
Discriminative Learning of Dynamical Systems for Motion Tracking

Minyoung Kim and Vladimir Pavlovic
Department of Computer Science

Rutgers University, NJ 08854 USA
{mikim,vladimir}@cs.rutgers.edu

Abstract

We introduce novel discriminative learning algorithms
for dynamical systems. Models such as Conditional Ran-
dom Fields or Maximum Entropy Markov Models outper-
form the generative Hidden Markov Models in sequence
tagging problems in discrete domains. However, continuous
state domains introduce a set of constraints that can prevent
direct application of these traditional models. Instead, we
suggest to learn generative dynamic models with discrimi-
native cost functionals. For Linear Dynamical Systems, the
proposed methods provide significantly lower prediction er-
ror than the standard maximum likelihood estimator, often
comparable to nonlinear models. As a result, the models
with lower representational capacity but computationally
more tractable than nonlinear models can be used for ac-
curate and efficient state estimation. We evaluate the gen-
eralization performance of our methods on the 3D human
pose tracking problem from monocular videos. The experi-
ments indicate that the discriminative learning can lead to
improved accuracy of pose estimation with no increase in
computational cost of tracking.

1. Introduction
We consider the problem of tracking or state estimation

of time-series motion sequences. The problem can be for-
mulated as estimating a continuous multivariate state se-
quence, x = x1 · · ·xT , from the measurement sequence,
y = y1 · · ·yT , where xt ∈ R

d and yt ∈ R
k. Its appli-

cations in computer vision include 3D tracking of the hu-
man motion and pose estimation for moving objects from
sequences of monocular or multi-camera images.

Learning of dynamic models for tracking is often accom-
plished by optimizing the likelihood of the measurement se-
quence, P (y). Increased availability of high-precision mo-
tion capture tools and data opens a new possibility for learn-
ing models that directly optimize a tracker’s prediction ac-
curacy, P (x|y). However, the study of discriminative learn-
ing methods for tracking has only recently emerged in the

computer vision community.
A problem resembling the state estimation in tracking,

when xt is a discrete label instead of continuous multivari-
ate, is known as sequence tagging or segmentation. The
most popular generative model in this realm is the Hidden
Markov Model (HMM). Traditional Maximum Likelihood
(ML) learning of generative models such as HMMs is not
directly compatible with the ultimate goal of label predic-
tion (namely, x given y), as it optimizes the fit of the mod-
els to data jointly, x and y. Recently, discriminative models
such as Conditional Random Fields (CRFs) and Maximum
Entropy Markov Models (MEMMs) were introduced to ad-
dress the label prediction problem directly, resulting in su-
perior performance to the generative models [9, 10].

Despite a broad success of discriminative models in
the discrete state domain, the use of discriminative dy-
namic models for continuous multivariate state estimation
is not widespread. One reason for this is that a natu-
ral reparameterization-based transformation of generative
dynamic systems to conditional models may violate den-
sity integrability constraints and can often produce unsta-
ble dynamic systems. For example, an extension of Linear
Dynamical System (LDS) to CRF imposes irregular con-
straints on the CRF parameters to ensure finiteness of the
log-partition function, making convex or general gradient-
based optimization complex and prone to numerical failure.

As an alternative to CRF-based models in continuous
state sequence domains we propose to learn generative dy-
namic models discriminatively. This approach has been
well studied in classification settings: Learning generative
models such as Tree-Augmented Naive Bayes (TAN) or
HMMs discriminatively via maximizing conditional likeli-
hoods yields better prediction performance than the tradi-
tional maximum likelihood estimator [4, 6, 8, 12, 15]. Our
main contribution in this paper is to extend this approach to
dynamic models and the motion tracking problem. Namely,
we learn dynamic models that directly optimize the accu-
racy of pose predictions rather than jointly increasing the
likelihood of the object’s visual appearance and pose.

We introduce two discriminative learning algorithms for
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generative probabilistic dynamical systems, P (x,y). One
is to maximize the conditional log-likelihood of the en-
tire state sequence x, that is, arg max log P (x|y), while
the other is for the individual state slices xt, namely,
arg max(1/T )

∑T
t=1 log P (xt|y). These objectives are not

convex in general, however, the gradient-based optimiza-
tion yields superior prediction performance to that of the
standard ML algorithm. In addition, we devise computa-
tionally efficient methods for gradient evaluation as a part
of the proposed framework.

For several human motions, we compare the prediction
performance of the competing models including nonlinear
and latent variable dynamic models. The proposed discrimi-
native learning algorithms on LDS can provide significantly
lower prediction error than the standard maximum likeli-
hood estimator, often comparable to estimates of computa-
tionally more expensive and parameter sensitive nonlinear
or latent variable models. Thus the discriminative LDS of-
fers a highly desired combination of high estimation accu-
racy and low computational complexity.

The paper is organized as follows: In the next section we
briefly review LDS. In Sec. 3, it is discussed why discrim-
inative models can be problematic in the continuous multi-
variate state domain. Then in Sec. 4, the proposed discrimi-
native learning algorithms for LDS are described, followed
by how they can be extended to nonlinear models. After re-
viewing related prior work in Sec. 5, the evaluation on the
motion tracking data appears in Sec. 6.

2. Linear Dynamical Systems
LDS assumes transition and emission densities to be lin-

ear Gaussian, conforming to the graphical representation in
Fig. 1(a). The conditional densities of LDS are defined as:

x1 ∼ N (x1;m0,V0), xt|xt−1 ∼ N (xt;Axt−1,Γ),

yt|xt ∼ N (yt;Cxt,Σ). (1)

The LDS parameter set is Θlds = {m0,V0,A,Γ,C,Σ}.
The joint log-likelihood, LL = log P (x,y)1 is (up to a con-
stant):

LL = − 1
2

[

(x1 − m0)
′V−1

0 (x1 − m0) + log |V0|+
∑T

t=2(xt − Axt−1)
′Γ−1(xt − Axt−1) + log |Γ|T−1

+
∑T

t=1(yt − Cxt)
′Σ−1(yt − Cxt) + log |Σ|T

]

, (2)

where M′ indicates the transpose of the matrix M.
The task of inference is to compute the filtered state

densities, P (xt|y1, . . . ,yt), and the smoothed densities,
P (xt|y). The linear Gaussian assumption on LDS im-
plies Gaussian posteriors that can be evaluated in linear

1For brevity, we will often drop the dependency on Θ in the notation.

time using the well-known Kalman filtering or RTS smooth-
ing methods. We denote the means and the covariances
of these posterior densities by: m̂t , E[xt|y1 . . .yt],
V̂t , V (xt|y1 . . .yt), mt , E[xt|y], Vt , V (xt|y),
and Σt,t−1 , Cov(xt,xt−1|y).

To learn LDS, one needs to find Θlds that optimizes a
desired objective function. In the supervised setting that we
assume throughout the paper, for the given train data D =
{(xi,yi)}n

i=1, the generative learning maximizes the joint
log-likelihood,

∑n
i=1 LL(xi,yi), which has a closed form

by solving the equation that sets the gradient of (2) equal to
0. For instance, using the gradient w.r.t. C shown in (3), we
have C∗ =

[
∑n

i=1

∑Ti

t=1 yi
t xi

t
′]
·
[
∑n

i=1

∑Ti

t=1 xi
t xi

t
′]−1,

where Ti is the length of the i-th sequence.
∂LL
∂C

= Σ−1 ·
∑T

t=1(ytx
′
t − Cxtx

′
t) (3)

The ML learning of the generative model is intended to
fit the model to data jointly on x and y. However, in track-
ing we are often more interested in finding a model that
yields a high accuracy of predicting x from y, an objec-
tive not achieved by ML learning in general. It is therefore
tempting to employ discriminative models which explicitly
focus on the desired goal. In the discrete state domain,
CRFs and MEMMs are such models shown to outperform
the generative models like HMMs. Unfortunately, as dis-
cussed in the next section, developing CRF- or MEMM-like
discriminative models in the continuous multivariate state
domain can be a challenge.

3. Discriminative Dynamic Models
Analogous to extending HMMs to CRFs and MEMMs,

we will extend LDS to conditional models that have the
same representational capacity as LDS. This, for instance,
reduces to exploiting 2nd-order moments (e.g., xtx

′
t−1) as

local features for CRF, and a linear Gaussian local condi-
tional density P (xt|xt−1,yt) for MEMM.

3.1. Conditional Random Fields
CRF models the conditional probability of x given y.

Since P (x|y) ∝ P (x,y), the log-conditional log P (x|y)
has the same form as (2) except that those terms that
are not involved in x (e.g., y′

tΣ
−1yt) can be removed

as they will be marginalized out into the log-partition
function. We reparameterize Θlds to CRF parameters so
that the latter become linear coefficients for the CRF fea-
tures. Specifically, the new CRF parameter set Θcrf =
{Λb,ΛA,ΛC ,Λ1,Λ,ΛT } satisfies:

Λb , V−1
0 m0, ΛA , Γ−1A, ΛC , Σ−1C,

Λ1 , − 1
2 (V−1

0 + A′Γ−1A + C′Σ−1C),

Λ , − 1
2 (Γ−1 + A′Γ−1A + C′Σ−1C),

ΛT , − 1
2 (Γ−1 + C′Σ−1C). (4)
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Figure 1. Graphical Models: HMM (or LDS), CRF, and MEMM.

Then the LDS-counterpart CRF model can be written as:

P (x|y,Θcrf ) =
exp

(

Φ(x,y;Θcrf )
)

Z(y;Θcrf )
, (5)

where the score function, Φ(x,y;Θcrf ) = Λ′
bx1 +

x′
1Λ1x1 +

∑T−1
t=2 x′

tΛxt +x′
T ΛT xT +

∑T
t=2 x′

tΛAxt−1 +
∑T

t=1 y′
tΛCxt, and the normalizing partition function,

Z(y;Θcrf ) =
∫

x
exp(Φ(x,y;Θcrf )).

The (conditional) log-likelihood, log P (x|y,Θcrf ), is
concave in Θcrf because Φ(x,y;Θcrf ) is linear and
log Z(y;Θcrf ) is convex. However, the reparameteriza-
tion produces unexpected constraints on the CRF parame-
ter space. In fact, the set of constraints revealed during the
inference phase is defined in a recursive manner (See Ap-
pendix I for details), where it is difficult to pose such con-
straints in the optimization. This, in turn, makes the seem-
ingly convex optimization infeasible.

3.2. Maximum Entropy Markov Models
MEMM has a graphical structure depicted in Fig. 1(c).

Despite the well-known label bias problem, its simple
learning procedure that does not require forward/backward
recursion is very attractive. Given a complete data {(x,y)},
the likelihood function can be factored into terms re-
lated with individual slices (xt−1,yt,xt) and subsequently
treated as a set of independent slice instances. Learning
MEMM is equivalent to training a static classifier or regres-
sion function P (xt|xt−1,yt) for the iid data with the output
{xt} and the input {(xt−1,yt)}.

MEMM with the linear Gaussian conditional, namely,

xt|xt−1,yt ∼ N (xt;Axxt−1 + Ayyt + e,W), (6)

can be seen as a counterpart of LDS. The prediction is
done by the recursion, P (xt|y) =

∫

xt−1

P (xt|xt−1,yt) ·

P (xt−1|y). Note that in MEMMs the smoothed posterior
P (xt|y) equals the filtered posterior P (xt|y1, ...,yt), ef-
fectively removing the influence of future samples on cur-
rent state estimates. The mean estimate m̃t = E[xt|y] is:

m̃t = Axm̃t−1 + Ayyt + e. (7)

(7) points to another deficiency of linear MEMMs. The
next state estimate is linearly related with the previous state

mean, where the coefficient Ax is determined by the multi-
variate linear regression learning with data treated slicewise
independently. If the learned Ax is unstable2, the state esti-
mates become unbounded. As a result, the state estimation
error can be significantly amplified in this MEMM setting.

This behavior may be reduced when non-linear or non-
Gaussian noise models are used. In [19], for instance, a
complex nonlinear regression function (Bayesian Mixture
of Experts) was applied to the 3D human body pose estima-
tion problem. However, the failure of simple linear MEMM
points to prevalent role of local functions over the MEMM’s
overall discriminative model structure. In other words, the
success of MEMM may be strongly dependent on the per-
formance of the employed static regression functions.

4. Discriminative Learning of LDS
Our analysis of traditional conditional dynamic models

points to possible modes of failure when such models are
applied to continuous state domains. To address these defi-
ciencies we suggest to learn the generative LDS model with
discriminative cost functionals. As the discriminative learn-
ing of TAN or HMM has shown to outperform generative
learning in classification settings, the same approach can be
brought to benefit the task of motion tracking in continuous
domains. We propose two discriminative objectives to solve
the problem of discriminative learning of LDS. The optimal
parameter estimation is accomplished by an efficient gra-
dient search on the two objectives. We also show how the
discriminative learning task can be extended to a general
family of nonlinear dynamic models.

4.1. Conditional Likelihood Maximization (CML)
The goal of CML learning is to find LDS parameters that

maximize the conditional likelihood of x given y, an objec-
tive directly related to our goal of accurate state prediction.
The conditional log-likelihood objective for the data (x,y)
is defined as:

CLL = log P (x|y) = log P (x,y) − log P (y). (8)

CLL objective is, in general, non-convex in the model pa-
rameter space. However, the objective can be locally op-
timized using a general gradient search. The gradient of
CLL with respect to Θlds is:

∂CLL

∂Θlds
=

∂ log P (x,y)

∂Θlds
−

∂ log P (y)

∂Θlds
. (9)

The first term, the gradient of the complete log-likelihood
(i.e., the Fisher score) is easy to obtain (e.g., (3)). The sec-
ond term, the gradient of the observation log-likelihood, is

2Eigenvalues of matrix A have absolute magnitudes exceeding 1.



the expected Fisher score w.r.t. the posterior, namely,

∂ log P (y)

∂Θlds
=

∫

x

P (x|y)
∂ log P (x,y)

∂Θlds

= EP (x|y)

[

∂ log P (x,y)

∂Θlds

]

. (10)

Hence, CLL gradient is the difference between the Fisher
score on the data (x,y) and the expected Fisher score by
the model given y only. Because the Fisher score (e.g.,
(3)) is a sum of 2nd-order moments (i.e., those related with
xtx

′
t, xtx

′
t−1, or xt), the expected Fisher score can be eas-

ily computed once we have the posterior P (x|y). For ex-
ample, ∂ log P (y)

∂C
= EP (x|y)

[

∂LL
∂C

]

= Σ−1 ·
∑T

t=1

[

ytm
′
t −

C(mtm
′
t + Vt)

]

, where mt and Vt are smoothed means
and variances, respectively.

The well-known EM algorithm for LDS in the unsuper-
vised setting (i.e., training data = {yi}) takes advantage
of it in the M-step. In this case,

∑

i log P (yi) is the ob-
jective whose gradient is derived as in (10). Setting it to
0 gives no analytical solution, however, the EM follows an
iterative update scheme: (1) (E-step) for the current iter-
ate Θlds, compute P (x|yi,Θlds), and (2) (M-step) solve
E

[
∑

i
∂ log P (x,yi)

∂Θlds

]

= 0 to Θlds as the next iterate, where
the latter expectation is w.r.t. the posterior obtained from
the E-step. This, under fairly general conditions, guarantees
monotonic improvement of the objective for each update.

However, the EM algorithm cannot be directly applied
to CLL optimization since the Jensen’s inequality for lower
bound does not hold. Instead, we use a gradient ascent op-
timization such as the conjugate gradient search or the effi-
cient BFGS optimization that has shown to yield best results
in traditional CRF learning [17].

4.2. Slicewise Conditional Likelihood Maximization
The goal of CML is to find a model that minimizes the

joint estimation error for the entire state sequence, x. In
most motion tracking problems, however, it is more natu-
ral to consider the prediction error at each time slice inde-
pendently. In the discrete state domain, this notion is di-
rectly related to minimization of the Hamming distance be-
tween the target and the inferred states. In the continuous
domain, we consider the Slicewise Conditional Likelihood
Maximization (SCML) as the following objective:

SCLL =
1

T

T
∑

t=1

log P (xt|y). (11)

SCLL has been introduced as an alternative objective
for CRF in the discrete domain sequence tagging prob-
lem [7]. Note that evaluating the objective itself requires
a forward/backward or Kalman filtering/smoothing. SCML
learning is subsequently based on the gradient optimization.

We extend the approach of [7] to LDS. For clarity, we
distinguish the states in train data from random variables
by denoting the former as x while the latter as x. It is easy
to see that SCLL gradient can be written as:

∂SCLL

∂Θlds
=

1

T

T
∑

t=1

∂ log P (xt,y)

∂Θlds
−

∂ log P (y)

∂Θlds
. (12)

Since the second term is dealt in (10), we will focus on the
first term of (12). It can be shown that the first term exclud-
ing (1/T ) is equivalent to:

T
∑

t=1

∫

x\xt

P (x \ xt|xt,y) ·
∂ log P (x,y)

∂Θlds

∣

∣

∣

∣

xt=xt

, (13)

where x\xt means set-minus, excluding xt from x. Recall-
ing that the Fisher score, log P (x,y)

∂Θlds
, is a sum of 2nd-order

moment terms, let f(xj ,xj−1) be one of them. This en-
ables us to evaluate E[f(xj ,xj−1)] individually (w.r.t. the
unnormalized density

∑T
t=1 P (x\xt|xt,y)), while later on

all the expectations of terms that compose the Fisher score
have to be summed to obtain the quantity in (13).

For each j = 2, . . . , T , the expectation, E[f(xj ,xj−1)]

w.r.t.
∑T

t=1 P (x \ xt|xt,y), can be written as:

EP (xj |xj−1,y)

[

f(xj ,xj−1)
]

+ EP (xj−1|xj ,y)

[

f(xj ,xj−1)
]

+
∑j−2

t=1 EP (xj ,xj−1|xt,y)

[

f(xj ,xj−1)
]

+
∑T

t=j+1 EP (xj ,xj−1|xt,y)

[

f(xj ,xj−1)
]

. (14)

The first two terms in (14) are the expectations w.r.t. the
posteriors given the neighbor (previous and next, respec-
tively) state. These posteriors are both Gaussians, namely,

P (xt+1|xt,y) = N (xt+1;Ft+1xt + bt+1,Rt+1),

P (xt|xt+1,y) = N (xt;Gtxt+1 + ct,St), (15)

where Ft+1 = Σt+1,tV
−1
t , Gt = Σ′

t+1,tV
−1
t+1, bt+1 =

mt+1 − Ft+1mt, ct = mt − Gtmt+1, Rt+1 = Vt+1 −
Ft+1Σ

′
t+1,t, and St = Vt − GtΣt+1,t. (Recall that

Σt,t−1 , Cov(xt,xt−1|y).)
The last two terms in (14) are the expectations w.r.t.

P (xj ,xj−1|xt,y), the posteriors given the past (t < j − 1)
and the future (t > j) state, respectively. Computing these
posteriors requires another forward (for t < j−1) and back-
ward (for t > j) recursion on j, which together with the
Kalman filter forms the two-pass forward/backward algo-
rithm for SCML learning. We refer the reader to Appendix
II for details on the derivation of the second-pass recursion3.

3Apart from [7]’s discrete-domain two-pass algorithm which takes
O(T ) time, our algorithm requires O(T 2) time since O(T ) Gaussians
generated from each j-th step of the second-pass forward/backward need
to be stored (See Appendix II). [7]’s linear time is due to the ease of repre-
senting a sum of probability mass functions as a single function compactly.
The quadratic time could be a problem in large sequence lengths, however,
segmentation to shorter sequences will be helpful.



4.3. Extension to Nonlinear Dynamical Systems
CML and SCML learning can be similarly applied to the

nonlinear dynamical systems (NDS). In NDS, the posterior
can be evaluated via Extended Kalman filtering/smoothing
based on the approximated linear model (e.g., [3]) or us-
ing various particle filter methods, depending on the dimen-
sionality of the state space. Since the Fisher score for NDS
is no more a sum of 2nd-order moments, rather a com-
plex nonlinear function, the evaluation of the expectation
E[f(xt,xt−1)] becomes difficult. However, following [3]
we can approximate any nonlinear functions by RBF net-
works, namely,

xt|xt−1 ∼ N (xt;Akk(xt−1) + Axt−1,Γ),

yt|xt ∼ N (yt;Ckk(xt) + Cxt,Σ), (16)

where k(xt) , [k(xt,u1), . . . , k(xt,uL)]′ is a vector of
RBF kernels evaluated on the known centers {ul}

L
l=1. For

k(xt,ul) = e−
1

2
(xt−ul)

′S
−1

l
(xt−ul), where Sl is the ker-

nel covariance, the nonlinear part in the Fisher score takes
a specific form such as k(xt)k(xt)

′, k(xt)k(xt−1)
′, or

xtk(xt)
′, and has a closed-form expectation w.r.t. a Gaus-

sian (approximated) posterior. As a result, gradient terms
necessary for CML/SCML optimization in RBF nonlinear
dynamic models also possess closed-form expressions.

In the evaluation, we have verified that for LDS, the dis-
criminative algorithms improve the generative learning sig-
nificantly. For NDS, however, the improvement is not as
significant as the linear case. In other words, the choice of
learning objective for nonlinear models appears less criti-
cal. However, the generalization performance of the non-
linear models can be very sensitive to the choice of the ker-
nel centers and the kernel hyperparameters. In Sec. 6, we
demonstrate that discriminatively learned linear models can
be comparable to even well-tuned nonlinear models.

5. Prior Work
While discriminative learning of discrete-state dynamic

models such as HMMs, CRFs and MEMMs has received
significant attention recently, learning of similar models in
the continuous space has been rarely explored. In robotics
community, [1] empirically studied several objectives for
learning of continuous-state dynamical systems. In contrast
to [1]’s ad-hoc optimization method, our work is the first to
provide efficient gradient optimization algorithms for dis-
criminative objectives, by extending the method of [7] to
dynamical systems in continuous domains.

The recent work on the human motion tracking problem
can be roughly categorized into: dynamic model based ([5,
13, 14]), nonlinear manifold embedding ([2, 16, 18, 23]),
and Gaussian process based latent variable models ([11, 21,
22]) to name a few. In our approach, we consider a gen-
erative family of models and show that it can be used for

Model ML CML SCML

L2 Error 1.79 ± 0.26 1.59 ± 0.22 1.30 ± 0.12
Log-Perplexity 4.76 ± 0.40 4.49 ± 0.34 3.80 ± 0.25

Table 1. Test errors and log-perplexities for synthetic data.

accurate and computationally efficient pose estimation, if
coupled with a proper learning objective.

Related with the discriminative paradigm, [19] suc-
cessfully employed a MEMM-like model with Bayesian
mixtures of experts for 3D pose estimation. In general,
MEMMs are sensitive to label-bias [9]. Their ability to suc-
cessfully infer states from observations mostly depends on
the modeling capacity of the regression functions and not on
the choice of discriminative dynamic model objective. Un-
like MEMMs, the discriminatively learned generative dy-
namic models could also be used for motion synthesis.

6. Evaluation
We evaluate our discriminative dynamical system mod-

eling approach in a set of experiments that include synthetic
data as well as the CMU motion capture dataset4. The pro-
posed models are denoted as CML and SCML, the LDS
models learned via the methods in Sec. 4.1 and Sec. 4.2, re-
spectively. ML is the standard maximum likelihood estima-
tor for LDS. We also include comparison with nonlinear and
latent-variable dynamic models, as described in Sec. 6.2.

6.1. Synthetic Data
We synthesize data from a devised model which is struc-

turally more complex than LDS. The model has 2nd-order
dynamics and emission: xt = A1xt−1 +A2xt−2 +vt, and
yt = C1xt + C2xt−1 + wt, where vt and wt are Gaus-
sian white noises. This experiment demonstrates how the
learning algorithms behave for the incorrect model struc-
ture, emphasizing the fact that it is usually difficult to figure
out the correct model structure in many applications.

The evaluation is done by leave-one-out validation for 10
sampled sequences of lengths about 150, where dim(xt) =
3 and dim(yt) = 2. The test performances of compet-
ing learning methods are depicted in Table 1. The L2 er-
ror is the average norm-2 difference, (1/T )

∑T
t=1 ||xt −

mt||2, where x is the ground truth, and m is the esti-
mated state sequence. The log-perplexity is defined as
−(1/T )

∑T
t=1 log P (xt|y,Θ), which captures the variance

of the estimate. The smaller number is better for both mea-
sures. We also visualized the estimated sequences in Fig. 2.

The result shows that the prediction performance is im-
proved by the proposed methods, while the significance is
stronger for SCML than CML. It also implies that discrim-

4http://mocap.cs.cmu.edu/.
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inative learning can be useful for enhancing the restricted
performance of the generatively trained models with (pos-
sibly) suboptimal structures.

6.2. Human Motion Data
We evaluate the performance of the proposed methods

on the task of 3D pose estimation from real human mo-
tion data. The CMU motion capture dataset provides the
ground-truth body poses (3D joint angles), which makes
it possible to compare competing methods quantitatively.
Among the original 59 joint angles, we used only 39-dim
by excluding less significant fingers and toes as well as joint
angles that rarely vary over time. Here we include three dif-
ferent motions: walking, picking-up a ball, and running.
For each motion, 5 or 6 sequences from one subject are
gathered to perform leave-one-out validation. Sequences
are about 150-frame long, containing 1 or 2 motion cycles.
The measurement is a 10-dim Alt-Moment feature vector
extracted from the monocular silhouette image (e.g., [20]).
The images are taken by a single camera at a fixed view.

Typically, we will demonstrate how comparable the per-
formance of the proposed algorithms on LDS is to that of
nonlinear models learned generatively. We briefly discuss
two nonlinear models that are used in our evaluation.

The first model is NDS defined as (16). Since it is com-
putationally demanding to use all poses xt in the train data
for RBF kernel centers ul, we instead adopt a sparse greedy
kernel selection technique. It selects a pose from the pose
pool (of all train poses) one at a time, according to a certain
criterion (e.g., maximizing the data likelihood). Deciding
the number of poses (or kernel centers) to be added is cru-
cial for generalization performance. In our experiment, we
use cross-validation among the several candidates (e.g., 5%,
10%, or 20% of the pool). The kernel covariance Sl for each
center ul is estimated in a way that the neighbor points of
ul have kernel values one half of its peak value [3]. This
generates reasonably smooth kernels.

The second model is the latent variable nonlinear dy-

Motions Err. ML CML SCML NDS LVN

Walk

SJA 19.20 18.31 17.19 18.91 18.01
FJA 22.57 22.73 20.78 20.84 19.05
S3P 15.28 14.79 13.53 14.62 13.99
F3P 20.02 20.28 17.07 16.59 14.96

Pick-up

SJA 35.03 33.15 30.56 33.50 32.23
FJA 42.28 38.89 36.99 41.25 32.10
S3P 22.60 21.27 19.33 21.14 20.49
F3P 25.20 24.36 23.83 25.35 20.40

Run

SJA 23.35 22.11 19.39 21.26 19.08
FJA 21.87 22.09 20.92 21.86 19.76
S3P 21.52 19.85 16.96 18.41 16.97
F3P 20.40 20.43 18.43 18.42 17.65

Table 2. Average test errors. The error types are abbreviated as 3
letters: The first indicates smoothed (S) or filtered (F), followed
by 2 letters meaning that the error is measured in either the joint
angle space (JA) or the 3D articulation point space (3P) (e.g., SJA
= smoothed error in the joint angle space). The unit in the 3D point
space can be deemed by the height of the human model ∼ 25.

namic model, denoted as LVN. As it is broadly believed that
the realizable poses lie in a low dimensional space, it is use-
ful to introduce latent variables zt embedded from the poses
xt. One possible way to devise LVN is to place dynamics
on zt, assuming xt and yt are generated nonlinearly (with
RBF kernels) by zt. Learning LVN can be done by EM
algorithm on the linear approximated model as introduced
in [3]. Initial subspace mapping for LVN is determined by
PCA dim-reduction on the train poses. Similarly to NDS,
the number of kernels is determined by cross-validation. We
use dim(zt) = 3.

Table 2 shows the average test (norm-2) errors of com-
peting methods. We recorded the smoothed (xt|y) and the
filtered (xt|y1, . . . ,yt) estimation errors for both the (joint
angle) pose space and the 3D articulation point space. The
latter can be easily evaluated by mapping the estimated joint
angles to the body skeleton model provided in the dataset.
As shown, the proposed algorithms have significantly lower
prediction errors than ML learning, while exhibiting com-
parable (or often superior) performance to the nonlinear
models possibly with latent variables.

It should be noticed that the filtered estimation errors
of the proposed methods are not as outstanding as the
smoothed ones. This is probably due to their smoothing-
based objectives. It is interesting, yet left as future work,
to see the performance of the modified objectives based on
filtering. When comparing two discriminative algorithms,
SCML yields superior performance to CML consistently
for all motions. This is expected from the SCLL objec-
tive which is more closely related with the ultimate error
measure. Note also that the inference (tracking) of CML or
SCML is the standard Kalman filtering/smoothing, which is



much faster than the approaches based on particles or non-
linear optimization (e.g., [11, 19, 21, 22]).

In Fig. 3, selected frames of the estimated body skeletons
are illustrated to compare SCML with the standard linear
and nonlinear models.

7. Conclusion
We introduced novel discriminative learning algorithms

for generative family of dynamical systems. The pro-
posed approaches yield accurate and computationally effi-
cient pose estimation for motion data. As a future work, we
plan to extend our methods to deal with the settings where
the motion capture data is assumed noisy (e.g., occlusions).
In addition we will apply our approaches to piece-wise lin-
ear models such as switching LDS (e.g., [14]) which can
handle problematic motions that may contain rapid changes
in motion types.
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Appendix I: CRF Inference and Constraints
We derive the forward recursion, and in turn introduce a

set of constraints to be met for the density integrability. The
backward recursion which we skip here due to the space
limit also yields a similar type of constraints. In the chain-
structure as shown in Fig. 1(b), the potential function Mt

defined on the clique at time t is:

M1(x1|y) = ex′

1
Λ1x1+Λ′

bx1+y′

1
ΛCx1 ,

Mt(xt,xt−1|y) = ex′

tΛxt+x′

tΛAxt−1+y′

tΛCxt , t ≥ 2,

where we replace Λ by ΛT when t = T . With the initial
condition, α1(x1|y) = M1(x1|y), the forward message is
defined recursively (for t ≥ 2) as,

αt(xt|y) =
∫

xt−1

αt−1(xt−1|y) · Mt(xt,xt−1|y).

Since αt(xt|y) is an unnormalized Gaussian, it can be rep-
resented by a triple (rt,Pt,qt) ∈ (R,Rd×d,Rd), where
αt(xt|y) = rt exp(x′

tPtxt + q′
txt). For a (feasible) Θcrf ,

rt = rt−1

∣

∣ − πP−1
t−1

∣

∣

1/2
exp(− 1

4q
′
t−1P

−1
t−1qt−1),

qt = Λ′
Cyt −

1
2ΛAP−1

t−1qt−1, for 2 ≤ t ≤ T, and
Pt = Λ − 1

4ΛAP−1
t−1Λ

′
A, for 2 ≤ t ≤ T − 1,

with the boundary conditions: r1 = 1,P1 = Λ1,q1 =
Λb + Λ′

Cy1, and PT = ΛT − 1
4ΛAP−1

T−1Λ
′
A. The above
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Figure 3. Skeleton snapshots for walking (a−f), picking-up a ball (g−l), and running (m−s): The ground-truth is depicted by solid (cyan)
lines, ML by dotted (blue), SCML by dashed (black), and latent variable nonlinear model (LVN) by dotted-dashed (red).

derivation makes sense only if Pt is negative definite for
every t. This guarantees proper forward messages αt; in
particular, the partition function, Z(y) =

∫

xT
αT (xT |y), is

finite guaranteeing a proper (integrable) density.

Appendix II: Second-Pass Forward/Backward
Noting that P (xt+1|xt,y) · P (xt|xt−1,y) is a Gaus-

sian on xt and xt+1, we denote its means as: µ
1
t ,

E[xt|xt−1,y] and µ
2
t , E[xt+1|xt−1,y]. We define

the second-pass forward message as: α̃j(xj ,xj−1) =
∑j−2

t=1 P (xj ,xj−1|xt,y), for j = 3, . . . , T . It turns out to
be a sum of (j − 2) Gaussians in the following reason. Ini-
tially for j = 3, α̃3(x3,x2) = P (x3,x2|x1,y), or equiv-
alently, P (x3|x2,y)·P (x2|x1,y) is a Gaussian. Suppose
that α̃j−1(xj−1,xj−2) be a sum of (j − 3) Gaussians. In
the forward recursion:

α̃j(xj ,xj−1) = P (xj |xj−1,y) ·
∫

xj−2

α̃j−1(xj−1,xj−2)

+ P (xj |xj−1,y)·P (xj−1|xj−2,y),

it is easy to see that the first term of RHS is a sum of
(j − 3) Gaussians by the inductive assumption, while the
second term is another Gaussian. In particular, it can be

shown that the m-th Gaussian component of α̃j(xj ,xj−1),

has the mean denoted by
[

µ̃
1
j (m)

µ̃
2
j (m)

]

and the covariance by
[

Σ̃11
j (m) Σ̃12

j (m)

Σ̃21
j (m) Σ̃22

j (m)

]

satisfying the recursion:

µ̃
1
j (m) = µ̃

2
j−1(m), µ̃

2
j (m) = Fjµ̃

2
j−1(m) + bj ,

Σ̃22
j (m) = FjΣ̃

22
j−1(m)F′

j + Rj , Σ̃11
j (m) = Σ̃22

j−1(m),

Σ̃21
j (m) = Σ̃12

j (m)′ = FjΣ̃
22
j−1(m),

for m = 1, . . . , j−3, and for the last (j−2)-nd component,

µ̃
1
j (j − 2) = µ

1
j−1, µ̃

2
j (j − 2) = µ

2
j−1,

Σ̃22
j (j − 2) = FjRj−1F

′
j + Rj , Σ̃11

j (j − 2) = Rj−1,

Σ̃21
j (j − 2) = Σ̃12

j (j − 2)′ = FjRj−1.

In the same manner, the backward message, defined as
β̃j(xj ,xj−1) =

∑T
t=j+1 P (xj ,xj−1|xt,y), can be derived

as a sum of (T − j) Gaussians. By summing up the expec-
tations with respect to these Gaussians, the last two terms
in (14) can be computed, ultimately obtaining the SCLL
gradient in (12).


