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Abstract

We present a new shape prior segmentation method us-
ing graph cuts capable of segmenting multiple objects. The
shape prior energy is based on a shape distance popular
with level set approaches. We also present a multiphase
graph cut framework to simultaneously segment multiple,
possibly overlapping objects. The multiphase formulation
differs from multiway cuts in that the former can account
for object overlaps by allowing a pixel to have multiple la-
bels. We then extend the shape prior energy to encompass
multiple shape priors. Unlike variational methods, a major
advantage of our approach is that the segmentation energy
is minimized directly without having to compute its gradi-
ent, which can be a cumbersome task and often relies on ap-
proximations. Experiments demonstrate that our algorithm
can cope with image noise and clutter, as well as partial
occlusions and affine transformations of the shape.

1. Introduction

Segmentation methods based solely on image informa-
tion [6, 8, 15, 22] often perform poorly in the presence of
noise, background clutter, and object occlusions. The ad-
dition of shape prior information has shown to significantly
improve segmentation results and is popular among varia-
tional approaches [7, 9, 20, 24, 25, 28]. Recently, there has
been an increased interest in graph based segmentation al-
gorithms [, 2, 5], and subsequently the addition of prior
shape information into their formulations. However, many
continuous shape distances or dissimilarity measures can be
difficult, if not impossible, to formulate as discrete energies
for graph optimization. This is especially true for graph cut
methods.

The graph methods of Felzenszwalb [11] and Schoen-
emann and Cremers [26] can segment objects under elastic
deformations without needing any initialization and guaran-
tee globally optimal solutions. In [11], nonserial dynamic
programming is used to find the optimal matching between
a deformable template represented by triangulated polygons

and the image pixels. In [26], the segmentation is found by
computing the minimal ratio cycle in a product graph of the
image and a shape template parameterized by arc length.
Both of these methods can be slow in practice, with run-
times of up to several minutes on typical CPUs. Moreover,
the triangulated polygon representations and arc length pa-
rameterizations limit the topological flexibility of the tem-
plate shapes and may not easily extend to the 3D case.

There are several algorithms that employ graph cuts
for shape prior segmentation. Freedman and Zhang [13]
use the shape’s distance transform ¢ to define the edge
weight between neighboring pixels p and q as p((p+q)/2).
Kolmogorov and Boykov [17] assign neighborhood edge
weights to favor cuts that maximize the flux of the dis-
tance map gradient. Both of these methods largely rely
on user markings to estimate the template pose. Kumar
et al. [19] also utilize the shape’s (signed) distance map,
but estimate the pose using shape and appearance models
constructed during training. Most closely related to our
work, Malcolm ez al. [21] impose the shape prior model on
the terminal edges and perform graph cuts iteratively start-
ing with an initial contour. Given a set of training shapes,
their method constructs a statistical shape space using ker-
nel principle component analysis (kPCA). At each iteration,
the pre-image of the previous labeling in this shape space is
used as the prior probability map, and the negative log of
this pre-image is assigned to the terminal weights. While
these methods produce promising results, their shape ener-
gies are not based on shape metrics, e.g. they are unsym-
metrical. Furthermore, these methods do not handle affine
transformations of the shapes and cannot segment multiple
objects simultaneously.

In this work, we present a new shape prior segmenta-
tion method using combinatorial graph cuts. First, we de-
fine the shape prior energy using a discrete version of the
shape distance proposed by Chan and Zhu [7] for the level
sets framework, and incorporate this energy into the graph
via terminal edge weights. Unlike those of previous graph
based approaches, this shape distance is both symmetrical
and obeys the triangle inequality. Second, to simultane-



ously segment multiple objects, we propose a multiphase
graph cut approach to handle object overlap, where a pixel
can have multiple object memberships (labels). This is fun-
damentally different from the multiway cut solutions, such
as can be found using the a-expansion algorithm [5], where
each pixel is assigned only one label. We then extend our
shape prior energy to incorporate multiple shape priors. To
make the algorithm invariant to affine transformations of
the shape, we use the theory of moment invariance of bi-
nary shapes [23] for alignment, allowing direct computation
of the transformation parameters without using gradient de-
scent estimation for each parameter. A major advantage of
our algorithm is that the segmentation energy is minimized
directly with graph cuts, unlike variational methods which
require the energy gradient for minimization. Computation
of the gradient for many energy functionals can be difficult
because these energies are often non-differentiable and re-
quire approximations [9].

In section 2, we provide the necessary background on
segmentation using graph cuts. Section 3 describes the
shape prior model, and section 4 provides detail on using
this energy in the multiphase graph cut framework for the
segmentation of multiple objects. Section 5 extends the
shape prior model to incorporate multiple prior shapes. Sev-
eral results of our algorithm are shown in section 6, fol-
lowed by a brief discussion in section 7.

2. Segmentation with graph cuts

The segmentation problem can be formulated as an en-
ergy minimization such that for a set of pixels P and a set of
labels £, the goal is to find a labeling f : P — L that min-
imizes some energy E(f). Using Markov Random Fields
(MRFs) with unary and pairwise cliques to model f [14],
the energy is given by

E(f) = va(fp)"' Z
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where N, is the set of pixels in the neighborhood of p.
Here V,(fp) is the penalty of assigning label f, € L to
p, and Vp4(fp, fy) is the penalty of labeling the pair p
and ¢ with labels f,, f, € L, respectively. In this work,
L = {0, 1}, and the minimum E(f) can be computed effi-
ciently with graph cuts when V), is a submodular function,
i.e. Vpg(0,0) + Vpg(1,1) < V3g(0,1) + V3g(1,0) [18].

2.1. Graph cuts

Before discussing graph cuts, we define the graph. Let
G = (V, &) be a directed weighted graph composed of a set
of nodes V and a set of directed edges £ with nonnegative
weights. The set V consists of two types of nodes: neigh-
borhood nodes made up of the image pixels P and two ter-
minal nodes s and ¢. In the neighborhood system, pixel p

is connected to pixel ¢ if ¢ € N, i.e. if g is a neighbor of
p. Neighboring nodes p and ¢ are connected by n-edge e,
with n-weight w,,,. Furthermore, p is connected to termi-
nals s and ¢ via t-edges e, and e,; with corresponding t-
weights w, and wy,, respectively. In our graph, if e, € €
then ey, € &, the n-weights wyy = wgp, and all pixels
p € P are connected to both s and t.

A subset of edges C C & is called an s/t-cut if the ter-
minal nodes are completely separated in the induced graph
G = (V,E—C). Thatis there are no paths from terminal s to
terminal £ when all edges in the cut are removed. Hence, the
cut partitions the nodes into disjoint subsets S and 7 where
s € Sandt € 7. For simplicity, we will refer to the s/t-cut
simply as a cut. The cost |C| of the cut is the sum of all
edge weights in C. For a given graph, the minimum cost cut
(mincut) can be found by solving an equivalent maximum
flow (maxflow) problem [12].

2.2. Minimizing E(f) with graph cuts

We can assign a binary label to a node depending on
whether itis in S or 7. In our notation, a pixel p is assigned
label f, = 1 (object) if p € S and f, = 0 (background)
if p € 7. As aresult, each cut produces a labeling f and
hence a corresponding energy F(f). The goal is to assign
weights to the graph’s edges so that the mincut cost |C| is
equal to the minimum energy E'(f).

In our framework, the unary penalty V,(f,) is the sum
of a data penalty Vp(f,) and a shape prior penalty Vs(f,).
The data term is defined based on the image intensity and
can be considered as a log likelihood of the image model,
while the shape prior term is independent of image informa-
tion. These terms will be described in subsequent sections.
We use the pairwise penalty (a submodular function) [3]

qu(fpqu):g(pﬂ)"fp_fq|7 2

where

(Ip - I q)2 1

g(p7 Q) - A1 exp ( 20’? ) dlSt(p, q) . (3)
Here I, is the intensity value at pixel p, dist(p,q) is the
Euclidian distance between pixels p and q. The parame-
ter oy can be considered an estimate of camera noise, and
A1 weights the importance of the pairwise energy. Accord-
ingly, a penalty g(p, ¢) is incurred only when neighboring
pixels have different labels, and thus V},, encourages region
coherence of the labels. For convenience, the second term
in Eq. (1) is denoted E,,(f). Finally, the desired graph with
cut cost |C| equalling E(f) is constructed using the follow-
ing edge weight assignments [2]:

Wpq = g(p7 q)a (43)
wsp = Vp(fp =0), (4b)
wye = Vp(fp =1). (40)
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Figure 1. Shape templates. First four templates available at http://www.lems.brown.edu/~dmc/main.html.

3. Shape prior model

In this section, we describe the shape prior model and
show how to define the shape penalty Vg(f,) such that a
cut on the graph, with V},, and Vp defined, has an added
cost corresponding to the shape prior energy.

3.1. Shape distance

Given two shapes embedded onto the zero level of level
set functions ¢® and ¢ on the image plane 2 C R?, Zhu
and Chan define their distance as [7]

(¢, ¢) = / (H(6*(2) - B@() dz,  (5)

Q

where H (-) is the Heaviside function. Many level set seg-
mentation methods [9, 24] use this distance as the shape
prior energy due to its many attractive properties: it is posi-
tive, symmetric, obeys the triangle inequality, and does not
depend on the size of the domain 2.

Since H(¢") effectively binarizes the shape embedding
function ¢, for notation simplicity we will replace H (¢?)
with 9%, On the discrete pixel domain, Eq. (5) can be ex-
pressed in terms of 4% and v® as

d* (%) = (v —vh)?
pEP
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where ¢} is the binary value of ¢ at pixel p and ¥} =
1-— ;;. The expansion in Eq. (6) is possible because both
)® and 1) are binary functions. Note that the binary rep-
resentation does not restrict the shape to be a single closed
contour but allows it to have arbitrary topology (holes and
multiple unconnected parts). See Fig. 1 for examples of
shape templates used in this work.

3.2. Shape penalty

In order to use the shape distance (6) in the graph cut
framework, we must define the shape penalty Vs(f;,) such
that, for a given prior shape template 1)°, a cut with binary
labeling f has an added cost equal to d?(f,+°). Using Eq.

(6), we define the energy of a binary labeling f given a prior
template 1° as

Es(f,4°) = d*(f,¢°). 7)

Then the shape prior penalty is

VS(fp) = fpz/;z()) + fpwg' 3

It follows that if p is assigned label f, = 0 (1) but wg =
1 (0), then the t-edge e, (e,) is in the cut and a penalty of
1 is added to the cost. However, when f, = wg, no penalty
is incurred. Thus, the cut which results in a labeling f that
minimizes d?( f, 1)") gives the minimum shape prior energy.

3.3. Affine invariant shape alignment

To make the shape distance in Eq. (6) invariant to
geometric transformations, ¢® and ¢® must be properly
aligned. Since ¢® and ¢® are effectively binary images,
we use the image normalization work of Pei and Lin [23] to
align these shapes. The normalization process transforms a
shape to an affine invariant shape space using transforma-
tions computed intrinsically from the shape’s moments (up
to 3rd order). Due to space limitations, we refer the reader
to [23] for more details on the normalization process.

For the segmentation, assume that the prior template 1/°
has been normalized. Given an estimate f for the target
object (described in §4.2), f is normalized by computing
the transformation 7'( f ). Then ¢ is aligned to f by re-
versing the normalization procedure on 1/° using the trans-
formation computed for f, i.e. ) = T=1(4°). Finally to
make the distance scale invariant, d2(f,°) is divided by
v A1 A2, where A1 and A, are the eigenvalues of the covari-
ance matrix of f . For the remainder of this paper, the nota-
tion d?(f,+") is assumed to be the invariant shape distance
between f and 9°.

In general, alignment by intrinsic normalization does not
necessarily result in the minimum distance, especially when
f contains many spurious or noisy parts. However, the it-
erative segmentation procedure described in §4.2 allows us
to use this alignment scheme even when the initial estimate
of f is very different from the template. More robust object
pose estimation schemes, such as that in [19], can also be
utilized but were not necessary in our experiments.
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Figure 2. Regions for two labelings f! and f2.

4. Shape prior segmentation

In this section, we present a multiphase graph cut method
capable of segmenting multiple, possibly overlapping ob-
jects. For each object, the segmentation is posed as a binary
labeling problem, with the shape prior penalty imposed in-
dependently for that labeling. However the data penalty is
dependent on the other labelings. We will denote the jth
object labeling by f7 and its value at pixel p by f. The
total segmentation energy can be expressed as the sum of
energies over all the labelings, i.e.

M
E(f) = Ep() + 3 (Epa(f)) + ABs(f,4°)) . ©)

where f = {f!,..., fM} is the set of M object labelings,
and Ep(f) is the sum of the unary data penalties of all la-
belings. The parameter A\ controls the strength of the shape
penalty. We will show that Eq. (9) can be minimized itera-
tively by performing M mincuts on a single graph at each
iteration, with only t-weight updates. The proposed multi-
phase graph cuts can be considered a discrete version of the
multiphase level set framework of Vese and Chan [29].

4.1. Multiphase graph cuts

As mentioned, we will use M labelings to segment M
objects in the image. The labelings can partition the image
into a maximum of 2™ regions or phases. The indicator
function for region k is denoted as x*. Assume that there is
a data model to describe each image region, e.g. Pr(I,|x"),
and that each model has an associated cost C'*, which could
be considered as the log likelihood. Then the data cost for
the entire image is the sum of the individual region costs,

ie.
Ep(f)=>_ Y  Cixk, (10)

peEP 1<k<2M

where we denote Cf = C*(p) and x} = x*(p). We pro-
ceed with an intuitive discussion of how to minimize Eq.
(10) with graph cuts by describing the procedure for cases
where M = 1 and M = 2. The cases for M > 2 can be
solved using a similar reasoning, but will not be described
in detail due to space limitations.

For a single object (M = 1), the image is divided into
object (fy = 1) and background (f, = 0) regions, and
the model for the two regions will compete to estimate the
image. Given the object and background costs C'* and C?,
respectively, Eq. (10) becomes

Ep(f) =Y _(Cofy +Cf). (11)

peEP

Using the graph described in §2.1, this energy is added via
data penalties Vp(f) = 0) = Cp and Vp(f, = 1) = C}.

Now for M = 2, consider the two labelings f' and f?
shown in Fig. 2. With the overlap, the image is partitioned
into four regions f!f2, f1f2, flf2, and f'f2. The data
energy is

Ep(f'. 1) =Y (G £y + G L fy
pEP

+C s+ O ), (12)
where C%0, C10 €% and C'! are the data costs for re-
gions f1f2 f1f2 flf2 and f'f2, respectively. To im-
pose this cost into the graph cut framework, first consider
the labeling f!. For the regions of f! where f2 = 0, ie.
f1f? and f'f2, the two models with costs C''© and C%°
compete for the best fit. Similarly, the two models with
costs C%! and C!! compete to describe the regions of f*
where f2 = 1, ie. ff* and f'f2. Thus, from the per-
spective of 1, the labeling problem is similar to the single
object case, except that now the object/background costs de-
pend on f2. A similar reasoning can be used for f2.

Eq. (12) can be minimized iteratively by performing
mincuts on a single graph, with each labeling computed al-
ternatingly by updating the t-weights with data penalty as-
signments

Vo(fy =0)=C) f2+CLf7, (13a)
Vo(fy=1)=CMf2+ O;ijg, (13b)
Vb(fy =0)=C0f, + C)°fy, (13¢)
Vo(fi=1)=C)' fa+CO'f), (13d)

where Vp ( f;) is the penalty used to compute f°.

For M > 2, the data penalty for each labeling must
account for all 2™ possible regions. These penalties are
computed by considering the object/background competi-
tion for each region. Note that the graph structure for all
labelings is identical, with only the t-weights changing for
each iteration. The n-weights remain the same, resulting in
less memory storage and faster graph construction. Further-
more, since the mincut algorithm is inherently stable, large
moves are possible during each iteration, speeding up con-
vergence. However, like the level sets formulation, the mul-
tiphase graph cut framework does not guarantee the globally
optimal solution.



4.2. Iterative segmentation

The shape prior energy Es(f7,4°) is dependent on the
geometric transformations of the template 1/°. However,
unless the target object’s pose in the image is known, the
shape penalty cannot be defined accurately. To overcome
this lack of information, we perform the segmentation in an
iterative manner (see Algorithm 1). For the graph G, the
n-weights are computed only once and remain the same for
all objects. Then given an initial labeling f7 for object j,
the template /0 is aligned to f7. The shape penalties are
computed using Eq. (8) and the data penalties are computed
as described in §4.1. These unary penalties are summed
and assigned to the t-weights, and the mincut solution for
this graph produces a new f7. This process is repeated for
all M objects until convergence is reached.

Algorithm 1 Segmentation of M objects given 1".
Compute n-weights of graph G (same for all objects).
Initialize labelings f « {f!,..., fM}.
while f not converged do

for j = 1to M do
1. Align ° to f7.
2. t-weights — Vp(f2) + Vs(f])
3. f7 « mincut G

end for

£ {f ... M

end while

Ideally the final labeling should be insensitive to ini-
tializations since in general, an initialization may not be
a good estimate of the final segmentation. To lessen the
dependency on initialization, the data penalty should domi-
nate the cost function at the start of segmentation, while the
shape penalty should remain small. As the segmentation
progresses, the shape penalty then increases and forces the
cut to resemble the prior template more closely. The shape
penalty can be adaptively controlled by redefining the shape
energy for the ith iteration as

Es(f7", 9% = a(f7=1 9% - (71,9,  (14)

where the weighting function
y 1 y
a(f77140%) = exp <—d2(f“1,w0)) (15)
o

and 7% is f7 at iteration i. Eq. (15) adaptively weighs the
shape energy according to how similar the previous labeling
71 is to the template 1/°. The parameter o, controls the
rate at which the shape energy changes.

We would like to point out that the proposed method do
not guarantee a globally optimal solution. However, the
mincut solution f7 at each iteration is globally optimal for

the graph constructed during that iteration. This allows for
large stable “moves” in the labeling space between itera-
tions, unlike variational methods where the updates are lim-
ited by the time step. These large moves help avoid “shal-
low” local minima and facilitate faster convergence.

4.3. Data model

We use the piecewise-constant occlusion model of Thiru-
venkadam et al. [27] to define the data penalty and briefly
describe it here. Assume that object j has constant intensity
c;, and the background intensity is cg. The occlusion model
for the image is given by

)

—~
o, =

) M . M M -
1=+ > () ™+ [[ £, (16)
Jj=1 k=2 ¢=1 j=1

where x** is the £*" unordered intersection of k labels from
f and ¢y, , takes one value in {c; }?4:1 The data cost of using

Ito approximate a given image I is

Ep(f)=> (I, - 1,)*. (17)
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For M = 1, Eq. (17) becomes a discrete version of the
Chan-Vese energy [8]. For M = 2, the image occlusion
model is

I=cif' +eaf? —confrf> +eof'f2. (18

After some rearranging and using the fact that o=
FY(f? + f?) and similarly for f2, Eq. (17) becomes

Ep(f) =Y (I + @' [ f + a3 [y [}

peEP
R ), (9)
where
all = ¢t - 211, (20a)
adl = ¢} — 251, (20b)
a = (e1+ e — 1)’ —2er + o2 —es), (200)
ad? = cf — 2col,. (20d)

Since the first term in Eq. (19) is independent of f* and f2,
it does not factor into the minimization. The data penalties
are defined by setting C%° = ¢, €10 = !0 OO = %1,
and C'' = a'! in Eq. (13). Similarly for M > 2, Eq.
(17) can be factored into a sum of costs for the regions, and
the data penalties are assigned accordingly. The intensities
{¢; ;Vil are estimated by solving a linear system of equa-
tions after each iteration, and the occlusion relationship can
be easily inferred from these object intensities [27].



(a) original, 120 x 130

(b) 5 initializations, oy, = 20

(d) no SP

(c) SP (results overlap)

Figure 3. Five different initializations produced nearly identical
results. The longest run took 11 iter, 0.921 sec. The parameters
are setas \; = As = 0.5 x 2552, 0, = 3and o7 = 15.

5. Multiple prior shapes

For many segmentation tasks, the image can contain ob-
jects with completely different shapes (see Fig. 6) or an ob-
ject that exhibits shape variability, such as the side view of
a walking person. In such situations, the prior shape energy
must make use of a set of prior templates or the multiple
instances of a single object. The latter case is normally ad-
dressed by formulating the shape energy based on a statisti-
cal shape space [9, 10].

In this work, the multi-template shape energy is de-
fined as a weighted sum of the distances between the tem-
plates and the labeling f. Given N prior templates ¥ =
{ap*, ..., 9N}, the shape prior energy is

SN alf,om) - d2(f, 47
Zivzl Ck(f, wn) 7

with a(f, ™) given by Eq. (15). The weight a(f,9™) is
a measure of the similarity between f and ™, and hence
shapes that are “closer” to the labeling f are given higher
weights. In fact, Dambreville et al. [10] showed that the re-
lationship between the distance, d (1%, 1), between two
shapes in a feature space constructed using kPCA and the
distance d? (1%, ¢°) is d% (1*, ¢°) o< 1 — a(h®,9®). Thus
it is reasonable to assume that a( f, ™) is a good measure
of similarity between shapes in a feature space, and our ex-
perimental results reflect this fact.

Es(f, V) = (1)

(c) SP, 18 iter, 3.036 sec. (d) no SP

Figure 5. Guitar occlude by bicycle frame. The parameters are
Ar = 1.25 x 2552, \; = 0.625 x 255,05 = 2.2 and o7 = 10.

6. Experiments

All experiments were run in MATLAB on a PC with a
2.16 GHz Intel Core Duo processor and 2GB of RAM. We
use a MATLAB wrapper to interface with the C++ maxflow
code of Boykov and Kolmogorov [4]. The run time can be
improved significantly by recycling the graph and the search
trees [16], but our current implementation does not make
use of such a scheme.

The image size, number of iterations (iter), run time
(sec), and parameter settings are indicated directly in the
figures. We denote the results using shape prior information
by SP, and for several examples, the result without shape
prior (no SP) are provided for contrast. Only the gray level
intensity is used with I, € [0,255]. The shape parame-
ter o, and correspondingly A, is found to depend on the
particular shape template, and we are currently investigat-
ing ways of determining the optimal o for a given shape.
Since the magnitude of the data penalty is in the range of
I g, the parameters A; and )4 are shown with a scaling fac-
tor of 2552. In all experiments, either the 4- or §-connected
neighborhood system is used, and convergence is reached
when there is less than 1% change in the labeling(s).

Fig. 3 shows an image of a leaf produced by an affine
transformation of the template in Fig. 1(a) with added oc-
clusions and Gaussian noise with standard deviation o,,.
To demonstrate the algorithm’s robustness to initializations,
five different initial contours are used (Fig. 3(b)) resulting
in nearly identical segmentations (Fig. 3(c)). Fig. 3(d) pro-
vides a comparison when no shape prior is used. Fig. 4



(b) 9iter, 1.554 sec

(a) initialization, 279 x 330

(c) 13 iter, 2.340 sec

(d) 6iter, 1.198 sec

(e) no SP, no noise

Figure 4. (b-d) SP results with increasing noise levels o, = 10, 20, 30, respectively. The parameters are A\; = 0.5 x 2552, Ay =
0.3 x 2552, and o = 2. To accommodate the noise levels, o7 is adjusted to 10, 20, and 30, respectively.

shows the segmentation of a leaf using the shape prior in
Fig. 1(f). Notice that the algorithm can cope with large oc-
clusions and increasing noise levels. Fig. 5 shows the result
of segmenting a guitar using the template in Fig. 1(i). Both
the guitar’s pickguard and bridge can be considered as oc-
clusions and are labeled as background in Fig. 5(d).

The result for two object segmentation is shown in Fig.
6. The shape prior energy in Eq. (21) is used with templates
(g,h). The estimated images I’s using Eq. (16) for both the
SP and no SP cases are almost identical, but using shape
prior information encourages the correct segmentation. Fig.
7 shows the results of segmenting three objects. The result
in Fig. 7(b) is obtained using three labelings and the prior
template (e). The result in Fig. 7(d) also uses three label-
ings, but three templates (b,c,d) are used for each labeling,
with the shape prior energy as in Eq. (21). In all exper-
iments, the objects are affine transformed versions of the
templates, and the initializations do not provide good esti-
mates of the shapes’ poses nor do they more strongly favor
any particular template for the cases with multiple priors.

7. Conclusion

We presented a new method capable of segmenting
multiple objects with possible overlaps. Our framework
combines several ideas. First, the shape prior information
is incorporated into the graph via the t-weights. Unlike
those of many previous graph based approaches, the
shape distance is both symmetric and obeys the triangle
inequality. Second, we introduced the multiphase graph
cuts, whereby the simultaneous segmentation of multiple
objects is simplified to a binary labeling problem for each
object. Furthermore, we extend the shape prior energy to
incorporate multiple shape priors, which is necessary when
the object exhibits variability or when several different
objects are present in the image. A major advantage of
our framework over variational methods is that it explicitly
minimizes the segmentation energy and thereby avoids the
computation of the energy gradient, which can be difficult
and often requires approximations. The results show that
the algorithm is insensitive to initializations and noise and
is efficient in practice.

ee

(a) original, 233 x 300 (b) initialization

(c) estimated image I,sp

(e) estimated image I,no SP (f) no SP

Figure 6. Two objects. A\; = 0.17 x 2552, Ay = 0.12 x
2552, 05 = 2 and o7 = 10.
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