Dynamic Visual Category Learning

Tom Yeh
MIT EECS & CSAIL
Cambridge, MA, USA

tomyeh@mit.edu

Abstract

Dynamic visual category learning calls for efficient
adaptation as new training images become available or new
categories are defined, existing training images or cate-
gories become modified or obsolete, or when categories are
divided into subcategories or merged together. We develop
novel methods for efficient incremental learning of SVM-
based visual category classifiers to handle such dynamic
tasks. Our method exploits previous classifier estimates to
more efficiently learn the optimal parameters for the cur-
rent set of training images and categories. We show em-
pirically that for dynamic visual category tasks, our incre-
mental learning methods are significantly faster than batch
retraining.

1. Introduction

Visual category learning is a problem that has received
much attention in the computer vision community over the
past decades. Most current visual category learning meth-
ods operate in a static setting, assuming the numbers of cat-
egories and training images are fixed [3, 13, 7, 9, 22]. How-
ever, real-world problems are often dynamic and incremen-
tal: the set of training images may change over time or the
definition of the target classes may evolve over time. At any
given moment, the best classification can only be obtained
if the classifier can take full advantage of all the training
examples observed up to that moment.

For example, in a robot learning scenario, we may want
to teach a robot to classify objects in a home environment
where the objects encountered are described with natural
language interaction from the user and therefore the num-
ber of training examples and the number of categories will
change over time. In a photo categorization scenario, we
similarly expect a user to have interests and category def-
initions that evolve as the user adds new photographs. In
both cases, visual category classifier needs to adapt to the
updated knowledge contained in the current set of training
images and categories. We prefer systems that can incre-

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

Authorized licensed use limited to: International Computer Science Inst (ICSI). Downloaded on May 12,2010 at 20:25:08 UTC from IEEE Xplore. Restrictions apply.

Trevor Darrell
UC Berkeley EECS & ICSI
Berkeley, CA, USA

trevor@eecs.berkeley.edu

mentally update themselves rather than retraining each time
a new example is added or a new category is defined.

We consider dynamic visual category learning and
present efficient incremental methods for updating SVM
classifiers when new training images become available, ex-
isting training images are modified or removed, new cate-
gories are defined, and/or existing categories become obso-
lete, are divided into subcategories, or are merged together.

Figure 1 shows an interactive photo-organizer tool to
demonstrate the features of dynamic visual category learn-
ing. This tool allows users to organize photos in a taxon-
omy with the help of visual category classifiers. These clas-
sifiers are created and updated incrementally as the users
define and arrange the categories in the taxonomy or drag
and drop training images into areas designated for each cat-
egory. Given new data, these classifiers classify unlabeled
images and suggest new candidate images for each cate-
gory. The users can easily identify more training images
from the candidate images to add to the classifiers. Our in-
cremental methods make it possible to implement such a
dynamic visual category learning tool which may be useful
for interactive taxonomy construction and other tasks.

We review related work in Section 2, provide back-
ground material in Section 3, describe our incremental
methods in Section 4, and show experimental results in Sec-
tion 5.

2. Related Work

Many authors have reported promising results on static
visual category learning tasks [22, 3, 13, 9, 19]. In static vi-
sual category learning, data collection is performed offline
as a separate first step, whereas in dynamic visual category
learning, data collection takes place online, closely inter-
twined with the other learning steps. Incremental learn-
ing has been explored in several visual category learning
tasks, such as the use of Adaboost to incrementally learn
object detectors based on edge features [16], and the use of
Markov Chain Monte Carlo sampling to incrementally learn
latent topic models for online photos [14]. However, recent
best-performing methods for visual category learning often

@mn*

H Remove Example

Appearance shape

Figure 1. An application of dynamic visual category learning: This is an interface of an online photo categorization application that
takes the full advantage of the various features of dynamic visual category learning. An online user can interactively (1) browse a photo
collection, (2) select a few examples for the category (e.g., gun), (3) view examples classified by the SVM trained from the selected
training examples and drag-and-drop a new training example to the gun category (Section 4.1), (4) delete a category (Section 4.5), (5) split
a category into sub-categories (Section 4.6), (6) remove an example (Section 4.2) or adjust the feature weight (i.e., appearance vs. shape)
of that example (Section 4.3), (7) or create a new category from an unclassified example (Section 4.4). Each user action can trigger an
update to the classifier, which can be handled efficiently using our incremental methods.

use an SVM as the underlying classifier.

Various incremental methods are proposed for adding
new training examples to existing SVMs [1, 4, 12, 8]. How-
ever, they do not handle cases when training examples are
modified nor have they been extended to multiclass prob-
lems. [18] extends [8] to incrementally train a multiclass
classifier and reports results on a synthetic dataset, but of-
fers no method for category-level update. [6] describes a
method for incrementally learning an ensemble of SVMs
for OCR, using strategically updated distributions of the
training set. Although this method incrementally adds new
examples to the ensemble, SVMs for new categories are still
trained in batch. In contrast, we propose methods that can
exploit existing parameters to incrementally learn new pa-
rameters not only for new examples but also for new cate-
gories.

A learning problem closely related to our work is multi-
class active learning [20, 1 1]. The task in active learning is
to analyze unlabeled examples in a dataset and identify the
example whose label is most likely to help improve the clas-
sifier. [20] describes an active framework for labeling video
sequences, whereas [1 1] proposes a framework for image
retrieval. Both works use a margin-based classifier to per-

Authorized licensed use limited to: International Computer Science Inst (ICSI). Downloaded on May 12,2010 at 20:25:08 UTC from IEEE Xplore. Restrictions apply.

form the learning task. For these frameworks to be efficient,
the underlying SVM needs to be incrementally updated in-
stead of retrained when a new label is available.

The need to update the visual vocabulary when new
training images become available has been identified by
[21]. But for kernel-based visual category learning, updat-
ing the visual vocabulary can result in changes in the kernel
computed based on the representation using the modified
vocabulary. While the vocabulary update is incremental,
the underlying SVM still needs to be retrained every time.
This shortcoming makes the method in [2] inefficient when
applied to category learning problems. Our method over-
comes this limitation because it updates SVM parameters
directly given the changes in the kernel matrix; it is appli-
cable to both static and dynamic visual vocabularies.

3. Background: SMO-based SVM learning

Our incremental approach to dynamic visual category
learning is based on Sequential Minimal Optimization
(SMO) [17], a fast and efficient algorithm for learning SVM
parameters. [ibSVM [5], a popular SVM package used by
many recent works on visual category learning [13, 22], im-
plements a variant of this algorithm. The memory require-

ment of this algorithm is minimal because there is no need
to keep temporary matrices as in chucking-based decom-
position techniques. The low memory requirement makes
this algorithm attractive for large category learning prob-
lems with thousands of images, such as Caltech 101 [7] or
256 [10].

The basis of SVM learning is a QP optimization problem
that seeks to find a set of weights a; for example vectors Z;
that satisfy the KTT conditions:

0<a; <C=yf(zi) =1, ey
a;=C=yf(z;) <1

where y; is the label of ; and f(Z;) gives the margin of Z;.
Note that Z; is a support vector iff 0 < a; < C.

To find the sets of weights that can satisfy the KTT con-
dition, SMO begins by initializing the weight «; of each
example Z; to zero. It decomposes the optimization prob-
lem into the smallest possible subproblems involving only
two examples, &, and &y, jointly optimizing the objective
function with respect to their weights a, and «,. Each op-
timization step is fast because the optimal weights can be
found analytically as follows:

afPt — g — Yo (Ep—Eq)
q

n
Pt = oy, + s(ag — agPt)

where s = y,%,, 1) is the second derivative of the objective
function, and F; is the error of Z;, indicating how much &;
violates the KTT conditions, which can be calculated as:

B = f(Zi) —y 2

At each step, the weights of the two examples with the
largest errors take part in the joint optimization. Since the
error calculation dominates the computation time, the algo-
rithm caches the error F; of each example ; and updates
its value incrementally by:

Ei — E’z 4+ ypAOépk(fp, fz) + quOéqk'(fq, .1_3’1) + Ab

where Ab is the change in the offset. The algorithm con-
verges when all the errors are below some small threshold.

Although the SMO algorithm requires all the weights to
be initialized to zeros, non-zero initial weights can still con-
verge to an optimal solution when the underlying kernel ma-
trix satisfies the Mercer’s condition. In fact, careful choices
of initial values can significantly shorten the convergence
time. This observation forms the basis of our incremen-
tal approach to dynamic visual category learning, which we
turn to in the next section.

4. Dynamic Visual Category Learning

In this section, we describe how to extend the existing
SVM-based approach to static visual category learning to

Authorized licensed use limited to: International Computer Science Inst (ICSI). Downloaded on May 12,2010 at 20:25:08 UTC from IEEE Xplore. Restrictions apply.

handle the following dynamic events: a new training im-
age becomes available (Section 4.1), an existing training
image becomes irrelevant (Section 4.2) or is modified (Sec-
tion 4.3), a new category becomes necessary (Section 4.4),
or an existing category becomes obsolete (Section 4.5), di-
vided into subcategories (Section 4.6), or merged together
with other categories (Section 4.7).

Figure 2 shows examples of adding, removing, and mod-
ifying examples using a synthetic dataset for a two-class
SVM. For a multiclass SVM, Figure 3 shows examples of
adding, removing, and merging categories, and Figure 4
shows an example of creating subcategories.

4.1. Adding a new example

In dynamic visual category learning, new training im-
ages can become available over time . Given a new training
example &, we want to update the current SVM and obtain
a new SVM that incorporates #. Instead of re-estimating
the parameters of the new SVM from scratch (i.e., initial-
izing all the weights to zeros), we start the SMO procedure
by reusing the current weights and setting the weight of the
new example to zero. The motivation behind this method is
that a new training example may modify only some parts of
the current decision hyperplane; the new hyperplane is not
expected to be completely different from the current one.
Therefore, a new optimal solution is likely to be reasonably
close to the current solution in the search space. By reusing
the parameters of the current hyperplane, the optimization
procedure can converge sooner to the parameters of the new
hyperplane versus starting from the default starting point.
When the kernel matrix is a Mercer’s kernel, this method
is guaranteed to converge to the same optimal solution be-
cause the optimization problem is convex.

In realistic online learning scenarios, new training ex-
amples incrementally modify the decision hyperplane in a
relatively smooth manner; however, in certain pathological
situations, new training examples may alter the hyperplane
in a way so drastic that no parameter is worth transferring
from the current hyperplane to the next hyperplane. For ex-
ample, observing a new example labeled by a human as neg-
ative but predicted by the current SVM to have an extremely
large positive margin may trigger fundamental changes to
the structure of the current classifier in order to account for
the surprising observation. In such cases, initializing the
optimization procedure to the current parameter values may
put the optimizer in a worse position than resetting the pa-
rameters to zeros, and the incremental method may provide
no computational advantage. However, we have found em-
pirically that these cases are rare.

4.2. Removing an existing example

To remove an existing example & from the current SVM,
there are two cases we need to consider. The first is when

1. Original 2. Add examples

-2 0 2

3. Modify examples

4. Remove examples

Figure 2. Incremental update of a single SVM: Each dot is a training point. A circle indicates that the point is a support vector. The
white area is the positive region. (1) An SVM decision hyperplane separates the two groups of training points. (2) The hyperplane expands
toward the lower-left as more positive points are added to that region (Section 4.1). (3) The hyperplane expands to the top-right as some
existing points moved outward that region (Section 4.3). (4) The hyperplane retreats as some positive points are removed (Section 4.2).

Z is not a support vector. We can simply discard the exam-
ple, since & is not involved in the definition of the decision
hyperplane. On the other hand, when Z is a support vector,
removing ¥ in effect decreases its weight « to zero. To bring
the objective function back to a new optimal state would re-
quire either some non-support vectors to assume the role of
the missing support vector, or some remaining support vec-
tors to increase their respective weights, in order to compen-
sate for the loss of a.. To achieve this, we simply find the
example Z’ closest to Z and allow Z to increase its weight
o’ by a without exceeding C (i.e., &' «— min(a’ + a, C)).
Instead of the costlier application of Equation 2, the cached
error of each remaining support vector &; can also be incre-
mentally computed by

E; — o ak(Z,%;) — yAd k(T , T;)

where y and y’ are labels of Z and &’ respectively. The opti-
mization procedure started with these initial conditions not
only can converge sooner, but also is guaranteed to find the
optimal solution if the kernel satisfies Mercer’s condition.

4.3. Modifying one or more existing examples

In dynamic visual category learning, one or more train-
ing examples already added to an SVM may be modified
due to external circumstances, such as when the label has
changed, when the weights of individual images are ad-
justed, or when the underlying visual vocabulary is updated.
The affected SVM is no longer valid unless its parameters
are also updated accordingly.

First we consider the cases when a single example T, is
modified by AZy. If AZy is small, simply resuming the
SMO procedure using the current parameters can quickly
converge to a new set of optimal SVM parameters. The
cached errors can be updated incrementally as follows:

E; — Ei + yu A%, Vi # k.

When multiple examples are modified, there are two al-
ternatives for incrementally updating the SVM parameters.

Authorized licensed use limited to: International Computer Science Inst (ICSI). Downloaded on May 12,2010 at 20:25:08 UTC from IEEE Xplore. Restrictions apply.

The simpler alternative is the indirect example update
method where we sequentially remove each example and
add its modified version back to the classifier.

A better alternative is the direct kernel update method
where we analytically derive new support vector weights
ds given the changes in the kernel matrix AK. The di-
rect kernel update method is an extension of the method de-
scribed in [4] for updating support vector weights s when
anew support vector &, is introduced with weight .. Their
method is based on a reformulation of the KTT conditions:

H‘;A: _'s Kss Ab o
(98515 Ko][8] auuk

where the unknown are the changes in the weights of the
existing support vectors Ad’s and the changes in the offset
Ab, and the known are the weight of the new support vector
Aay, the parts of the kernel matrix corresponding to the
support vectors K, the signs of the other support vectors
s, and the changes to their margins f;

When all the support vectors are still valid support vec-
tors after the update, the changes to their margins A f; must
be zero so that they can continue to meet the KTT condition
necessary for support vectors (i.e., yf(Z) = 1). Knowing
the right-hand size is zero, we can solve this linear equa-
tion for Ads and Ab. However, sometimes adding Ad’s to
d's may cause some support vectors to become invalid (i.e.,
a < 0or o > C). Therefore, it is important to apply Aoy
piecewise and calculate appropriate Ad to maintain a set
of valid support vectors at all times (see [| 2] for details).

We extend the above method to handle the cases when
changes are not restricted to a single vector but possibly to
multiple vectors. When multiple vectors are modified, all
rows and columns of the kernel matrix that correspond to
the modified vectors are also modified. Let AK denote the
change in the kernel matrix. We can reformulate the KTT

1. Original

2. Add a category

//” o

3. Remove a category 4. Merge two categories

- D -
S

a4 7 / 04

~0g| 08|

Figure 3. Basic category-level dynamic SVM update: (1) A four-class classifier with four 1-vs-all SVMs. Thick and thin color lines
respectively mark the decision hyperplane and the side of the positive region of each category. (2) A new category (gold) is added to the
classifier, by creating the fifth SVM and incrementally adding the new points to the other four SVMs as negative examples (Section 4.4).
(3) An existing category (green) is removed (Section 4.5). (4) Two categories (red, aqua) are merged into one category (red) (Section 4.7).

conditions in terms of AK as follows:

JAf] _ [0 (Ke+AKy) [Ab
0 N 0 gr Adg
A
Similarly, knowing that A f; = 0, we can solve the lin-

ear system above to obtain Ad; and Ab. Also, we need to
maintain the set of valid support vectors by piecewise ap-
plication of AK in the same way as [12]. In Section 5.3
we show that our direct kernel update method was signifi-
cant faster than the indirect example update alternative, es-
pecially when the number of modified examples is large.

4.4. Adding a new category

In dynamic visual category learning, a new category y
can be encountered or deemed useful by a user. Suppose
there are n training images of the existing categories and m
new images of the category y. We want to incrementally
train a new 1-vs-all SVM S, for category y and add S, to
the current classifier ensemble WU:

e = g U {8,).

Our incremental method has two steps. First, a new
SVM S, is trained in batch mode (standard SMO) using
the m new images as positive examples and the n existing
images as negative examples. Second, each existing SVM
Sy, € ¥ needs to be updated incrementally by adding the m
new images to Sy, as negative examples, using the method
described in Section 4.1. When n > m, our incremental
method can enjoy the greatest speed advantage by reusing
the knowledge embedded in the original n examples instead
of relearning from scratch.

To further optimize the speed in which the images are
inserted into S, as negative examples, we give priority to
those images with the largest positive margin values pre-
dicted by its decision hyperplane f. An image ¥ with a
larger margin is positioned further into the positive side of

Authorized licensed use limited to: International Computer Science Inst (ICSI). Downloaded on May 12,2010 at 20:25:08 UTC from IEEE Xplore. Restrictions apply.

the hyperplane. Since Z is to be added as a negative ex-
ample, we need to shift the hyperplane toward the positive
side to allow the negative size to grow in such a way that &
will eventually fall under the negative side of the new hyper-
plane. While the negative side is expanding, some other #’
with a margin smaller than Z may also benefit from the ex-
pansion, entering the negative side together with Z; adding
7' would take no time at all following the addition of Z. We
show empirically in Section 5.4 that margin priority order-
ing results in a 5% to 20% extra time saving.

4.5. Removing an existing category

In dynamic visual category learning, an existing category
may become obsolete and require the removal of the corre-
sponding 1-vs-all SVM from the ensemble. Our incremen-
tal category removal method involves two steps. First, we
remove the SVM §,, corresponding to the obsolete category
y from the current ensemble U:

P =0 (S}

Second, we undo the influence of the obsolete training im-
ages on the remaining SVMs, by incrementally removing
them using the method described in Section 4.2.

4.6. Creating new subcategories

New categories can also be created by dividing an exist-
ing category y into subcategories v} . ..y, (Figure 4). The
original SVM S, for the category y needs to be replaced by
a set of SVMs trained for the new subcategories, which can
be expressed as below:

W = WU (S, ... Sy}~ {Sy}

where S,/ is the new SVM of the subcategory y;. Each new
SVM can be derived incrementally from the original SVM
Sy as follows:

1. Create a new 1-vs-all SVM S, and copy its parame-
ters from the original SVM S,

Figure 4. Incremental subcategory creation: (1) Three 1-vs-all
SVMs separate three categories of color points. (2) The SVM for
the blue category is replaced by three 1-vs-all SVMs for subcate-
gories black, aqua, and gold. Each subcategory SVM is incremen-
tally derived by cloning the SVM of the original category (blue)
and incrementally switching the labels of the points in the other
two subcategories from positive to negative (Section 4.6).

2. Incrementally modify the labels of the examples perti-
nent to the other subcategories from positive to nega-
tive, using the method described in Section 4.3.

4.7. Merging two existing categories

In dynamic visual category learning, existing categories
can be merged into a single category. Given two categories
p and g, the objective is to replace the SVMs S}, and S, for
the two categories with a new SVM S, that generalizes
to their superclass:

e =y {Sp\/q} - {Sp’ Sq}
which can be achieved incrementally as follows:

1. Let p be the category with more training examples and
q be the other category.

2. Create Spv 4 and copy its parameters from .S,.

3. Incrementally modify the examples of category ¢
from negative examples to positive examples using the
method described in Section 4.3.

5. Experiments

In this section, we first show the accuracy benefit of up-
dating SVM parameters when the set of training examples
changes over time (Section 5.1). Then, we present four
experiments to show the speed benefit of our incremental
methods for updating SVM parameters: we show incremen-
tal update is faster than batch retraining when new training
examples become available (Section 5.2), our direct kernel
update method is faster than indirect example update when
training examples are modified (Section 5.3), margin pri-
ority ordering provides additional time benefit for category
creation (Section 5.4), and incremental update is faster than
batch retraining when categories change over time in an in-
teractive taxonomy learning task (Section 5.5).

Authorized licensed use limited to: International Computer Science Inst (ICSI). Downloaded on May 12,2010 at 20:25:08 UTC from IEEE Xplore. Restrictions apply.

Adding useful examples Removing obsolete examples

——PMK-SIFT
5|l ——PMK-ShapeContext

«
3

F
s 38
<
3

@
S

s

2
&

N
S

@

3

i
—— PMK-ShapeContext| }HKHZH :

500 1000 1500 = 2000 2500 1000 1500 2000 2500 3000
Number of images Number of images

Recognition rate (%)

Recognition rate (%)

>
@
&

Figure 5. Recognition rate vs. dynamic dataset: Recognition
rate can be improved as more useful training examples are added
to the classifier (left) or as obsolete examples are removed from
the classifier (right) (Section 5.1).

Adding Example Removing Example

80 80
—70 —70
X X
< 60 : < 0 :
2 5 : 2 50 :
o o
‘a w E w
L 30 —— Incremental L 30) —— Incremental
Q [
= 20 = 20

10| 10|

FF =]

1000 2000 C}UOD 4000 1000 2000 3000 4000
Number of images

Number of images

Figure 6. Incremental update vs. batch retraining: To add (left)
or to remove (right) an example, as the size of the SVM grows
(x-axis), the computation cost of retraining (blue, higher) grows
dramatically, whereas the computation cost of incremental update

(red, lower) stays fairly constant (Section 5.2).

5.1. Recognition rate vs. dynamic dataset

This experiment studies the accuracy benefit of updating
SVM parameters when the set of training images grows or
shrinks over time. We used the Caltech 101 dataset [7] with
a Spatial Pyramid Match Kernel (SPMK) [13] based on two
different features: SIFT [15] and ShapeContext [2]. First
we measured the effect of adding useful training images on
the accuracy of the classifier. We randomly chose 3000 im-
ages to form the training set and added them to the classifier
in a random order. We also measured the accuracy in terms
of the mean recognition rate as defined in [13]. Second,
we measured the effect of removing obsolete images on the
accuracy. We used the same training set to obtain the ini-
tial classifier. Then we deliberately kept only 20 categories
and deemed the other 81 categories obsolete, removing the
images of the obsolete categories in a random order. We
measured the mean recognition rate of the 20 categories.

Figure 5 shows the that the recognition rate improved
as more useful images were incorporated into the classifier
or as more obsolete images were removed from the classi-
fier, which suggests the importance of updating the classi-
fier with the most up-to-date set of relevant training images.

5.2. Incremental update vs. retraining

This experiment examines the speed advantage of incre-
mental update (Section 4.1) over batch retraining when a

96

—e—Direct
—— Indirect

I S S
30 40 50 60 . ‘70 80 20 30 40 50 60 . .70 80
% of kernel modified % of kernel modified

Time saving (%)

86

20

Figure 7. Direct kernel update vs. indirect example update:
The direct kernel update takes less time (left, y-axis) than the naive
method for updating the SVM parameters given a modified kernel
matrix. As larger portions of the kernel (x-axis) are modified, the
time-saving increases (right, y-axis) (Section 5.3).

new training image is added to an SVM. For each n from
100 to 5000, we trained an SVM on n randomly selected
images from the Caltech 101 [7] dataset, using the standard
SMO with a spatial pyramid match kernel (SPMK) [13]. We
measured the running time of adding the n + 1-st example
by incremental update and by batch retraining.

Figure 6 shows as the number of training images in-
creased, incremental update achieved relatively constant
time performance, whereas the computation cost of retrain-
ing rose drastically.

5.3. Direct kernel vs. indirect example update

This experiment aims to determine whether our direct
kernel update method described in Section 4.3 for modify-
ing multiple examples is faster than the indirect example
update alternative that sequentially removes examples and
adds them back. Intuitively, the more entries in the kernel
that have been modified, the longer it will take to relearn
new SVM parameters. We were interested in the effect the
number of kernel changes has on the computation time to
update the SVM. We simulated kernel changes by adding
random noise to a fraction of the entries in the kernel. We
varied the percentage from 5% to 80% and compared the
computation time of our direct method with that of the in-
direct method. Figure 7 shows that our direct kernel update
method is significantly faster than the indirect method.

5.4. Margin priority vs. random ordering

This experiment evaluates the effect of margin priority
ordering on the running time of our incremental category
creation method described in (Section 4.4). There are two
factors that can affect the running time: the size of the cur-
rent classifier (number of categories/SVMs) and the size of
the new category (number of images). If a large classifier
with many categories is to incorporate a new category, there
are more SVMs we need to update. If a large category with
many images is to be added, it may take longer to add these
images to the other SVMs. We designed two experiments to
study each factor. First, we varied the size of the classifier (5

Authorized licensed use limited to: International Computer Science Inst (ICSI). Downloaded on May 12,2010 at 20:25:08 UTC from IEEE Xplore. Restrictions apply.

18
— — 30|
< o
& & 24
14
2" P
= & 15
D o | 3 D
g€° 1 £
5|
[y ——PMK = —— PMK
—e—SPK 0 —e—SPK
4

5 10 15 20 25 30 35
Number of examples

5 10 15

Number of categories
Figure 8. Time saving by margin priority ordering: The time
saving stays fairly constant as the number of categories increases
(left), but increases as the number of examples of the new category
increases (right) (Section 5.4).

to 20 categories) while keeping the size of the new category
constant (10 training images). Second, we varied the size
of the new category (5 to 40 examples) while keeping the
size of the classifier constant (5 categories). We measured
the running time of our incremental method with and with-
out margin priority ordering, and calculated the difference
as the benefit of this ordering scheme. Each experiment was
repeated ten times using a pyramid match kernel (PMK) [9]
and a Spatial Pyramid Kernel (SPK) [3] on Caltech 101 [7]
and Caltech 256 [10] datasets respectively.

Figure 8 shows the time saving by margin priority or-
dering for incremental category creation. The saving was
between 5% to 25%. As the size of the existing classifier
increased, the saving stayed fairly constant. On the other
hand, as the size of the new category increased, the saving
rose steadily, which may suggest that more training images
were able to benefit from the restructuring of the hyperplane
caused by earlier training images with larger margins.

5.5. Interactive taxonomy learning

In this section we evaluate the speed benefit of our
method for online, interactive applications, such as the one
shown in Figure 1. We focus on inferactive taxonomy learn-
ing, a scenario where a user interactively constructs a tax-
onomy from a set of unlabeled object images, where a dy-
namic visual classifier acts as an assistant along the way.

A typical scenario is as follows: a user wants to orga-
nize images into categories, but does not have a concrete
idea about how many categories are necessary and how fine-
grained these categories should be. Thus, the user simply
creates two or three most general categories (animate, inan-
imate, others), and starts assigning images into these cate-
gories. Every time an image is assigned, the classifier is up-
dated incrementally. The classifier can suggest to the user
a list of probable images for each category, and constantly
refreshes the list after every update. From the list the user
can easily identify more training examples for each cate-
gory. After assigning a sufficient number of images to a
particular category (e.g., animate), the user may notice finer
distinctions within the category and may desire to split the

—e—Incremental
—+—Retrain

50 100 150 200 250 300 50 100 150 200 250 300

Number of events Number of events

Figure 9. Incremental update vs. retraining in interactive tax-
onomy learning (Section 5.5).

category into subcategories (e.g., animal, plant, insect). As
the user continues to do so, eventually the user will be able
to organize the image collection into a meaningful taxon-
omy as so desired by the user.

To simulate the interactive session above, we used the
taxonomy contained in the Caltech 256 dataset [10] and en-
gineered a sequence of dynamic events to construct a taxon-
omy as if it were done by a human user. We chose a subset
of the taxonomy, 30 categories at the leaf level, a branch
factor of three in the internal nodes (e.g., plant — cactus,
grapes, tomato) and two (i.e., root — animate, inanimate)
at the top-most level. Ten training images were selected for
each category. These images were added to the classifier in
a random order, starting with only two SVMs for the two
top-most categories (i.e., animate, inanimate). When a cat-
egory had more than 10 images, it was split into three sub-
categories. At each event, we measured the running time of
our incremental method versus that of retraining. Figure 9
shows that our incremental method was faster than retrain-
ing, especially when the taxonomy grew larger.

6. Conclusion

We described incremental methods for dynamic cate-
gory learning which can efficiently update SVM parameters
in visual recognition tasks. Our methods extend previous
incremental techniques to handle both example and cate-
gory level update. We demonstrated an interactive catego-
rization application which uses dynamic update, evaluated
our method on taxonomy formation tasks, and showed our
methods are faster than retraining.

References

[1] J.-L. An, Z.-O. Wang, and Z.-P. Ma. An incremental learning
algorithm for support vector machine. In /ICMLC, 2003. 2

[2] S. Belongie, J. Malik, and J. Puzicha. Shape matching and
object recognition using shape contexts. PAMI, 2001. 6

[3] A.Bosch, A. Zisserman, and X. Munoz. Representing shape
with a spatial pyramid kernel. In CIVR, 2007. 1,7

[4] G.Cauwenberghs and T. Poggio. Incremental and decremen-
tal support vector machine learning. In NIPS, 2000. 2, 4

[5] C.-C. Chang and C.-J. Lin. Libsvm: a library for support
vector machines (version 2.31). 2

Authorized licensed use limited to: International Computer Science Inst (ICSI). Downloaded on May 12,2010 at 20:25:08 UTC from IEEE Xplore. Restrictions apply.

(6]

(7]

(8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

(19]

[20]

[21]

[22]

Z. Erdem, R. Polikar, F. Gurgen, and N. Yumusak. Ensem-
ble of svms for incremental learning. In Multiple Classifier
Systems, pages 246-256. 2005. 2

L. Fei-Fei, R. Fergus, and P. Perona. Learning generative
visual models from few training examples: An incremental
bayesian approach tested on 101 object categories. In CVPR
Workshop, 2004. 1, 3, 6,7

G. Fung and O. L. Mangasarian. Incremental support vector
machine classification. In SDM, 2002. 2

K. Grauman and T. Darrell. The pyramid match kernel:
discriminative classification with sets of image features. In
CVPR, 2005. 1,7

G. Griffin, A. Holub, and P. Perona. Caltech-256 object cat-
egory dataset. Technical report, California Institute of Tech-
nology, 2007. 3,7, 8

S. C. H. Hoi and M. R. Lyu. A semi-supervised active learn-
ing framework for image retrieval. In CVPR, 2005. 2

P. Laskov, C. Gehl, S. Kruger, and K.-R. Muller. Incremental
support vector learning: Analysis implementation and appli-
cations. Journal of Machine Learning Research, 7:1909—
1936, 2006. 2,4, 5

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In CVPR, 2006. 1,2, 6,7

L. Li, G. Wang, and L. Fei-Fei. Optimol: automatic online
picture collection via incremental model learning. In CVPR,
2007. 1

D. G. Lowe. Object recognition from local scale-invariant
features. In CVPR, 1999. 6

A. Opelt, A. Pinz, and A. Zisserman. Incremental learning
of object detectors using a visual shape alphabet. In CVPR,
2006. 1

J. Platt. Sequential minimal optimization: A fast algorithm
for training support vector machines. Technical report, Mi-
crosoft Research, 1998. 2

A. Tveit and M. Hetland. Multicategory incremental proxi-
mal support vector classifiers. In Knowledge-Based Intelli-
gent Information and Engineering Systems. 2003. 2

M. Varma and D. Ray. Learning the discriminative power-
invariance trade-off. In ICCV, 2007. 1

R. Yan, J. Yang, and A. Hauptmann. Automatically labeling
video data using multi-class active learning. In /ICCV, 2003.
2

T. Yeh, J. Lee, and T. Darrell. Adaptive vocabulary forests
for dynamic indexing and category learning. In /CCV, 2007.
2

H. Zhang, A. C. Berg, M. Maire, and J. Malik. Svm-knn:
Discriminative nearest neighbor classification for visual cat-
egory recognition. In CVPR, 2006. 1, 2

