft, (alf)-

for the “best” expansion attempt for each secondary patsitiead of doing We begin by training a Iogist!q reg.reslsior) classifier on this
it for each expansion attempt and choosing the best mateh lat data to construct the probability distributid®, (¢|a). This




now allows us to compute the desired probability ratio as model as a MRF (Markov Random Field) structure dubbed
_ _ ) the PSM graph The vertices of this graph are identified

Pu(alob) _ Pu(objla)Pu(a) = Pu(bkg) _ Pu(0bila)  yith the random variablest,. Nearby PSMs are linked

Pu(alokg) P (obj) Pu(bkgla)Pu(a) — Pu(bkgla) by e qges that enforce local consistency between them. An

We now describe the generation of the training data sam-€dge joins two PSMs when they co-occur within a speci-
p|es(a’,€) and the classifier training procedure. fied range from each other in a sufficient number of vali-

e Generating data from the joint distribution: Every  dationimages. Figure 3 shows the PSM graph model for a
matchm of the PSMu provides us with a data point, la-  €ar learned from the PASCAL VOC 2005 dataset using the
beled as obj or bkg depending on whether it has been found€chnique described in the rest of this section.

in a validation or background image. However, since the  The Hammersley-Clifford theorem [1] allows us to write
number of background instances available is typically much the joint probability distribution of the variabled, as a
smaller than the number of object instances, we repeatediyProduct of functions over maximal cliques in the graph.
sample the background matches as necessary to create &9 efficiency reasons, we ignore the cliques of size greater
many data points labeled bkg as there are points labeledhan two while modeling the intra-PSM relations. The pair-
obj. We assume that the matches observed in the validawise consistency constraints between adjacent PSMs are
tion images correctly match the corresponding object partsmodeled using normal distributions on the relative affine

and that the observed appearanees the matches in the ~transformations. Concretely, l&,., = A, A, denote
validation (resp. background) images are random sampleghe affine transformation between the patches ahdu,
from P, (a|obj) (resp. P, (a|bkg)). or equivalently the vector of Rrepresenting the location,

e Training the classifier: We train the logistic regression ~Scale, skew and orientation ofin the coordinate frame of

model to output the probabiliti, (¢|a) that a data pointhas ~ > and letu,., € R" andoy., € R_6X6 denote the cor-
label ¢ given that it has appearanaee The binary features responding mean vector and covariance matrix. We model
used by the logistic regression model are simply the com- the joint distribution of the PSM positions as

ponents ofa. The weights associated with the features of 1

the model are learned so as to maximize the log-likelihood Py(Ar, Az ... An) = 7 H N (Rusws paizos Tuzo)s

of labels observed on the training data. This is a convex op- (uv)el

timization problem and can be solved efficiently. Since the where A'(R; ui, o) is the normal distribution with mean
amount of training data is limited we regularize the maxi- and covariance matrix, andZ is a normalization constant.
mum likelihood parameter learning process to avoid over- We assume a diagonal form for the covariance matr;x.
fitting by adding a penalty proportional to the squared norm It is important to note that this model i®t equivalent

of the weight vector of the logistic regression model [17]. to a joint Gaussian model on all the random variablgs
Once the PSMs and the corresponding logistic regressionThis would indeed be true if the model was constraining
models have been learned, the matching process can essethe PSM positions instead of relative affine transformation
tially be thought of as running a set of PSM detectors that between the PSMs. In that case, the model would be equiv-
fire at certain locations in an image and provide an estimatealent to a Gaussian model on the random variables with a
of the quality of the match based on its appearance. Asspecific structure imposed on the inverse covariance matrix
argued before, since these detectors enforce only local ge{the only non-zero entries would be the ones corresponding
ometric consistency, they are robust to viewpoint changesto the edges in the graph). However, since we impose Gaus-

and intra-class variability. sian constraints on threlativetransformations of PSMs, the
model can no longer be written as a joint Gaussian density
4. Learning Object and Background Models on theA,,. However, as discussed in the introduction, con-
straining only the relative affine transformations (and not
4.1. The PSM Graph the relativez, y locations) is important to make the model
We can associate with any instanceof a PSMu de- robust to viewpoint and intra-class variations.

tected in an image the 2D affine transformation which is
the “mean” of the affine transformations mapping the in-
dividual patches of: in the base image roughly to their Both p,., ando,,., are estimated from the training im-
detected matches. Intuitively, this transformation repre- ages in whichu andv are seen together. We initializs,..,
sents the affine deformation of the PSM from its base imageusing the mean of the observed relative affine transforms
to its matched location. We denote @y,, the random vari- ando,., as a diagonal matrix containing the observed vari-
able associated with the affine deformation correspondingance of each of the entriesn,..,. However, this estimate is

to PSMw, and we model the joint probability distribution biased and the variances estimated are extremely small. In-
of the variables4, associated with all PSMs in an object tuitively, the observed variance between two adjacentsode

4.2. Learning the PSM Graph Parameters



Figure 3.An example of learned PSM graph. The top row shows the ostlifi¢the PSM instances corresponding to nodes with the salmeicthe PSM
graph below it. The black nodes represent other nodes in3ié graph. Please view in color.

occurs as a result of all the constraints in the graph cornect Algorithm 1 Optimization of Variance Parameters.

ing the2 nodes acting together and attributing the variance Input: A set of validation images with detected PSMs, initial es-
to a single constraint makes it too tight. Hence, we use atimate of the PSM graph and step length

gradient ascent procedure to optimize the variance param-Output: Optimized PSM Graph.

eterso,., So that the log likelihood of the PSM matches  for all validation imaged do

observed in the validation set is maximized. Két...i,} * Initialize the observed PSMs i

be the indices of PSMs observed in some validation image ~ ® Run BP on | and store the state of messages;

Iand let{j ...j,} be the indices of the PSMs that are not ~ €nd for

observed inl. The likelihood of the geometrical configura- ~ "€Pe&t _ _

tion observed in theth validation image can be computed » Set gradienty..., of ow:, on all edgegu, v) o 0;

. ) for all validation imaged do
by integrating out the unobserved PSMs: for all observed ngdes in I do

e Assumev is not observed and compute the beliebat
pe(Aiy, ... Ai,) = / ) pg(A1, Az ... An). using the incoming messages;
JeJa e Compute gradien® L /O M,,.,, of the log-likelihood of
We use loopy belief propagation [15] &pproximately the observed w.r.t. the incoming messagag.,..;
compute the log-likelihood for the observed configurations e Compute gradient 9L/0o.., by multiplying

OL/OM.,.., and the Jacobiatf(My.., ou:v);
e Add gradient to...,, for edges(u, v) incident onv;
end for

in the validation images. The total log-likelihood of thd-va

idation set is just the sum of the log-likelihoods for the in-

dividual validation images since the images are assumed to end for

be independent. Computing the “exact” gradient of the log- o Updateo .y — w4 7 G’

likelihood on the validation images is not computationally « Run BP and update the messages on all validation images

feasible since it requires running a belief propagatiop ste using the updatee,.. ;

for each validation image for every variance parameter on until convergence.

every edge after each iteration. Hence, we compute an ef-

ficient approximation to this gradient and use it to optimize

the log-likelihood. The details of the gradient ascent pro- nent PSMu, is chosen from the above distribution. Next,

cedure are described in Algorithm 1. This algorithm runs each PSM independently chooses its occlusion state, with

a single belief propagation on every validation image after probability Pys(u) to be visible, and probablye(u) =

every iteration. Each belief propagation is initializedngs 1 _ p, (4) to be hidden. If a PSM: is visible it then gen-

the state at the end of the previous iteration and hence congrates a PSM match at the locationd,,. Finally, the ap-

verges extremely quickly. In practice, the algorithm con- pearance ofy is chosen independently from the distribution

verges in less tha iterations and the entire optimization ), (,,|obj) for each visible PSMP,is, Pocc are learned by just

process takes less thafminutes on a desktop machine for - measuring the statistics of the PSM on the validation data.

a model with abous0 PSMs andb0 edges. Also, it is usu- The background model generates matches for each

ally sufficient to optimize just a single scaling ratio foeth 546 PSMy from a Poisson distribUtio, ... (1] K.

entire covariance,., on each edge instead of optimizing \yjth meank, . The location for each PSM match is selected

the6 parameters independently. from a uniform pdf over the size of the image (for position)

4.3. Object and Background Models and a reasonable range of scal_e, orientation and skew pa-

rameters. These ranges are estimated from the background

Our object model is generative: First, a PSM graph in- dataset. Finally, the appearance of the PSM match is cho-

stance, with an affine transformatiofy, for every compo-  sen from the distributiop(m|bkg). The meandy,, of the
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Poisson distribution are learned using the statisticsrvise péars O T
on the background data. Note that the appearance models  \_ ’ v
P(m]obj) andP(m|bkg) are not learned explicitly. Instead, v : ;

the logistic regression model associated with every PSM is ;
@
N
/Bk:&

used to predict their rati ((;’f“gfg) for the PSM. Finally, we
- O

assume that the background is present in every image and
the number of objects present in it follows a Poisson distri-
bution with mean\». Again, this mean\» may be learned

.. ObservedImage
from the training data.

Figure 4.Explanation using two object instances.

5. Object Detection/Localization
_ _ we can write the distributiop(E, D) as
5.1. Object Detection
p(E, D) = pb(B) Ppoiss(k|AO) H po(Oi), where:

We start by matching all the PSMs in the object model ek

to the test image independently to obtain a set of PSM
matches. Each PSM matehis assigned a probability ratio e The termp,(B) represents the probability that the PSM
Ilj((;‘“gfg) based on its appearance by the logistic regressionmatches in3 and only these matches are generated from
model for the corresponding PSM. LBt represent the set  the background. Since the background model assumes inde-
of all the PSM matches detected in the test image. Everypendence of the matches generated by the different PSMs,
match inD is generated either by the corresponding PSM we can again decompogg(B3) as a producf],,. 4 ps(Bu),

from an object or by the background. We denote @y where B,, is the set ofn,, matches in5 associated with

the subset o corresponding to instance numbeof the u. Since the background model also assumes independence
object in the image (there may be no such instances, or sevin the geometry and appearance for all the matches corre-
eral ones). Even thougl may contain multiple matches sponding to any PSM we can write,

for a single PSM, each object instance contains at most one

match per PSM. Leb denote the set of all the PSMs in the  P6(Bu) = Ppoiss (nu|Ku) [ py(m|bkg) P, (an|bkg).

object model, and lebs C @ for any set of PSM matches meBy

S denote_the se_t of PSMs that are matched at least once byi‘he termp, (m|bkg) is the uniform pdf for the background
matches inS. Finally, let us denote the PSM correspond- ,qdel described earlier.

ing to a PSM matchn by u,,, and the appearance of by 4 The termP,,.,. (k|\o) represents the prior probability of
an. Recall that the appearance of a PSM matcis a bi- the image containing object instances.

nary vector conta_inin_g one coordinate fo_r every feature in § The termp,(©;) is the probability distribution that the
an,, whose value is eithet or —1 depending on whether  aiches in®; and only these matches are generated by

the corresponding feature is matchedinor not. An ex- {he ith instance of the object model. Since the appearance,
planationE = {0y, 0; ... O, B} of D'is a'part|t_|or? of the geometry and the occlusion state of the PSM matches
D where the .matches i@; correspond to théth objectin- 5.0 independent, we can wrifg(0;) as a product of an
stance ands is the set of background matches. (D) appearance tern, (O;|obj), a geometry ternp, (O;|obj)
be the set of all the possible explanationgof and the visibility termP,;, (o, ) Pocce(® \ ®o,). Since

The probability distributiop(E, D) represents the prob-  \ye assume that the appearances of the PSMs generated by
ability that an explanatiotZ generates the matché&s in the object are independent, we can writg(O;|obj) =

the image. In other words, i/ = {O1,... Ok, B}, then  [1 P, (a,[obj). The term P,(O;|obj) represents
p(E,D) represents the probability that 1) there arebject  the probability of the geometric configuration of the PSM
instances presentin the scene, 2)ithebjectinstance gen-  matches in®; and is computed using the PSM graph. Fi-

erates the matches @;, and 3) the background generates pga|ly, since the occlusion variables for each PSM are inde-
the matches i8. Since all the objects in the image and the pendent, we can writ®,;,(®0,) = [] o, Puis(u) and
’ V18 i u 0; V18

background generate matches independently of each other,
g g p y Pocc((I) \ (I)OL) = Hq,,g(b\q)o_ Pocc(u)-

2F is not a partition in the strict sense, since it may contairpgm We want to find the most likely explanation of the scene:

blocks. An empty block for an object instance correspondthéocase N

when the object is present in the image but does not genematmatches E* = argmax P(E|D) = argmax p(E, D).

(i.e. none of its PSMs are detected in the image). Such araeatibn EeP(D) EeP(D)

would have a low (but non-zero) probability. Similarly, thackground . . . .
block could also be empty indicating that the backgroundsame generate |1t IS not feasible to search to over all possible explanation

matches for any of the PSMs. of D, and we use a greedy algorithm to build up the “best”



explanation. The algorithm is initialized with the explana in O;, we transform the bounding box in the base image of
tion Ey, = {D}, assuming that all the matches h are u to the test image using,,. The predicted bounding box
generated by the background. We then add a single obfor O; is just the mean of these bounding boxes for all the
ject to the explanation and compute the most likely ex- matchesn € O;. We compute a scorép, (needed to plot
planationE; = {01, 51}, assuming that a single object Precision-Recall curves) for each; using the appearance
generates the matches @; and the remaining matches and visibility terms for the PSMs withi®; as

in B; = D\ O; are generated by the background. If

p(F1,D) > p(Ey, D), we fix the matches ir0; as be- Bo, = 10g[Pu(0i) Pyis(Po, ) Poce (P \ @0, )] -

longing to the first object instance. Next, the most proba-

ble explanationz, = {01, 02, B>} with 2 objects is con- 6. Experiments and Discussion

structed by splitting the matches# into O, andB,. The
algorithm iteratively adds thé&h object instance to the ex-
planation ifp(E;, D) > p(F;-1,D), and terminates when
adding more objects decreases the probability of the expla-
nation. Figure 4 shows an explanation containing two object
instances. During thé&h iteration, the algorithm has fixed
the matches ii®4, . .. ©;_; and needs to compute the most
likely split of the matches i5;_; into O, andB;. Since it

is not feasible to search over all the possible split8 ofve

use a greedy scheme to populé@gstarting from an empty
set. We move matches froffy to O, one at a time so as
to achieve the maximum increasej(¥;, D) at each step.
We compute the ratio gf( E;, D) before and after moving

a single matchn from B3; to O;, and use this ratio to choose
the best match to move. The process terminates when th
best ratio drops below. While computing this ratio, the
contributions of the terms corresponding to the first 1
object instances cancel out and we obtain:

We have conducted experiments on the PASCAL VOC
Challenge 2005 Cars Test 1 dataset [14], which consists of
275 images containing one or more cars (in a variety of
poses) andi14 background images with no cars present.
The training data consisted 72 positive images witl320
annotated cars, and 2 background images.

e Pre-processing of the training data: Since images of
cars facing left are identical (up to a flip about the ver-
tical) to cars facing right, we learn a model for detect-
ing cars facing right. The detector is run on the origi-
nal image as well as its flipped version to be able to de-
tect cars facing both to the left and to the right. To sim-
plify the learning of the object model we correct each im-
@ge of the training set so that the car is pointing towards
the right (by flipping the image, if required). Then we an-
notate the images with a rough viewing direction from the
set{Rear, RearSide, Side, Side Front, Front}. Images
from a given class are only matched to others from the same

P(O1..0i—1,0:U{m},BN{m}}) _ Pug, (am|0b)) . puis(m]obi) class or from neighboring classes during the PSM valida-
p({01...0:_1,0:,B:}) Pum (@m [DkG) ™ pocc(mob) tion phase. Since our method first learns the object part
x Proiss (Mm—UKup) o pa(Osmlob) appearances “independently” and later learns the geometry

PpuiSS(”??L‘K’u’rrL) pg(OLIOb])pg(m‘bkg)

it requires a reasonably “clean” set of validation matches
while building the model. Thus, we prune the validation
wheren,,, denotes the number of imes is matched in3;. image matches based on whether the location of the match-
The first term can be computed using the logistic regressioning patches within the bounding box in the base image is
model for the PSM. The second and third terms are com-roughly consistent with the location of the corresponding
puted using the learned occlusion paramemg\spocc and matches in the bounding box of the validation image.
background Poisson distribution paramekér. The final e Results: Qualitative detection and localization results on
term is Computed (approximate|y) by running |Oopy be“ef the Test 1 data. are ShOWI’] n F|g 5. As per the I’uleS Of the
propagation on the graph_ In fact, what we need to com- VOC Cha“enge [14], a detection is considered correct if the
pute is the ratide(QiUmlob) \\bich can be computed as fol- intersection area of the predicted bounding box and the an-
lows. The nodepsg(i%l(;l.)])are fixed and belief propagation hotated boundi.ng box'is .at leas% of the unign O.f the
is run to compute the ":':\pproximate" marginal distributions two. Also, multiple detections for the same object instance
po(Au|Po.) on all the nodes € ®\ do,. The required ra- are considered false positives. We have implemented a sim-
tig isquustplg(Au B0, ). The termpg({ﬁﬂ;}|obj) for an ob- pl_e baseline method_ to judge the performance of_the PSMs
ject instance containing a single PSM matehs assumed W'thQUt the geometric modgl. Each PSM ma“i’*ﬂ in the .
to be the same as, (m|bkg) test image casts a vote for its predicted bounding box using
® ' A, (similar to Section 5.2) and a mean shift procedure is
used to find the modes in this space. The VOC Challenge
competition used the average precision (AP) score [14] to
Once we have computed an explanatiofor the image, rank the results submitted by the participants. Our baselin
we use the PSM matches within each object instafcto approach achieves an AP scorddfd0, which is just below
predict a bounding box for it. For every PSM mateh, the best score of df.613 obtained by Dalal and Triggs [2]

5.2. Localization



Figure 5.Successful detections on the PASCAL VOC 2005 Cars Test 1. [d3tetwo images in the bottom row show correct detectionsa(lsred

rectangles) showing up as false positives because theynsesnnotated in the dataset. Please view in color.

1
ogt T Algorithm AP
cos PSM graph 0.628
2 Dalal & Triggs[2] | 0.613
£o04 Voting+MS 0.590
. Frizetal. [11] | 0.489
| L~ PSM Voting+Mean Shift Garcia & Duffner [6] | 0.353

0 0.2 0.6 0.8

0.4
Recall
Figure 6.Precision/recall curves (left), and AP score comparisahf).
The results for Dalal and Triggs, Fritz et al., and Garcia Budfner are
taken from [14]. The references in brackets are the puldicatwhere the
methods used in the challenge have been first described.

in the competition. The PSM graph approach achieves an
even higher score d@f.628—the highest obtained so far for
this dataset. Figure 6 shows the precision/recall curves co
responding to the baseline method and the full PSM graph
algorithm, and compares our AP scores with those obtained[11]

by the participants in the VOC 2005 Challenge [14].

e Discussion: These experimental results demonstrate the
strength of our model: First, we can see that PSMs are very[12]
discriminative, since when combined with a simple voting
scheme, they significantly outperform comparable methods
based on individual local features [11]. This style of vgtin
can be thought of as a (simple) implementation of a rigid
star model. Our experiments also demonstrate the powe
added by our loose geometric model, which significantly
outperforms all other methods on the Cars Test 1 data of the[15]

Pascal 2005 VOC Challenge.
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