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Abstract
Without a deformation model, monocular 3D shape re-

covery of deformable surfaces is severly under-constrained.
Even when the image information is rich enough, prior
knowledge of the feasible deformations is required to over-
come the ambiguities. This is further accentuated when
such information is poor, which is a key issue that has not
yet been addressed.
In this paper, we propose an approach to learning shape

priors to solve this problem. By contrast with typical statis-
tical learning methods that build models for specific object
shapes, we learn local deformation models, and combine
them to reconstruct surfaces of arbitrary global shapes. Not
only does this improve the generality of our deformation
models, but it also facilitates learning since the space of lo-
cal deformations is much smaller than that of global ones.
While using a texture-based approach, we show that

our models are effective to reconstruct from single videos
poorly-textured surfaces of arbitrary shape, made of mate-
rials as different as cardboard, that deforms smoothly, and
much lighter tissue paper whose deformations may be far
more complex.

1. Introduction
Without a deformation model, recovering the 3D shape

of a non-rigid surface from a single view is an ill-posed
problem. Even given a calibrated perspective camera and
a well-textured surface, the depth ambiguities cannot be re-
solved in individual images [15].
Standard approaches to solve this problem involve in-

troducing either physics-based models [2, 12, 11, 14, 4] or
models that can be learned from data [9, 17, 3, 10, 1, 18].
To be accurate, the former rely on knowledge of material
properties, which may not be available, thus involving ar-
bitrary parameter choices. Similarly, the latter require vast
amounts of training data, which may not be available either,
and produce models for specific object shapes. As a con-
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Figure 1. 3D reconstruction of poorly-textured deformable sur-
faces from single video sequences. (a) Cardboard with a single
black square in its middle. (b) Paper napkin undergoing a much
more complex deformation. (c) Even though the models have been
learned by observing the deformations of rectangular sheets, they
can be used to recover the shape of a circular object. (d) Similarly,
they can handle one with a triangular hole in the center.

sequence, one has to learn as many deformation models as
objects, even when these objects are made of the same ma-
terial. Finally, most of these models are linear or quadratic
and not designed to deal with complex deformations.
To overcome these limitations, we note that:
• locally all parts of a physically homogeneous surface
obey the same deformation rules;

• the local deformations are more constrained than those
of the global surface and can be learned from fewer
examples.

We therefore use a non-linear statistical learning technique
to represent the manifold of local surface deformations, and
then combine the local models into a global one represent-
ing the particular shape of the object of interest. As shown



in Fig. 1(a,b), this approach is general and applies to materi-
als with very different physical properties. In particular, we
learned deformation models for a relatively rigid cardboard
sheet that deforms smoothly and for a napkin made of much
lighter tissue that undergoes more complex deformations.
Our contribution is twofold. First by using local de-

formation models which are more constrained than global
ones, we reduce the complexity of learning and the required
amount of training data. Second, because local models can
be assembled into arbitrary global shapes, our deformation
priors are independent of the overall shape of the object, and
only one deformation model needs be learned per material.
As shown in Fig. 1(c,d), having learned the model by ob-
serving a surface of a specific shape, we can use it to handle
the deformations of a differently shaped surface made of the
same material without any retraining.
Finally, while relying on template-matching, we de-

liberatly demonstrate the effectiveness of our approach on
poorly-textured images that can be expected to defeat other
texture-based methods. Note that our models do not de-
pend on the specific source of image information we use.
They could also improve the robustness of any shape-from-
X algorithm.

2. Related Work
Monocular 3D shape recovery of deformable surfaces

is known to be under-constrained, even when they are
sufficiently well-textured for structure-from-motion and
template-matching approaches to be effective. A priori
knowledge of the possible deformations is required to solve
the ambiguities inherent to the problem.
Structure from motion methods have been proposed to

retrieve the 3D locations of feature points on a non-rigid
surface. They typically model the deformations of a sur-
face as linear combinations of fixed basis vectors [9], which
can be learned online [17]. Since the underlying linear-
ity assumptions limit the applicability of these methods to
smooth deformations, some researchers have advocated the
use of weaker and more generally applicable constraints. It
has been shown that the use of lighting [19] or weak motion
models [15] can resolve the ambiguities but still requires as-
sumptions about lighting conditions or frame-to-frame mo-
tion that may not apply. Moreover, since the reconstruction
relies on detected feature points, the common weakness of
all these approaches is that they require the presence of tex-
ture over the whole surface.
Physically-based approaches solve this problem by in-

troducing a global model that can infer the shape of untex-
tured surface portions from the rest of the surface. These
approaches were first introduced for 2D delineation [6] and
then quickly extended to 3D reconstruction [2, 12, 11]. Due
to the high dimensionality of such representations, modal
analysis [14, 4] was proposed to model the deformations as

linear combinations of modes. While computationally effi-
cient, this limits the method’s applicability to smoothly de-
forming objects, as is the case for the structure-from-motion
techniques discussed above [17, 9]. In any event, even as-
suming some knowledge of the surface material parame-
ters, the complexity and non-linearity of the true physics
make physically-based models rough approximations of re-
ality that are only accurate for small deformations.
Statistical learning approaches have therefore become

an attractive alternative that takes advantage of observed
training data. Linear approaches have been applied to
faces [3, 10, 1] as well as to general non-rigid surfaces [16].
However, they impose the same restrictive smoothness con-
straints as before. To the best of our knowledge, non-linear
techniques have not been demonstrated for 3D surface re-
construction, but have proved effective for 3D human mo-
tion tracking [18, 13]. However, for highly deformable sur-
faces represented by meshes with many vertices, and there-
fore many degrees of freedom, the number of training ex-
amples required to learn the model would quickly become
intractable.
Furthermore, whether using a linear or non-linear tech-

nique, learning a global model from a database of deformed
versions of a particular mesh would yield a shape prior us-
able only for meshes of the same topology, thereby limiting
its re-usability. The non-linear approach to statistical learn-
ing we propose in this paper overcomes these weaknesses
by learning local deformation models, which can be done
using manageable amounts of training data. These models
can then be combined into global ones for meshes of ar-
bitrary topologies whose deformations may or may not be
smooth.

3. Acquiring the Training Data
Statistical learning methods require training data that,

in the case of building deformation models, can typically
be hard to obtain. When dealing with large surfaces, the
amount of necessary data to cover the space of possible de-
formations can be very large. However, since local patches
have fewer degrees of freedom and can only undergo rela-
tively small deformations, learning local deformation mod-
els becomes easier.
To collect training examples, we use a ViconTM optical

motion capture system. We stick 3mm wide hemispheri-
cal reflective markers on a rectangular surface and deform
it arbitrarily in front of six infrared ViconTM cameras that
reconstruct the 3D positions of individual markers.
Since the markers are positioned to form a P × Q rect-

angular grid, let ỹ = [x1, y1, z1, ..., xP×Q, yP×Q, zP×Q]T

be the vector of their concatenated coordinates acquired at
a specific time. Our goal being to learn a local model, as
opposed to a global one, we decompose ỹ into overlapping



Figure 2. Decomposing the surface into patches. In this case, we
cover the global surface ỹ with four overlapping patches y1,..,4.

p × q rectangular patches centered on individual grid ver-
tices, as shown in Fig. 2.
We collect these patches from individual temporal

frames in several motion sequences, subtract their mean,
and symmetrize them with respect to their x-, y- and z-axes
to obtain additional examples. This results in a large set of
Na p × q patches yi , i=1,..,Na . Since the sequences are ac-
quired at 30 Hz and might comprise similar deformations,
we retain only a subset Y = [y1, · · · ,yN ]T of N < Na

patches that are different enough from each other based on
a vertex-to-vertex distance criterion.
In particular, as shown in Fig. 1, we demonstrate the

generality of our approach considering two different ma-
terials: Relatively rigid cardboard and more flexible tissue
paper. For the cardboard, we placed the reflective markers
on a 9×9 grid, and for the napkin, in a 9×7 one. This dif-
ference in resolution was only introduced to facilitate the
motion capture and has no bearing on the rest of the ap-
proach. In both cases, the markers were placed 2cm apart
in both directions. Out of 10 motion sequences for each
material, we set one aside for validation purposes and used
the other 9 for learning. In each frame, we selected five 5×5
patches for the cardboard and six for the napkin, and pruned
the resulting set such that the minimum distance between
corresponding vertices in separate patches was greater than
0.7cm for the cardboard and 1cm for the napkin. This pro-
duced 2032 patches for the cardboard and 2881 for the nap-
kin. The larger number of the latter reflects the greater flex-
ibility of the tissue paper.

4. Local Surface Model
In the previous section, we explained how we gathered

data as patches of a surface. We will now show how to learn
local deformation models from such data. Recall that the
sample patches are in the form of p×q arrays of 3D vertices.
Since p = q = 5 in our experiments, our task becomes
learning a deformation model in a D = p × q × 3 = 75
dimensional space.
In theory, any technique that provides a probability den-

sity function over such a space is suitable. However, the
number of training examples required to fully cover the

space of possible deformations grows exponentially with
the dimensionality and quickly becomes too high to model
the density in shape space. We handle the curse of dimen-
sionality using the Gaussian Process Latent Variable Model
(GPLVM) [7, 8] whose probability density function is con-
ditioned on a space of reduced dimensionality.
The GPLVM relates a high-dimensional data set, Y =

[y1, · · · ,yN ]T , where yi ∈ $D, and a low dimensional
latent space, X = [x1, · · · ,xN ]T , where xi ∈ $d, using
a Gaussian process mapping from X to Y. The likelihood
p(Y |X, Θ) of the data given the latent positions is

1
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(2π)ND|K|D
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(
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K−1YYT
)

)
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where the elements of the kernel matrix K are defined
by the covariance function, k(x,x′), such that (K)i,j =
k(xi,xj), with kernel hyper-parametersΘ. Here, we use a
kernel that is the sum of an RBF, a bias or constant term,
and a noise term. Learning the GPLVM [7] involves maxi-
mizing the posterior p(X, Θ|Y) ∝ p(Y |X, Θ) p(X) p(Θ)
with respect toX and Θ, where p(Θ) is a simple prior over
the hyper-parameters of the kernel covariance function, and
p(X) encourages the latent positions to be close to the ori-
gin.
While effective at learning complex manifolds, the

GPLVM suffers from the fact that its computional cost
grows as O(N3). Sophisticated sparsification techniques
have recently been proposed [8] and have proven more ac-
curate than simply using a subset of the data. By introduc-
ing a set ofm inducing variablesXu and assuming indepen-
dence of the training and testing outputs given the inducing
variables, the computational complexity can be reduced to
O(Nm2).
Learning the sparse GPLVM is done by maximizingwith

respect toX,Xu and Θ the posterior
p(Y |X,Xu, Θ) =

N
(

Kf ,uK
−1
u,uXu, diag[Kf ,f − Qf ,f ] + β−1I

)

, (2)
where diag[B] is a diagonal matrix whose elements match
the diagonal of B, and Qf ,f = Kf ,uK−1

u,uKu,f . Ku,u is
the kernel matrix for the elements ofXu,Kf ,u denotes the
covariance between X and Xu, and β is the inverse noise
variance.
Given a new test point y′, inference in the sparse

GPLVM is done by maximizing p(y′,x′|Xu,Y, Θ), with
respect to x′, the latent coordinates of the test point,
or equivalently by minimizing its negative log likelihood
given, up to an additive constant, as

L(x′,y′) =
‖y′ − µ(x′)‖2

2σ2(x′)
+

D

2
ln σ2(x′) +

1
2
‖x′‖2 , (3)

with the mean and variance given by
µ(x′) = YTKT

f ,uA−1ku , (4)
σ2(x′) = k(x′,x′) − kT

u (K−1
u,u − β−1A−1)ku , (5)



where A = β−1Ku,u + Ku,fKf ,u, and ku is the vector
with elements k(x′,xj) for latent positions xj ∈ Xu.

5. From Local to Global
Tomodel the global behavior of a surface we combine lo-

cal models using a Product of Experts (PoE) paradigm. We
first argue that this gives a valid representation for a surface
of infinite length. We then show how the basic scheme can
be modified to account for boundaries.

5.1. PoE for Deformable Surfaces
Products of Experts (PoE) [5] provide a good solu-

tion to representing high-dimensional data subject to low-
dimensional constraints by combining probabilistic models.
Each constraint is treated by an individual expert, which
gives a high probability to the examples that satisfy it. The
probability of examples statisfying some constraints but vi-
olating others will naturally be decreased by the experts as-
sociated with the violated ones.
In the general case, training a PoE is difficult because

one has to identify the experts that simultaneously maxi-
mize the probabilities of training examples and assign low
probabilities to unobserved regions of the data space. How-
ever, in the case of homogeneous surfaces, this task be-
comes much easier; The PoE does not have to identify the
different experts since all local patches obey the same de-
formation rules. As a consequence, one can simply train a
single local deformation model corresponding to one expert
and, for inference, replicate it to cover the entire surface as
shown in Fig. 2. This simply assumes that maximizing the
likelihood of a global shape is achieved through maximiz-
ing the likelihoods of all the patches. Note that the choice
of the patch size influences both the local and global repre-
sentations. Smaller sizes result in models that are more con-
strained since less deformations are possible, but impose a
higher number of experts to cover the global surface.
More formally, let ỹ be the vector of all 3D vertex coor-

dinates, y′ =
[

y′

1

T
, ...,y′

S
T
]T

the 3D coordinates of the S

overlapping patches associated with the experts, where y′

i

is a subset of ỹ, and x′ =
[

x′

1

T
, ...,x′

S
T
]T

the experts’ la-
tent coordinates. The conditional probability of the global
surface can be written as

p(ỹ|x′,M) =

∏

i pi(y′

i|x
′

i,M)
∫

∏

i pi(y′

i|x
′

i,M)dỹ
, (6)

whereM is the local GPLVM described in Section 4.
Assuming that the denominator of Eq. 6 is constant, we

can define a prior over the deformation of the whole surface
according to all the experts as

Lpoe =
S

∑

i=1

L(x′

i,y
′

i) , (7)

where L is defined in Eq. 3. We use overlapping experts
to enforce smooth transitions between neighboring experts.
However this does not impose global surface smoothness,
since the local models may allow for sharp folds.

5.2. Surface Boundary Effects
As shown in Fig. 2 boundary vertices influence fewer

experts than interior ones. As a consequence, their position
has only little effect on the likelihood of Eq. 7, resulting in
vertices that can move freely.
To avoid this undesirable effect, we re-weight the terms

of Eq. 7 such that the influence of each vertex is inversely
proportional to the number of patches it belongs to. The
negative log likelihood Lglobal of the global surface is then
S
X

i=1

 
Pp×q

j=1
1

V (i,j) (Wy′

i,j − µj(x′

i))
2

2σ2(x′

i)
+

D

2
ln σ2(x′

i) +
1
2
‖x′

i‖
2

!

,

(8)
where y′

i,j is the jth vertex of patch i and µj(x′

i) its corre-
sponding mean prediction. V (i, j) is the number of patches
for a vertex, which depends on the index in the global rep-
resentation of the jth vertex of patch i.
Furthermore, we also introduced a 3×3 diagonal matrix

W in Eq. 8 that defines the global scales along the x-, y- and
z-axes, and accounts for the difference in scale between the
training and testing surfaces. In practice, we allow for at
most 10% scaling.

6. Monocular Reconstruction
We formulate our reconstruction algorithm as an opti-

mization problem with respect to a state vector φ. At each
time t, the state is defined as φt =

[

yT
t ,xT

t

]T , where ỹt

is the vector of the 3D coordinates of the global surface,
and xt =

[

xT
1,t, ...,x

T
S,t

]T denotes the latent variables for
the local models. Note that this formulation guarantees sur-
face continuity, since the patches share a common vector of
vertex coordinates. Given a new image It and a local defor-
mation modelM, we seek to recover the MAP estimate φt.
We therefore approximate the posterior

p(φt|It,M) ∝ p(It|φt)p(φt|M) , where (9)
p(φt|M) ≈ p(yt|xt,M)p(xt) , (10)

with p(It|φt) the image likelihood, and − ln p(xt) =
∑S

i=1
||xi,t||2.

6.1. Image Likelihood
To estimate the image likelihood, we rely on texture and

edge information. The latter constrains the boundary ver-
tices which are not as well-constrained by texture as the in-
terior ones. Assuming that both sources of information are
independent given the state, we can write

p(It|φt) = p(Tt|φt)p(Et|φt) . (11)



To take advantage of the whole texture, we use template
matching. Assuming we have a reference image Iref in
which we know the shape of the surface yref , each facet
of the surface mesh is treated as a separate template that
we match in image It. The negative log likelihood of such
observations is given by

− ln p(Tt|φt) =
1

σ2
T

Nf
X

i=1

γ(Ψ(P (yref , j, Iref), φt), P (yt, j, It)) ,

(12)
where Nf is the number of facets, γ denotes the normal-
ized cross-correlation function, P (y, j, I) is the projection
of facet j of surface y in image I, and Ψ(., φ) denotes the
function that warps an image to another using parameters φ.
σT is a constant set to the variance of the expected texture
error. In practice, the results are relatively insensitive to its
exact value.
To constrain the boundary of the surface, we sample the

border of the mesh and look in the direction of its normal for
an edge point detected by Canny’s algorithm that matches
the projection of the sample. We allow for multiple hy-
potheses and retain all the matches within a distance r from
the current reprojection, which decreases from 8 to 2 pixels
as the optimization proceeds. The negative log likelihood
of the edge observations is then

− ln p(Et|φt) =
1

σ2
E

0

@

1
r2

Ne
X

i=1

Nh(i)
X

j=1

‖ui,j − ei(φt)‖
2

1

A , (13)

where Ne is the number of sampled boundary points, ei

denotes the boundary point projected in the image, Nh(i)
is the number of edge hypotheses for point i, and ui,j is
the corresponding image measurement. As for texture, σE

is a constant corresponding to the variance of the expected
error, and whose precise value has only little influence on
the results.

6.2. Optimization
Reconstruction is performed by minimizing the negative

log of the approximate posterior of Eq. 9, which we write,
up to an additive constant, as

Lglobal(φt) − ln p(Tt|φt) − ln p(Et|φt) . (14)

In practice, we assume that the projection matrix is
known and remains constant throughout the sequence. This
entails no loss of generality since the vertices are free to
move rigidly. Furthermore, the reference image and shape
may be those of the first image of the sequence, or of any
model image.
When considering large surfaces, the number of degrees

of freedom of our optimization problem quickly becomes
large, since it includes the 3D positions of the vertices.
To improve convergence, we introduce a coarse-to-fine ap-
proach to optimization. In the first step we only consider
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(a) (b)
Figure 3. Validating the deformation models. We compute the
mean of the average vertex-to-vertex distances between test data
and the model predictions, and plot it versus the latent dimension.
(a) In the cardboard case, with 100 inducing variables, latent di-
mension 4 performs best, whereas dimension 5 overfits the train-
ing data. (b) In the case of the napkin, 200 inducing variables were
sufficient for dimensions 2 to 7, but 400 were required for dimen-
sions 8 and 9. The improvement between dimensions 7 and 8 is so
small that we chose to use 7 to limit the computational burden.

every other row and every other line of the grid represent-
ing the local patches. Therefore, we end up with patches
of 3×3 vertices separated by 4cm instead of 5×5 vertices
separated by 2cm. While not changing the number of lo-
cal models that we use, this drastically reduces the number
of vertices to optimize. Furthermore, this only changes the
resolution of the patches, but not their size. Therefore we
can still use the same local deformation models to represent
the shape of the patches.
In the first frame, we start from the reference shape

and initialize the latent positions of the local models such
that their mean predictions best correspond to the different
patches of the reference shape. This is done by optimizing
the negative log likelihood of Eq. 3. Then, at every follow-
ing frame, we initialize the state with the MAP estimate of
the previous time, obtain a reconstruction with a low reso-
lution mesh, and use it to initialize the fine mesh that is then
optimized as well.

7. Experimental Results
In this section, we first validate the local models we

learned for cardboard and tissue paper, and then use both
synthetic and real data to demonstrate that they sufficiently
constrain the reconstruction to achieve accurate results,
even when the lack of texture on the surfaces makes it
difficult for texture-based approaches. The corresponding
videos are submitted as supplemental material. We encour-
age the reader to watch them to check that the recovered 3D
shapes match our perception of the deformations.

7.1. Local Models Validation
We used the technique of Section 4, to learn models for

the two datasets discussed in Section 3 for latent dimensions
ranging from 2 to 9. We then picked the dimensionality that
best fitted our validation set.



(a) (b) (c)
Figure 4. Synthetic images generated from optical motion capture
data (a) Shaded view of a surface. (b,c) Images synthesized by
texture-mapping using either a rich texture or a much more uni-
form one.

More specifically, for each patch y′

i extracted from the
validation sequence, we infered the corresponding latent
variable x′

i by minimizing the negative log likelihood of
Eq. 3, and computed the mean vertex-to-vertex distance be-
tween y′

i and the model prediction µ(x′

i). In Fig. 3, we de-
picts the mean of these distances as a function of the latent
dimension. For the cardboard, the models were all trained
using 100 inducing variables. d = 4 yields the smallest av-
erage distance. Larger values of d overfit to the training data
and yield worse results for the validation set. For the nap-
kin, that has more samples and a greater variety of observed
shapes, we had to use 200 inducing variables for 2 ≤ d ≤ 7
and 400 for 8 ≤ d ≤ 9 to make the training process con-
verge. In this case the higher values of d yield slightly better
results. However, since using 400 inducing variables in-
stead of 200 carries a severe computational penalty, in our
experiments we use d = 7, which we will show to be suffi-
cient for our purposes.
In any event, using a larger latent dimension for tissue

paper than for cardboard tallies with our intuition that the
manifold of potential deformations of the former is larger
than that of the latter.

7.2. Synthetic Data
We measured the accuracy of our method, and com-

pared it on synthetically generated images against regular-
izing either via deformation modes [9] or using a standard
quadratic term [6]. Modal analysis was performed by com-
puting the covariance matrix of our optical motion capture
data, and modeling the surface as a linear combination of
its eigenvectors, whose weights became the unknown of
our optimization problem. Regularization was achieved by
introducing a term that penalizes the modes weights with
their corresponding inverse squared eigenvalues. Using a
subset of the napkin validation data, such as the surface
in Fig. 4(a), we formed a sequence of deforming meshes,
textured them and projected them with known perspective
camera to obtain noise-free images. We then added i.i.d.
noise in the range [−10, 10] to the image intensities. We
reconstructed surfaces from a well-textured sequence and
from a more uniform one. As can be seen in Fig. 5, where
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Figure 5. Comparison of our approach (red circles) against princi-
pal component analysis (green pluses) and standard quadratic reg-
ularization (blue crosses) using sequences of images such as those
of Fig. 4. Top Row For each of the well-textured images, we plot,
on the left, the median 3D vertex-to-ground-truth-surface distance,
and, on the right, the median reprojection error of randomly sam-
pled surface points. Bottom Row Same plots for the much less
textured images. While the reprojection errors are similar for all
approaches, the surfaces we recover correspond more closely to
the true ones, especially when there is little texture. This confirms
that our deformation model better approximates the true object be-
havior.

we plot reconstruction errors, our method gives substan-
tially better results than both other approaches.

7.3. Real Sequences
We first applied our approach to the sheet of carboard

and the paper napkin of Figs. 6 and 7. We needed to com-
bine local deformationmodels to represent their shape even-
though they are rectangular, because their size is different
from the one of the training data.
The top row of Fig. 6 shows the behavior of our tech-

nique when there is absolutely no texture to anchor the sur-
face. The recovered surface belongs to a family of equally-
likely shapes whose vertices can slide across the surface,
while their boudaries reproject correctly. Nothing in the
image likelihood prevents this, since all facets look similar.
Note that, without using of shading clues, even a human eye
could hardly differentiate between two such shapes. How-
ever, as shown in the second example of the figure, adding
only very little texture disambiguates the reconstruction. Fi-
nally, when incrasing only slighly the amount of texture,
even more complex deformations can be recovered accu-
rately, as shown in the third example.
Our technique can be applied to very different shapes

and topologies, e.g. a circular shape and a surface with a
hole, as shown in Fig. 8. Our models being made of rectan-
gular patches, the meshes we use only roughly approximate



Figure 6. Reconstructing a rectangular piece of cardboard from a single video. In each of the three examples, we show the recovered surface
overlaid in red on the original images, and the surface seen from a different viewpoint. As shown in the top rows, a complete absence of
texture leads us to retrieve a surface that is plausible, but not necessary accurate. It is only one of a whole family of equally likely solutions.
However, this problem is fixed by adding very little image information, as shown in the other two examples. We then recover deformations
that match the real ones.

Figure 7. Reconstructing a much more flexible paper napkin. Even though there is little texture, the 3D of the surface is correctly recovered,
as shown in the bottom row where the surface is seen from a different perspective.

the surface boundaries, which prevents us from using edge
information. We nevertheless recover the 3D deformations
in both cases. Finally, in Fig. 9, we show that our models
make our approach robust to occlusions.

8. Conclusion
In this paper, we have presented an approach to recover-

ing the 3D shape of a poorly-textured surface from a single

camera. We have introduced local deformation models that
can be learned from a relatively small amount of training
data, and have shown that they can be combined to model
arbitrary global shapes. Furthermore, in the limit of the size
of the local patches, our method can be interpreted as either
a local smoothness or a global shape prior, and therefore
subsumes these two earlier approaches.
In future work, we plan to capture and learn models from



Figure 8. Reconstructing objects of different shape and topology. Note that assembling square patches only allows us to approximate object
outline. This prevents us from using some image edges, but does not stop us from successfully recovering the deformations of a circular
shape and of one with a hole.

Figure 9. Despite a very large occlusion, we manage to reconstruct a deforming piece of cardboard in each frame of a sequence. Note that
even if some small reconstrution errors occur, the global shape nevertheless matches the true one.

additionalmaterials. This will allow us to study the problem
of material recognition from video sequences by choosing
the model that yields the best reconstruction. Finally, we
plan to study the influence of dynamics by replacing our
current patch shape models with models trained on short
motion sequences, which should further improve the stabil-
ity of the reconstruction.
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