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Abstract

From the recovery of structure from motion to the sep-
aration of style and content, many problems in computer
vision have been successfully approached by using bilinear
models. The reason for the success of these models is that
a globally optimal decomposition is easily obtained from
the Singular Value Decomposition (SVD) of the observa-
tion matrix. However, in practice, the observation matrix is
often incomplete, the SVD can not be used, and only sub-
optimal solutions are available. The majority of these so-
lutions are based on iterative local refinements of a given
cost function, and lack any guarantee of convergence to the
global optimum. In this paper, we propose a globally opti-
mal solution, for particular patterns of missing entries. To
achieve this goal, we re-formulate the problem as the mini-
mization of the spectral norm of the matrix of residuals, i.e.,
we seek the completion of the observation matrix such that
the largest singular value of its difference to a low rank ma-
trix is the smallest possible. The class of patterns of missing
entries we deal with is known as the Young diagram, which
includes, as particular cases, many relevant situations, such
as the missing of an entire submatrix. We describe experi-
ments that illustrate how our globally optimal solution has
impact in practice.

1. Introduction

Various large-scale nonlinear problems in computer vi-
sion have been addressed by exploiting bilinear models. Ex-
amples include the recovery of rigid structure from motion
[18, 16], inference of non-rigid models [4], estimation of
image motion [12], modeling images obtained with differ-
ent lighting [3], photometric stereo [2], object recognition
[19], and the separation of style and content in images [7].
Usually, a matrix that collects the observations is expressed
as the product of two matrices collecting (functions of) the
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parameters to estimate. This bilinear relation codes a con-
straint on the rank of the observation matrix. The advantage
of this formulation is that the bulk of the effort needed to
compute the solution of the large-scale nonlinear estimation
problem is done by computing the rank constrained matrix
that best matches the observation matrix (thus, its optimal
bilinear decomposition), which is easily obtained from its
Singular Value Decomposition (SVD).

In practice, it is often the case that not all the entries of
the observation matrix are available. For example, when re-
covering 3D structure from motion, the observation matrix
collects 2D trajectories of (projections of) feature points in
the image plane. Naturally, due to self-occlusion and lim-
ited field-of-view, feature points are usually not visible in all
images available, and the observation matrix is incomplete.
This prevents the simple use of the SVD and motivated re-
searchers to address the problem of computing a rank con-
strained matrix from a partial observation of its entries, i.e.,
the problem of factorization with missing data.

Current approaches to the factorization of incomplete
matrices are sub-optimal. Earlier examples are procedures
to combine the constrains that arise from the observed sub-
matrices of the original matrix [18, 13]. More recently, re-
searchers attempted to develop algorithms to minimize the
nonlinear cost function that measures the residual of the
approximation. These algorithms are iterative, local, thus
sensitive to the initialization, i.e., there is not guarantee of
convergence to the global optimum. Examples include two-
step iterative algorithms, e.g., alternating between the com-
putation of the column and row spaces, [9, 10], non-linear
damped Newton optimization of the matrix factors [5], and
other non-linear optimization strategies, such as optimizing
with respect to one of the factors the cost resulting from re-
placing the closed-form estimate of the other factor [15]. In
opposition to these iterative approaches, some authors pro-
posed the so-called batch algorithms, that address the min-
imization of an approximation of the residual, to simplify
the optimization and avoid local minima [14, 17].

In this paper, we propose an optimal solution for the
problem of factorizing an incomplete observation matrix,
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when the pattern of missing entries has a specific format.
We show that the problem can be seen as the minimization
of the spectral norm of the matrix of residuals and propose
a globally optimal approach to this optimization problem.
Our algorithm is not iterative; it rather computes the op-
timal completion of the observation matrix by filling, in a
sequential way, its unknown entries. At each step, the opti-
mal value for one missing is simply obtained in closed form
as the solution of a quadratic equation. The class of pat-
terns of missing entries we deal with is known as the Young
diagram, which includes, as particular cases, many relevant
situations, such as the missing of an entire submatrix.

2. Minimizing the error spectral norm

Motivated by the applications referred above, we address
the problem of computing a rank deficient matrix, say a
m×n matrix of rank at most r < min (m,n), from (noisy)
observations of a subset of its entries.

The most common formulation for the problem of find-
ing the rank deficient matrix Ŵ that best matches an incom-
plete observation matrix W is (see, e.g., [9, 5])

Ŵ = arg min
W̃∈Sr

∥∥∥
(
W − W̃

)
¯M

∥∥∥ , (1)

where: M is a m×n binary matrix that codes which entries
of W were observed, i.e., is is a mask defined by Mij := 1
if Wij was observed, and Mij := 0, if otherwise; ¯ de-
notes the Schur-Hadamard (or elementwise) product; and
Sr is the set of matrices with rank less or equal to r. Usu-
ally, ‖·‖ stands for the Frobenius norm, such that, if all the
entries of W are observed, i.e., if M = 1m×n, the solution
of (1) is easily obtained from the SVD of W. However,
when W is incomplete, there is not known solution for (1)
and only suboptimal methods have been proposed.

We start by noting that the optimization in (1) is equiv-
alent to the following one, where we also make explicit the
optimal completion of the observation matrix:

(
Ŵ, X̂

)
= arg min

W̃∈Sr,X∈SW

∥∥∥X− W̃
∥∥∥ . (2)

Here, SW is the set of all matrices that have the entries
corresponding to the ones that were observed in W, equal
to the observation values, i.e., X ∈ SW , if and only if,
∀ij:Mij=1,Xij =Wij ; thus, SW collects all possible com-
pletions of the incomplete observation matrix W. The ma-
trix X̂ resulting from (2) is the best completion of W, in
terms of minimizing its difference to a rank r matrix.

Figure 1 represents the scenario in the space of m×n
matrices, seen as Rm×n. The set SW is represented as an
(hyper-) plane, because the matrices X that are possible
completions of W live in an affine space. In fact, note that

any completion X can be written as the sum of a fixed term
with a linear combination of a subset of basis matrices, e.g.,

X = W ¯M +
∑

i,j:Mij=0

α(i, j)Eij , (3)

where: the matrices {Eij} are the versors of the Rm×n coor-
dinate system, i.e., each Eij is a matrix with 1 at entry (i, j)
and zeros at all other entries; and the scalars {α(i, j)} are
defined by α(i, j) := Xij . In Figure 1, we also represent
the set Sr, composed by the m×n matrices that have rank
less or equal to r, and the solution of (2), given by the pair
of matrices Ŵ ∈ Sr and X̂ ∈ SW that are the closest to
each other.

-
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Figure 1. The space of n×m matrices, with Sr , the set of matrices
of rank at most r , and SW , the set of possible completions of the
(incomplete) observation matrix W. We seek the closest pair, i.e.,
the matrices Ŵ ∈ Sr and X̂ ∈ SW that solve (2).

As it is clearly illustrated by Figure 1, finding the best
completion matrix in SW corresponds to minimizing its dis-
tance to the set of rank constrained matrices, Sr. In fact, X̂
in (2) is equivalently written as

X̂ = arg min
X∈SW

dSr (X) , (4)

where
dSr (X) = min

W̃∈Sr

∥∥∥X− W̃
∥∥∥ (5)

denotes the distance from an arbitrary matrix X to the set
Sr. The advantage of writing the problem as we did in (4)
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is that the minimizer of the distance (5) is easily obtained in
closed form, i.e., without any search, for several choices of
the underlying norm. In fact, from the SVD of a matrix X,

X = UΣVT =
N∑

i=1

uiσivT
i , (6)

where N = min {m,n} and the singular values are non-
increasingly ordered, the rank r matrix W̃∗ ∈ Sr that is
closer to X (with respect to several norms) is simply given
by, see, e.g., [8],

W̃∗ =
r∑

i=1

uiσivT
i , (7)

and the approximation error matrix is:

X− W̃∗ =
N∑

i=r+1

uiσivT
i . (8)

We propose to use in (2) (thus, in (5)) the spectral norm.
The spectral norm of a matrix is given by its largest singular
value:

‖A‖ := max
i

σi (A) = σ1 (A) . (9)

The spectral norm is popular because it is the induced ma-
trix norm, when the matrix is seen as an operator between
Euclidean vector spaces [8]. It has been used in several
fields, e.g., control theory [6]. Using this norm in (2) makes
sense: we will be seeking the rank deficient matrix that min-
imizes the largest singular value of its difference to a matrix
that collects the observed entries. Furthermore, we will see
that, unlike the Frobenius norm, the use of the spectral norm
enables us to find the globally optimal solution of (2), for
particular (although relevant) patterns of missing entries.

Using the spectral norm in (5), the distance of a matrix
X to the space of matrices of rank at most r, i.e., the norm
of the approximation error matrix in (8), is simply given by
the (r+1)th largest singular value of X:

dSr (X) =
∥∥∥X− W̃∗

∥∥∥ (10)

= σ1

(
X− W̃∗

)
(11)

= σr+1(X) , (12)

where: equality (10) uses the optimality of W̃∗ in (7);
equality (11) is just the definition of spectral norm in (9);
and (12) results from the SVD of the error matrix in (8).

Replacing dSr (X) in (4) by the result (12), we end up
with the optimization problem

X̂ = arg min
X∈SW

σr+1(X) , (13)

which we address in the following sections. In words, the
solution we seek in (13) is the completion of W that has the
smallest (r+1) singular value. We will derive the globally
optimal solution for relevant cases.

3. Optimal solution for one missing entry
We start by studying the case of only one missing entry

in the m× n observation matrix W, which we write as:

W =
[
? aT

b C

]
, (14)

where the (n−1)×1 vector a, the (m−1)×1 vector b, and
the (m−1)×(n−1) matrix C, are known — they contain
the observed entries of W. Although, for simplicity, we
have assumed in (14) that the unknown entry is located in
the top left position, this entails no loss of generality, since
the generic case can be brought to this canonical format,
through left and right multiplication of W by adequate per-
mutation matrices, without changing its singular values.

According to our derivations in the previous section, see
expression (13), the single missing entry case leads to the
study of the following optimization problem:

p∗ = min σr+1

([
x aT

b C

])

x ∈ R
, (15)

where x ∈ R denotes a candidate value for the unknown
entry of W, thus the matrix inside brackets (·) represents a
generic element of the set of possible completions SW .

The theorem of interlacing inequalities for singular val-
ues, see e.g., [11], provides the two following lower bounds,
valid for any choice of x ∈ R:

σr+1

([
x aT

b C

])
≥ σr+1

([
b C

])
, (16)

σr+1

([
x aT

b C

])
≥ σr+1

([
aT

C

])
. (17)

These bounds are transmitted to the infimum p∗ in (15) as

p∗ ≥ max
{

σr+1

([
b C

])
, σr+1

([
aT

C

])}
. (18)

It can be shown that the lower bound in (18) is tight,
i.e., that (18) holds as an equality. Moreover, in general,
the optimization problem (15) is solvable, i.e., there is a
value x∗ for the missing entry that realizes the infimum p∗:

σr+1

([
x∗ aT

b C

])
= p∗. (19)

More precisely, the set of values of a, b, and C, that
make problem (15) solvable is dense in Rn−1 ×Rm−1 ×
R(m−1)×(n−1), in the sense that the closure of that set yields
the whole space, see [1] for details.

In this general case, not only the optimization problem
(15) is solvable, as it is straightforward to obtain the solu-
tion for x∗ in (19). In fact, equality (19) implies that the
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square of the singular value p∗ is an eigenvalue (the (r+1)th

largest one) of the matrix
[
x∗ aT

b C

] [
x∗ bT

a CT

]
=

[
(x∗)2 + aT a x∗bT + aT CT

x∗b + Ca bbT + CCT

]
.

Since (p∗)2 is a root of the characteristic polynomial of this
matrix, the following equation is satisfied by the unknown
entry x∗:
∣∣∣∣
(x∗)2 + aT a− (p∗)2 x∗bT + aT CT

x∗b + Ca bbT + CCT − (p∗)2 Im−1

∣∣∣∣ = 0,

where Im−1 stands for the (m−1)×(m−1) identity matrix
and |Z| represents the determinant of the matrix Z. Since
the determinant is a multilinear operator (i.e., linear in each
column separately), the equality above is simply a quadratic
equation in the unknown x∗, which is easily solved (in [1],
it is further shown that, under the general assumptions of
solvability of the optimization problem (19), the solution is
unique).

4. Optimal solution for Young diagrams
We now build on the result of the previous section to de-

rive the optimal solution of (13), for a more general pattern
of missing entries. More precisely, we will consider that
the missing entries follow a format known as the Young di-
agram. This format corresponds to the having the missing
entries arranged in the first n1 entries of the 1st row, the
first n2 entries of the 2nd row, ..., the first nk entries of the
kth row, such that n1 ≥ n2 ≥ · · · ≥ nk. As an example,
consider the 5× 6 observation matrix

W =




? ? ? ? a15 a16

? ? ? a24 a25 a26

? ? a33 a34 a35 a36

? ? a43 a44 a45 a46

a51 a52 a53 a54 a55 a56




, (20)

where k = 4 and n1 = 4 ≥ n2 = 3 ≥ n3 = 2 ≥ n4 = 2.
The symbol ? represents a missing entry and the known en-
tries are denoted by aij . The Young diagram pattern of un-
known entries is thus able to represent relevant cases, such
as, for example, the missing of an entire submatrix.

The interesting fact about this class of incomplete ma-
trices is that the optimal completion, i.e., the completion
minimizing the (r+1)th singular value, can be found in a
sequential way, i.e., by solving, for each missing entry, a
one-dimensional problem such as the one addressed in the
previous section and expressed in (15). Our procedure is the
following: we start at the kth row and complete from right
to left, then we move to the (k−1)th row and complete from
right to left, ..., and so on, until we complete the 1st row.
For example, for the matrix in (20), the order by which the

missing entries are filled in is indicated below as X1, X2,
..., X11:




X11 X10 X9 X8 a15 a16

X7 X6 X5 a24 a25 a26

X4 X3 a33 a34 a35 a36

X2 X1 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56




. (21)

Computing Xi corresponds to solving (15) for the largest
submatrix of W that has the entry corresponding to Xi in
its top left position. Note that, due to the filling order just
described, all the other entries of this submatrix are avail-
able: they correspond either to observed entries of W or to
Xj , j = 1, 2, . . . , i − 1, which were computed before. For
example, computing X6 in (21) means solving

min
x ∈ R

σr+1







x X5 a24 a25 a26

X3 a33 a34 a35 a36

X1 a43 a44 a45 a46

a52 a53 a54 a55 a56





 , (22)

where X5, X3 and X1 denote entries that have already been
computed at this stage.

A simple example provides insight over why the proce-
dure just described yields the optimal completion. Consider
the problem of computing the optimal completion of an ob-
servation matrix W with two missing entries, located at the
first and second elements of the first row:

p∗ = min σr+1

([
x y aT

b1 b2 C

])

(x, y) ∈ R2

. (23)

According to the procedure described above, we first
solve for the unknown entry y, i.e., we compute y∗ such
that, according to the derivations of the previous section,

σr+1

([
y∗ aT

b2 C

])
= (24)

max
{

σr+1

([
b2 C

])
, σr+1

([
aT

C

])}
.

Then, we plug in the solution y∗ and solve for the entry x,
i.e., we compute x∗ such that

σr+1

([
x∗ y∗ aT

b1 b2 C

])
= (25)

max
{

σr+1

([
b1 b2 C

])
, σr+1

([
y∗ aT

b1 C

])}
.

Replacing (24) into (25) yields

σr+1

([
x∗ y∗ aT

b1 b2 C

])
= (26)

max
{

σr+1

([
b1 b2 C

])
, σr+1

([
b2 C

])
, σr+1

([
aT

C

])}
.
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Since any singular value of a matrix is greater or equal than
the corresponding one of any of its submatrices, we have
σr+1

([
b2 C

]) ≤ σr+1

([
b1 b2 C

])
, and equality (26)

reduces to

σr+1

([
x∗ y∗ aT

b1 b2 C

])
= (27)

max
{

σr+1

([
b1 b2 C

])
, σr+1

([
aT

C

])}
.

Now, remark that, in a similar way of that of the previous
section, the theorem of interlacing inequalities for singular
values [11] provides the following bound for the optimal p∗

of the overall problem (23):

p∗ ≥ max
{

σr+1

([
b1 b2 C

])
, σr+1

([
aT

C

])}
. (28)

This bound, together with equality (27), proves that the pair
(x∗, y∗), computed according to our sequential procedure,
is the optimal completion. Naturally, this simple example
can be extended to show, in a similar way, that the global
optimality of our procedure holds in general, see [1] for de-
tails.

5. Young-wise optimal iterative algorithms
The procedure proposed in the previous section yields

the optimal completion when the pattern of missing en-
tries is a Young diagram. However, it also enables the de-
velopment of (sub-optimal) iterative schemes to deal with
fully general patterns of missing entries, by optimizing in a
block-wise way.

Consider as an example observation matrices with miss-
ing entries grouped in two separate Young diagrams, such
as the pattern illustrated by

W =




? ? ? · · · ? z z · · · z
? ? ? · · · ? z z · · · z
? ? · · · ? z z z · · · z
? ? · · · ? z · · · z ? ?
? · · · ? z · · · z ? · · · ?
? · · · ? z · · · z ? · · · ?
...

...
...

...
...

...
...

...
...

? z z · · · z ? ? · · · ?
z z · · · z ? ? ? · · · ?




,

where the observed entries are represented by z and the
missing ones by ?. This type of pattern arises when recover-
ing structure from motion, see e.g., [18, 16, 13, 9, 10, 5, 15],
because, in this case, the observation matrix collects trajec-
tories of feature point projections, that in general enter and
leave the visible field, during the image sequence to process.

Using the result of the previous section, we propose an
iterative scheme to compute the missing entries of observa-
tion matrices like the one above, in such a way to minimize

the (r + 1)th singular value: alternate between the closed-
form solutions for each of the Young diagrams. This means
iterating the two following minimizations:

min σr+1







? ? · · · ? z z · · · z
? ? · · · ? z z · · · z
? · · · ? z z z · · · z
? · · · ? z · · · z Xi Xi

? ? z · · · z Xi · · · Xi

? ? z · · · z Xi · · · Xi

...
...

...
...

...
...

...
...

? z · · · z Xi Xi · · · Xi

z · · · z Xi Xi Xi · · · Xi







,

min σr+1







Xi+1 · · · Xi+1 z z · · · z
Xi+1 · · · Xi+1 z z · · · z
Xi+1 Xi+1 z z z · · · z
Xi+1 Xi+1 z · · · z ? ?
Xi+1 z · · · z ? · · · ?
Xi+1 z · · · z ? · · · ?

...
...

...
...

...
...

...
Xi+1 z · · · z ? · · · ?
z · · · z ? ? · · · ?







,

where Xi and Xi+1 represent generic values for the entries
that were computed at the previous iteration. The pattern
of missing entries to be completed in the first minimization
is precisely the Young diagram studied in the previous sec-
tion; the pattern of the second one is easily brought to this
same format by performing adequate column and row per-
mutations.

Due to the global optimality of each of the steps above,
this iterative algorithm yields a non-increasing sequence of
values for σr+1(Xi), where Xi ∈ SW is the completion
of W at iteration i. However, as with any other greedy al-
gorithm, there is no guarantee of convergence to the global
minimum, and initialization is a crucial issue. Naturally,
for other patterns of missing entries, different block-wise
optimal iterative minimization schemes can be used, e.g.,
alternating among the completion of more than two Young
diagrams.

6. Experiments

Since our method to complete rank constrained matri-
ces, with patterns of missing entries in a Young diagram,
runs in a finite number of steps and computes the optimal
completion, our experiments focused in illustrating its use-
fulness in practice, rather than in emphasizing its optimal-
ity. In subsection 6.1, we illustrate the use of our algorithm
in a structure from motion application. Subsection 6.2 ad-
dresses robustness to noise. Finally, in subsection 6.3, we
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report the behavior of the suboptimal iterative scheme pro-
posed in Section 5.

6.1. Application – structure from motion

We have generated synthetic trajectories of 2D projec-
tions of a set of 3D points, according to an affine camera
model. To simulate occlusion, i.e., points that disappear
along the image sequence, several trajectories were ended
at different points, well before the end of the synthetic se-
quence, thus made incomplete on purpose. Figure 2 illus-
trates the scenario.

−400 −300 −200 −100 0 100 200 300 400
−400

−300

−200

−100

0

100

200

300

400

500

u

v

Incomplete trajectories

Figure 2. Incomplete trajectories of (projections of) feature points,
observed when recovering 3D structure from motion. These 2D
coordinates of the feature point projections are collected in an in-
complete observation matrix.

Due to the rigidity of the set of 3D points, the observa-
tion matrix, which collects the 2D projections, is rank 4 in a
noiseless situation, see, e.g., [18], for details. When the tra-
jectories are incomplete, the observation matrix misses sev-
eral entries and the challenge in robustly recovering rigid
structure from motion is computing its optimal completion,
according to the rank constraint, see, e.g., [13, 10, 14, 17].
We thus used our approach to complete this kind of rank
constrained observation matrices. Note that the patterns of
missing entries that model occlusion, i.e., patterns leading
to incomplete trajectories such as the ones illustrated in Fig-
ure 2, are easily arranged in a Young-diagram format, such
as the one illustrated in expression (20), by performing ad-
equate row and/or column permutations.

As discussed in the paper, our method computes the val-
ues of the missing entries that globally minimize the spec-
tral norm of the matrix of residuals, or, in this case, the com-
pletion that has the 5th singular value, σ5, as small as pos-
sible. We have tested the proposed completion procedure
with several scenarios: number of feature points and num-
ber of images from 10 to 100; different patters of missing

entries, whose percentages varied from 20% to 80%; sev-
eral sets of 3D point locations, within a sphere that spanned
the simulated field of view; and several values for camera
parameters. The impact of the noise level is discussed in
the following subsection.

In all the experiments, we obtained complete trajectories
very similar to the ground truth. Figure 3 illustrates this ev-
idence for the data in Figure 2, which corresponds to a sce-
nario with 30 images, 15 points, and ' 60% missing data.
The top image shows the complete trajectories that were re-
covered by our algorithm. They are visually indistinguish-
able from the ground truth trajectories, i.e., the trajectories
that would be observed if there was no occlusion, which are
shown in the bottom image of Figure 3. Naturally, by pro-
cessing complete trajectories it is possible to recover more
accurate 3D models than the ones that would be obtained by
using suboptimal strategies to deal with incomplete ones.
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Recovered trajectories
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Ground truth trajectories

Figure 3. Top image: estimate of the complete trajectories that are
partially observed in Figure 2. These were recovered by using our
algorithm to compute the optimal completion of the corresponding
observation matrix. Bottom image: Ground truth.
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6.2. Robustness to noise

Our algorithm computes the matrix completion that
globally minimizes the spectral norm of the matrix of resid-
uals. However, the reader may wonder if this completion is
close to the one minimizing the Frobenius norm, which is
the cost function that arises when the problem is formulated
as a maximum likelihood estimation, under white gaussian
noise. To make this comparison, since there is not a globally
optimal algorithm to minimize the Frobenius norm, we per-
formed several experiments that consisted in running our al-
gorithm with white gaussian noisy data and then providing
its output as an initialization to an iterative (locally) optimal
refinement of the Frobenius norm, e.g. [9, 10].

The first evidence we got is that the refinement algo-
rithms, when initialized by our spectrally optimal comple-
tion, converged to the global minimum of the Frobenius
norm, in few iterations, at every run (although we do not
know this minimum a priori, we may guess it was cor-
rectly computed by comparing the final value of different
runs with the same data and making sure the error was small
enough when compared to the noise level). Naturally, this
did not happen when the refinement was initialized in a dif-
ferent way, e.g., with a random guess, which lead frequently
to local minima of the Frobenius norm.

Furthermore, we noticed that the completion provided
by our algorithm consisted in a very good approximation
to the one minimizing the Frobenius norm. Figure 4, ob-
tained by performing 1000 runs with noisy observations of
a 40 × 30 rank 4 matrix with 50% missing entries, plots
the approximation errors (mean square error of the entries
of the estimated rank constrained matrix), as functions of
the noise standard deviation. We used signal-to-noise ratios
typical of what can be expected in structure from motion
(the values of the matrix entries are in [−100, 100] and the
noise standard deviation ranges from 0 to 2).

We conclude that, although our completion was derived
as being optimal according to the minimization of the spec-
tral norm of the residuals, i.e., the minimization of σ5 in the
case of the experiments of Figure 4, it is simultaneously a
very good approximation to the maximum likelihood esti-
mate, in a white gaussian noise observation model. In fact,
the entry-wise mean square error of our completion (solid
line in the plot of Figure 4) is almost indistinguishable from
the one obtained by refining the estimate trough the locally
optimal refinement of the Frobenius norm (dashed line).

6.3. Young-wise iterative optimization

We now illustrate the behavior that can be expected of
iterative algorithms based on the block-wise decomposition
suggested in Section 5. Inspired by the structure from mo-
tion application, we used matrices with patterns of missing
entries composed by two Young diagrams, such as the one
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Figure 4. Mean square error of the estimated rank deficient ma-
trix, from incomplete noisy observations. The (global) spectrally
optimal solution provided by our algorithm (solid line) is almost
indistinguishable from the one that (locally) minimizes the mean
square error (dashed line).

illustrated in Section 5. We then performed the alternate
completion that, at each step, minimized σ5 with respect to
one of the Young-diagram blocks of missing entries. The
plots in Figure 5 represent the evolution of the cost, i.e., the
spectral norm of the residuals, i.e., σ5, across the iterations,
for two typical situations.

The plots in Figure 5 show that, as expected, the spec-
tral norm of the residuals, measured by σ5, decreases along
the iterations. However, one of two very distinct situations
may happen: while, in the top plot, the spectral norm of
the residuals stabilizes at a high value, in the bottom one,
it converges to a very small error (note that, in both plots,
the ordinate at which the small circle is placed corresponds
to the true value of the 5th singular value of the (complete,
noiseless) matrix).

Naturally, this behavior is due to the only block-wise op-
timality of the alternate completion. In fact, although each
step computes the optimal completion for the corresponding
block, the overall algorithm may be lead to a local minimum
of the spectral norm, as it happens in the top plot of Figure 5.
Depending on the initialization, the overall algorithm may
also converge to the global optimum, as in the bottom plot.
In all our experiments, we randomly initialized the process,
i.e., we just filled the unknown entries in one of the Young
diagrams with random guesses.

7. Conclusion
We have presented an efficient approach to the computa-

tion of the optimal factorization of an incomplete observa-
tion matrix. The only restriction is that the pattern of miss-
ing entries must be described by a so-called Young diagram.
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Figure 5. Typical behaviors of block-wise iterative optimization.
The plots show the non-increasing evolution of the cost (i.e., the
singular value σ5 of the incomplete matrix) along the iterations.
While the top plot illustrates the convergence to a local minimum,
the bottom one shows a successful experiment (the circle marks
the singular value σ5 of the noiseless (complete) matrix).

Our algorithm finds the optimal completion, in the sense of
minimizing the spectral norm of the residuals, by filling in
the unknown entries in a sequential way.
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