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Abstract

This paper describes an online learning based method to
detect flames in video by processing the data generated by
an ordinary camera monitoring a scene. Our fire detection
method consists of weak classifiers based on temporal and
spatial modeling of flames. Markov models representing the
flame and flame colored ordinary moving objects are used
to distinguish temporal flame flicker process from motion
of flame colored moving objects. Boundary of flames are
represented in wavelet domain and high frequency nature of
the boundaries of fire regions is also used as a clue to model
the flame flicker spatially. Results from temporal and spatial
weak classifiers based on flame flicker and irregularity of
the flame region boundaries are updated online to reach a
final decision. False alarms due to ordinary and periodic
motion of flame colored moving objects are greatly reduced
when compared to the existing video based fire detection
systems.

1. Introduction

Conventional point smoke and fire detectors typically de-
tect the presence of certain particles generated by smoke
and fire by ionisation or photometry. An important weak-
ness of point detectors is that they are distance limited
and fail in open or large spaces. The strength of us-
ing video in fire detection is the ability to monitor large
and open spaces. Earlier fire and flame detection algo-
rithms are based on the use of color and motion infor-
mation in video [10]. There are also some recent papers
proposing methods which characterize the specific motion
of flames [12],[17],[5],[18],[20]. Other recent methods for
video based fire detection are [9],[21],[19]. These methods
are developed to detect the presence of smoke in the video.

It is well-known that turbulent flames flicker with a
frequency of around 10Hz [1]. Therefore, fire detec-
tion scheme can be made more robust by detecting peri-
odic high-frequency behavior in flame colored moving pix-
els compared to existing fire detection systems described
in [12] and [5]. In practice, flame flicker frequency is not

constant and it varies in time. In fact, variations in flame
pixels can be considered as random events. Therefore, a
Markov model based modeling of flame flicker process pro-
duces more robust performance compared to frequency do-
main based methods.

If the contours of an object exhibit rapid time-varying be-
havior then this is an important sign of presence of flames
in the scene. This time-varying behavior is directly observ-
able in the variations of color channel values of the pixels
under consideration. Hence, Markov models correspond-
ing to flame and non-flame pixels are built as consisting
of states representing relative locations of the pixels in the
color space. In addition, boundaries of flame colored mov-
ing regions are estimated in each image frame. A one-
dimensional curve (1-D) representing the distance to the
boundary from the center of mass of the region is extracted
for each of those regions. The wavelet transform of this 1-D
curve is computed and the high frequency nature of the con-
tour of the fire region is determined using the energy of the
wavelet signal. This spatial domain clue is also combined
with temporal clues to reach a decision.

Online training is especially important for video based
fire detection applications to adapt to the environment that
the system is installed. It is impossible to train the fire de-
tection system for every possible scenario whenever the sys-
tem is installed to a new location. There are various on-
line learning algorithms in the literature including online
bagging and boosting [16], online Arc-x4 [7] and weighted
majority algorithm [13]. In this paper, we use weighted ma-
jority algorithm to detect flames in video by combining the
results from the weak classifiers based on flame flicker and
irregularity of the flame region boundaries.

2. Markov Model Based Modeling of Flame
Flicker

Methods of identifying flame in video include [10]
and [12]. The method in [10] makes use of only the color in-
formation. On the other hand, the scheme in [12] is based on
detecting the fire colored regions in the current video first.
If these fire colored regions move then they are marked as
possible regions of fire in the scene monitored by a camera.
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In video, the appearance of an object in which the
contours, chrominance or luminosity oscillate similar to
online/off-line trained flame data, constitutes a sign of the
possible presence of flames. By incorporating temporal
analysis around object boundaries, one can reduce the false
alarms which may be due to flame colored ordinary mov-
ing objects. Flicker of turbulent flames significantly in-
creases frequency content around 10 Hz [17]. Actually, the
fire behavior is a wide-band random activity below 15 Hz
and a random process based modeling approach is naturally
suited to characterize the rapid time-varying characteristic
of flame boundaries. Broadbent and Huang et al. indepen-
dently reported different flicker frequency distributions for
various fuel types in [2] and [11]. In general, a pixel es-
pecially at the edge of a flame becomes part of the fire and
disappears in the background several times in one second
of a video at random. In other words, a pixel especially
at the edge of a flame could appear and disappear several
times in one second of a video in a random manner. This
characteristic behavior is very well suited to be modeled
as a Markov model. Markov models are extensively used
in speech recognition systems and recently they have been
used in computer vision applications [3].

In [14], the shape of fire regions are represented in
Fourier domain. Since, Fourier Transform does not carry
any time information, FFTs have to be computed in win-
dows of data and temporal window size is very important
for detection. If it is too long then one may not get enough
peaks in the FFT data. If it is too short than one may com-
pletely miss cycles and therefore no peaks can be observed
in the Fourier domain. Another problem is that, one may not
detect periodicity in fast growing fires because the boundary
of fire region simply grows in video. However in Markov
model approach, the rapid time-varying characteristic of
flame boundaries, is naturally captured. The Markov model
based approach is similar to the one described in [18].

Three-state Markov models are trained for both flame
and non-flame pixels to represent the temporal behavior
(cf. Fig.1). These models are trained using a feature signal
which is defined as follows: Let Rk(n) be the red-channel
value of the k − th pixel at frame n. The wavelet coeffi-
cients of Rk are obtained by the filterbank structure shown
in Fig.2.

Wavelet signals can easily reveal the random character-
istic of a given signal which is an intrinsic nature of flame
pixels. That is why the use of wavelets instead of ac-
tual pixel values lead to more robust detection of flames in
video. Since, wavelet signals are high-pass filtered signals,
slow variations in the original signal lead to zero-valued
wavelet coefficients. Hence it is easier to set thresholds in
the wavelet domain to distinguish slow varying signals from
rapidly changing signals. Non-negative thresholds T 1 < T2

are introduced in wavelet domain to define the three states

Figure 1. Three-state Markov models for a) flame and b) non-flame
moving pixels.

Figure 2. Single-stage wavelet filter bank. The high-pass and the
low-pass filter coefficients are {− 1
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of the Hidden Markov Models for flame and non-flame fire-
colored moving objects. The states of HMMs are defined
as follows: at time n, if |w(n)| < T1, the state is in S1; if
T1 < |w(n)| < T2, the state is S2; else if |w(n)| > T2, the
state S3 is attained. For the pixels of regular fire-colored
objects like walking people with reddish shirts, a red mov-
ing car, etc., no rapid changes take place in the pixel val-
ues. Therefore, the temporal wavelet coefficients ideally
should be zero but due to noise the wavelet coefficients wig-
gle around zero. The lower threshold T1 basically deter-
mines a given wavelet coefficient being close to zero. The
second threshold T2 indicates that the wavelet coefficient
is significantly higher than zero. When the wavelet coeffi-
cients fluctuate between values above the higher threshold
T2 and below the lower threshold T1 in a frequent manner
this indicates the existence of flames in the viewing range
of the camera.

The transition probabilities between states for a pixel are
estimated during a pre-determined period of time around
flame boundaries. During the recognition phase, the HMM
based analysis is carried out in pixels near the contour
boundaries of fire-colored moving regions. The state se-
quence of length 20 image frames is determined for these
candidate pixels and fed to the flame and non-flame pixel
models. The model yielding higher probability is deter-
mined as the result of the analysis for each of the candi-
date pixel. A pixel is called as a flame or a non-flame pixel
according to the result of this analysis. This is the tempo-
ral weak classifier to be used in online detection/training



framework.

3. Wavelet Domain Analysis of Moving Object
Contours

Moving objects in video are detected using the back-
ground estimation method developed by Collins et al. [ 6].
This method assumes that the camera is stationary. Moving
pixels are determined by subtracting the current image from
the background image and thresholding. A recursive adap-
tive threshold estimation is described in [6] as well. Other
methods can be also used for moving object estimation. Af-
ter moving object detection, it is checked whether the pixels
of the moving object satisfy the color conditions typical for
flames.

The flame color model of [5] is used for defining the
flame-pixels. Although there are various types of fires,
flames especially in the initial stages of the fire exhibit a
color range of red to yellow. In terms of RGB values,
this fact corresponds to the following inter-relation between
R, G and B color channels: R > G and G > B. The
combined condition for the fire region in the captured im-
age is R > G > B. Besides, R should be more stressed
than the other components, because R becomes the dom-
inating color channel in an RGB image of flames. This
imposes another condition for R as to be over some pre-
determined threshold, RT . However, lighting conditions in
the background may adversely affect the saturation values
of flames resulting in similar R, G and B values which may
cause non-flame pixels to be considered as flame colored.
Therefore, saturation values of the pixels under considera-
tion should also be over some threshold value.

The next step of the proposed method is to determine the
center of mass of the moving fire-colored object. A one-
dimensional (1-D) signal x(θ) is obtained by computing the
distance from the center of mass of the object to the object
boundary for 0 ≤ θ < 2π. In Fig.3, two image frames
are shown. Example feature functions for the fire-colored
moving car and the fire region in Fig.3 are shown in Fig.4
for 64 equally spaced angles x[l] = x(lθs), θs = 2π

64 . To
determine the high-frequency content of a curve, we use the
same single scale wavelet transform as shown in Fig.2. The
feature signal x[l] is fed to the filterbank shown in Fig.2 and
the low-band signal

c[l] =
∑
m

h[2l−m]x[m] (1)

and the high-band subsignal

w[l] =
∑
m

g[2l−m]x[m] (2)

are obtained. Coefficients of the lowpass and the highpass
filters are h[l] = { 1

4 , 1
2 , 1

4} and g[l] = {− 1
4 , 1

2 ,− 1
4}, re-

spectively [8], [4].

Figure 3. Two fire-colored moving objects in video: a) a vehicle,
and b) fire image. Moving objects are determined by the hybrid
background subtraction algorithm of [6].

Figure 4. Equally spaced 64 contour points of the a) the vehicle,
and b) the fire regions shown in Fig.3.

The absolute values of wavelet, w[l] and low-band c[l]
coefficients of the fire region and the car are shown in Fig.5
and Fig.6, respectively. The high-frequency variations of
the feature signal of the fire region is clearly distinct from
that of the car. Since regular objects have relatively smooth
boundaries compared to flames, the high-frequency wavelet
coefficients of flame boundary feature signals have more en-
ergy than regular objects. Therefore, the ratio of the wavelet
domain energy to the energy of the low-band signal is a
good indicator of a fire region. This ratio is defined as

ρ =
∑

l |w[l]|∑
l |c[l]|

(3)

The likelihood of the moving region to be a fire region is
highly correlated with the parameter ρ. Higher the value of
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Figure 5. The absolute values of a)high-band (wavelet) and b)low-
band coefficients for the fire region.

Figure 6. The absolute values of a)high-band (wavelet) and b)low-
band coefficients for the car region.

ρ, higher the probability of the region belonging to flame
regions.

Initially, a threshold ρT for ρ is experimentally esti-
mated. During real-time analysis, regions for which ρ > ρT

are determined. Such regions are possible fire regions. In
order not to miss any fire region, a low threshold value for
ρT is selected initially. This threshold is updated online af-
ter installing the system to a specific location as described
in the next section.

4. Weighted Majority Based Online Training

We use a weighted majority based online training
method to adapt the fire detection system to varying con-
ditions in the environment. Weighted Majority algorithm
assigns weights on several weak classifiers and increase or
decrease their weights depending on whether the individ-
ual classifiers correctly classify or misclassify the training
example currently being considered, respectively [15]. The
algorithm is presented in Fig.7.

Figure 7. Weighted majority algorithm used in fire detection sys-
tem. Weights, wi’s, are updated for each of the M -many weak
classifiers, hi’s, whenever a new training data, x, arrives. The cor-
rect classification value of the data x is y; yi is the classification
result of the i − th weak classifier, hi.

Markov model based temporal classifiers described in
Sec.2 for every fire-colored moving pixel and contour based
classifier explained in Sec.3 for every fire-colored moving
region in an image frame are considered as separate weak
classifiers, hi’s, in our online learning framework. They are
called as temporal and spatial weak classifiers, respectively.
An output class value, being either a fire, 1, or a non-fire, 0,
is assigned to each and every one of these weak classifiers
in 20 frame long periods as separate decisions. According
to their individual success in classification, i.e. whether the
value of yi is equal to the value of y or not, weights corre-
sponding to these weak classifiers are updated by weighted
majority algorithm.

Apart from weight updates, for the i − th spatial weak
classifier, hi, when yi �= y, the threshold value ρT is up-
dated according to the following rule:

ρT ←
{ ρT

2 if ρ < ρT

2ρT otherwise
(4)

This way, the system ‘learns’ the environment and adapts
itself online to variations in the characteristics of the incom-
ing data.

5. Experimental Results

The proposed method was implemented in a personal
computer with an AMD AthlonXP 2000+ 1.66GHz proces-
sor and tested for a large variety of conditions in compari-
son with the method in [18] which fuses the individual de-
cisions from weak classifiers by a simple ‘and’ operation.
The method in [18] reports false alarms for a fire colored
dancing man arbitrarily waving arms in order to fool the
system. It also issues false alarms for moving fire-colored
objects exhibiting periodic motion such as rotating ambu-
lance lights in a tunnel and their reflections from the walls.

These false alarms are eliminated with the online learn-
ing based training approach. The system succeeds in adapt-
ing itself online. In addition, the proposed system issues
fire alarms for all of the test video clips containing fire used



Figure 8. Detection results of a) the method in [18] and b) the
proposed online learning method. False alarms are eliminated with
the proposed method for periodically rotating fire-colored lights in
a tunnel and fire-colored dancing man.

in [18]. Some comparative classification results are pre-
sented in Fig.8.

6. Conclusion

An online learning based method for fire detection is pro-
posed. Color and regular motion clues are used to reduce
the size of the search space. HMM based temporal flicker
modeling of flames and wavelet based contour modeling ap-
proaches are used as weak classifiers. A weighted-majority
based method is utilized for online learning. Experimen-
tal results show that false alarms issued by earlier methods
can be drastically reduced by using separate Markov mod-
els for flame and non-flame moving pixels. The method can
be used for automatically training the fire detection system
when installed at a different location.

In [19], several weak smoke detectors are fused together
with a simple logical ‘and’ operation. A similar online
learning approach can be developed for the smoke detec-
tion method in [19], as well.
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