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Abstract

This paper proposes a method of automated individual-
ization of eye region model. The eye region model has been
proposed in past research that parameterizes both the struc-
ture and the motion of the eye region. Without any prior
knowledge, one can never determine a given appearance of
eye region to be either neutral to any expression, i.e., the
inherent structure of the eye region, or the result of motion
by a facial expression. The past method manually individu-
alized the model with respect to the structure parameters in
the initial frame and tracks the motion parameters automat-
ically across the rest of the image sequence, assuming the
initial frame contains only neutral faces. Under the same
assumption, we automatically determine the structure pa-
rameters for the given eye region image. We train Active Ap-
pearance Models (AAMs) for parameterizing the variance
of individuality. The system projects a given eye region im-
age onto the low dimensional subspace spanned by the AAM
and retrieves the structure parameters of the nearest train-
ing sample and initializes the eye region model using them.
The AAMs are trained in the subregions, i.e., the upper eye-
lid region, the palpebral fissure (the eye aparture) region,
and the lower eyelid region, respectively. It enables each
AAM to effectively represent fine structures. Experimental
results show the proposed method gives as nice initializa-
tion as manual labor and allows comparative tracking re-
sults for a comprehensive set of eye motions.

1. Introduction
Accurate analysis and anatomical interpretation of eye

motions are useful for medical purposes, biometrics, and
psychological studies. Image sensing techniques for them
are inherently sensitive to eye’s pose to the camera and illu-
mination changes and facial expressions. Effects due to fa-

cial expressions are particularly difficult to remove because
neutral face can look one with expression and vice versa.
One needs either to assume a face given is neutral or to de-
fine “neutral” based on prior knowledge.

Moriyama et al. [7] proposed a meticulously detailed eye
region model that parameterizes the individuality of the eye
region by the structure parameters and the motion of the eye
by the motion parameters. They assume the initial frame of
the input image sequence contains “neutral” face and manu-
ally initialize the model with respect to the structure param-
eters in the frame and automatically estimates the motion
parameters using a gradient descent algorithm for the rest
of the image sequence.

Active Appearance Model (AAM) [2] is powerful in rep-
resenting deformable image objects such as faces and or-
gans in the low dimensional subspace and capable of con-
straining the appearance of a new sample generated by the
AAM “within” those of the set of training data. This paper
extends Moriyama’s work using AAM so that the system
can automate initialization of the eye region model by auto-
matically determining the structure parameters in the initial
frame. The system firstly represents the input eye region
by AAM and secondly selects the nearest training sample
to the input and thirdly initializes the structure parameters
of the input with those of the selected training sample. Di-
viding eye region into subregions assures AAM to be able
to represent detailed structure of the eye region that varies
among individuals. The system finally tracks the motion of
the eye such as blinking across the entire image sequence.

2. Eye Region Image and Its Individuality

An eye region divides into three subregions that include
the upper eyelid subregion, the lower eyelid subregion, and
the palpebral fissure subregion (the aperture between the
eyelids).
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Figure 1. Model for each part in the eye region proposed by
Moriyama et al. [7]. (a) Model for the upper eyelid. (b) Model
for the iris. (c) Model for the lower eyelid.

2.1. Upper Eyelid Subregion

The upper eyelid subregion is a skin region above the
palpebral fissure and consists of the orbicularis oculi mus-
cle covered by fat [4][6][1]. The orbicularis oculi muscle
divides into three parts (from the top, the orbital orbicu-
laris, the preseptal orbicularis, and the pretarsal orbicu-
laris) and the pretarsal orbicularis folds at the boundary
between the upper and the lower parts to make a crease (the
sulcus suprapalpebralis) along the boundary when the eye
opens.

When the position of the crease is low, the eye looks an
single eyelid fold that is common in East Asians (or one
that goes to double eyelid fold when it closes that 50% of
East Asians have), when high, it looks a double eyelid fold.
The depth of the crease is determined by both the strength
of connection between the superior tarsal plate and the skin
above it (the lower part of the upper eyelid) and the amount
of the skin and the fat above the connection (the upper part
of the upper eyelid). When the connection is strong and
the amount of the skin and the fat is much, the skin of the
lower part of the upper eyelid, the orbicularis oculi muscle,
and the superior tarsal plate are all lifted higher as a whole
and more of the skin above it sticks out to make a deeper
crease. The individuality of the upper eyelid subregion thus
depends on the structure of both the position and the depth
of the crease.

The eye region model proposed by Moriyama et al.
shown in Fig.1(a) has two polygonal curves for the lower
end of the upper eyelid and parameterizes the individuality

by the distance between those curves (du) and the boldness
of the crease (f ; the thickness of the crease and the darkness
of the region surrounded by those curves). They determined
those parameters so as to make the best accuracy of track-
ing by the eye region model but they are also anatomically
sufficient to represent the individual difference.

2.2. Lower Eyelid Subregion

The lower eyelid subregion has a hammock-like struc-
ture where the inferior tarsal plate located along the upper
edge of the lower eyelid supported by both ends of the eye
(the medial canthal tendon and the lateral canthal tendon)
lifts the skin that covers the region below it. There occurs
a bulge resulting from the shape of the covered portion of
the eye, shortening of the inferior portion of the orbicularis
oculi muscle on its length, and the effects of gravity and ag-
ing. The bulge creates the infraorbital furrow (a diagonal
furrow above the cheek) below the skin region lifted by the
hammock. The individuality of the lower eyelid subregion
thus depends on both the width and the depth of the bulge.

The eye region model proposed by Moriyama et al.
shown in Fig.1(c) has two polygonal curves for the upper
end of the lower eyelid and parameterizes the individuality
by the distance between those curves by db. They also con-
sidered the environmental illumination that may brighten
the lower eyelid. Their model has a polygonal curve for
modeling the lower edge of the illuminated region and pa-
rameterizes the distance to the upper edge of the lower eye-
lid by dr.

2.3. Palpebral Fissure Subregion

The palpebral fissure subregion is the aperture sur-
rounded by both the upper and the lower eyelid subregions
and consists of the region of the iris and that of the sclera.
The inner corner of the sclera has a reddish organ that pro-
vides tear. The size of the iris differs over individuals.
The center of the iris has the pupil that is a black cavity
that changes its size depending on the amount of light that
reaches the retina. The color of the iris changes from blue
to brown depending on the amount of pigment. When min-
imum (the iris to appear blue), the texture inside the iris is
more visible and the iris reflects the reverse image of the
environment on the cornea and the lens. The individuality
of the palpebral fissure subregion thus depends on both the
size of the iris and the texture inside of the iris.

The eye region model proposed by Moriyama et al.
shown in Fig.1(b) has a disk with a single color for mod-
eling the iris and parameterizes the individuality by the size
(ri: the radius) and the brightness (Ir7) of the disk. They did
not consider modeling the texture inside the iris but simply
represented it by a mean brightness within the region and
achieved accurate tracking of the iris.
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Figure 2. Model-based eye image analysis system.

3. Model-Based Eye Image Analysis

Parameters du, f , db, dr, ri, and Ir7 are called the struc-
ture parameters (denoted by s) and parameterize the static
and structural detail in the eye region model. The dynamic
detail of the model is parameterized by the motion parame-
ters (denoted by mt, t: time) that include the motion of the
upper eyelid (νheight and νskew), that of the lower eyelid
(λheight), and that of the iris (ηx and ηy).

Fig. 2 shows an overview of the model-based eye im-
age analysis system that uses the eye region model [7]. The
system tracks head motion across the input image sequence
and warps the faces to a canonical head pose (upright and
frontal), that they refer to as the stabilized images. In a
particular frame of the stabilized image sequence, the eye
region model is aligned to the input eye region and individ-
ualized by adjusting the structure parameters s. The sys-
tem automatically tracks the motion parameters mt frame
by frame starting from the initial frame using a gradient de-
scent algorithm. Individualization of the eye region model
was manually done in their report.

(a) (b)

(c)

Figure 3. Subregions in an example eye region image and their
triangulation. (a) The upper eyelid region has 5 points on the eye-
brow and 8 on the upper eyelid. (b) The palpebral fissure region
has 8 points on the upper eyelid and 11 on the lower eyelid. (c)
The lower eyelid region has 11 points on the lower eyelid and the
same number parallel to and at half the width of the eye region
below it.

4. Automated Individualization of Eye Region
Model

The proposed method automates individualization of the
structure parameters s by using AAM (Active Appearance
Models) [3]. It defines three subregions in the eye region
image, as shown in Fig.3. Manually labeled contour points
of each subregion for all the training samples are used for
generating AAM. AAM represents both the shape and the
texture of each subregion of an eye region image in the low
dimensional subspace by using only the significant princi-
pal components.

For each subregion of the input eye region image, the
system first searches an optimal AAM that represents the
appearance of the input in the subspace while leaving the
positions of the corner points of both the eye and the eye-
brow fixed (constrained) [3]. It then finds the nearest train-
ing sample to the input in the subspace and initializes the
structure parameters of the input with those of the selected
training sample.

4.1. Training AAM for Subregions

Denoting the coordinates of manually labeled contour
points by x, a new shape is represented by the linear com-
bination of the mean shape x̄ and the variance from it using
principal component analysis on training samples as (1). All
the textures warped to a canonical shape (e.g. mean shape)
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Figure 4. Modes for shape, texture and appearance for the upper
eyelid subregion. AAM when systematically changing each mode
from −3σ to +3σ (σ: standard deviation). (a) shape parameters.
(b) texture parameters. (c) appearance parameters.

are similarly represented as (2):

x = x̄ + Psbs (1)
g = ḡ + Pgbg, (2)

where bs and bg are the shape parameters and the texture
parameters that give the amount of deviation from the mean,
respectively. After normalizing the dimensionality by Ws,
both shape and texture further reduce the dimensionality by

b =
(

Ws bs

bg

)
=

(
WsPT

s (x − x̄)
PT

g (g − ḡ)

)
= Q c (3)

where Q is the eigenvectors and c controls both the shape
and the texture of the eye region image simultaneously.

Table 1. The number of dimensions that cover over 90% of the
total variance for each mode.

subregions shape texture appearance
upper eyelid 5 14 19
palpebral fissure 3 20 23
lower eyelid 7 16 23

Fig.4 shows how AAM changes its appearance when sys-
tematically manipulating the shape, the texture, and the ap-
pearance parameters, respectively. AAMs for the lower eye-
lid subregion and the palpebral fissure subregion are also
similarly computed.

5. Experiments

The proposed method is tested on Cohn-Kanade AU-
Coded Facial Expression Database [5] that contains 490 im-
age sequences of facial behaviors from 102 subjects, all but
one of which were from the publicly released subset of the
database. The subjects are adults that range from 18 to 50
years old with both genders (66 females and 35 males) and
a variety of ethnicities (86 Caucasians, 12 African Ameri-
cans, 1 East Asian, and two from other groups).

Here used leave-one-out cross validation where all the
subjects but the input’s were used for training AAM. Au-
tomatically selected training sample that is nearest in the
AAM subspace gives the structure parameters of the input.
Evaluation of the proposed method is done by comparing
the tracking results between manual and automated initial-
ization of the eye region.

5.1. Trained AAMs

The same image frames that were used for manual ini-
tialization were collected (one for each subject) as training
samples. The number of dimensions that cover over 90% of
the total variance for each mode is shown in Table 1.

5.2. Results of Automated Initialization

Example results of automated initialization of the eye re-
gion model are shown in Table 2. The third column of the
table shows the training samples that were found nearest in
the subspace of AAM (from the top, the upper eyelid region,
the palpebral fissure region, and the lower eyelid region).
Those that have similar appearances were automatically se-
lected for the subregions in each example except Table 2(d)
where the training sample with double eyelid fold was se-
lected for the input with single eyelid fold. This occurred
because there was no other example of single eyelid fold
in the training samples than the input (The database used
contains only 1 East Asian with single eyelid fold.). Includ-
ing more subjects with single eyelid fold would solve this
problem.



Table 2. Example Results of Automated Structure Initialization.
(a) Revealing double-fold, dark iris, and no bulge below the eye.
(b) Double-fold, dark iris, and no bulge below the eye. (c) Double-
fold, bright iris, and bulge below the eye. (d) Single fold, dark iris,
bulge and reflection on it below the eye.

input eye
region
images

selected
training
samples

individualized
structure parameters

(a)

du = 0.3
f = 1.0

Ir7 = 86
ri = 10

db = 0.0
dr = 0.0

(b)

du = 0.5
f = 1.0

Ir7 = 50
ri = 10

db = 0.68
dr = 0.0

(c)

du = 0.3
f = 0.7

Ir7 = 50
ri = 9

db = 0.05
dr = 0.48

(d)

du = 0.6
f = 0.75

Ir7 = 50
ri = 9

db = 0.56
dr = 0.15

5.3. Tracking Results by Automated Initialization

Tracking results for these examples are shown in Table
3. In 3(a) and (b) performance for automated and manual
initialization were comparable. Tracking in 3(c) was un-
stable because the upper eyelid became brighter in the last
frame and illumination reflection on the upper eyelid was
not parameterized in the model. In 3(d) tracking error oc-
curred in the last frame because the model for the double
eyelid fold matched with the single eyelid fold in the input.
Other examples of tracking with automated initialization for
a comprehensive set of eye motions are shown in Table 4.
Automated initialization again led to good tracking. This
means that neutral eyes with similar appearances similarly
change the appearance in their motions, which suggests that

Table 3. Example Comparison of Tracking Results between Man-
ual and Automated Individualization

first
frame last frame manual automated

(a)

(b)

(c)

(d)

the appearance changes caused from motion can be predi-
cated from the structure in the neutral expression.

6. Conclusion
This paper extended the model-based tracking of eye

motions that has originally been proposed by Moriyama et
al. [7] so that the structural individuality of the input eye re-
gion is automatically parameterized prior to tracking while
the original implementation has manually done it. Dividing
the eye region into three subregions allowed AAM to effec-
tively reduce the dimensionality in recovering the shape and
the texture of the eye region image retaining the individual
differences. The proposed method also constrained initial-
ization of the structure parameters of the eye region model
within the range possible to neutral eyes. The experimen-
tal results showed automated individualization achieved as
accurate tracking of eye motions comparably with the man-
ual setting both for diverse set of individual differences and
for comprehensive set of motions spontaneously occurring
in the eye region.
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