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Abstract

The inference of specular (mirror-like) shape is a par-
ticularly difficult problem because an image of a specu-
lar object is nothing but a distortion of the surrounding
environment. Consequently, when the environment is un-
known, such an image would seem to convey little informa-
tion about the shape itself. It has recently been suggested
(Adato et al., ICCV 2007) that observations of relative mo-
tion between a specular object and its environment can dra-
matically simplify the inference problem and allow one to
recover shape without explicit knowledge of the environ-
ment content. However, this approach requires solving a
non-linear PDE (the ‘shape from specular flow equation’)
and analytic solutions are only known to exist for very con-
strained motions.

In this paper, we consider the recovery of shape from
specular flow under general motions. We show that while
the ‘shape from specular flow’ PDE for a single motion is
non-linear, we can combine observations of multiple specu-
lar flows from distinct relative motions to yield a linear set
of equations. We derive necessary conditions for this pro-
cedure, discuss several numerical issues with their solution,
and validate our results quantitatively using image data.

1. Introduction

Shape inference is one of the hallmarks of computer vi-
sion, and the automatic inference of shape has been a key
research problem in image understanding since the incep-
tion of the field. One important visual cue that is exploited
by humans is specular reflection. Specular (mirror-like) sur-
faces are abundant in both natural and man-made environ-
ments, and specular reflections often provide powerful in-
formation about surface shape (Fig. 1).

Despite the apparent utility of specular reflections, com-
putational analysis of specular objects has received limited
attention. This is likely due to the seemingly arbitrary rela-
tionship between an object’s shape and the image it induces.

Indeed, since the induced image is a distorted reflection of
the environment, it is possible to create essentially any im-
age from a given specular surface by placing it in a suit-
ably manipulated setting. This is leveraged, for example, in
what is known as anamorphic art—visual art that must be
observed through special mirrors to make sense (Fig. 1d.)

Due to the difficulty of recovering specular shape in un-
known environments, most existing work has: 1) focussed
on recovering only sparse or qualitative shape; 2) consid-
ered limited classes of surfaces; or 3) required calibrated
conditions in which environment structure is known. In
contrast, this paper presents an approach for quantitative re-
construction that specifically targets general surfaces in un-
known real-world environments. It is motivated by recent
work [1, 17] that seeks to recover 3D shape from specular
flow—the optical flow that is induced by relative motion be-
tween a specular object, an observer and their environment.

As shown by Adato et al. [1], observing specular flow
can simplify the reconstruction problem because it decou-
ples the shape and relative motion of the object from the
content of its environment. In fact, one can derive a non-
linear PDE—termed the shape from specular flow (SFSF)
equation—that explicitly relates an observed specular flow
field to the object shape and motion. Then, inferring 3D
shape amounts to solving this equation [1].

The SFSF equation is highly nonlinear, and analytic so-
lutions are known to exist only when the motion is known
and only if it follows a very restricted form [1]. In this pa-
per, we extend this analysis by deriving analytic solutions
for motions that are general and unknown. We show that the
non-linear SFSF equation can be reduced to a set of linear
equations by combining the specular flow fields induced by
several distinct motions. Conveniently, this can be achieved
without having knowledge of the motions a priori. The re-
sult of our work is therefore an ‘auto-calibrating’ approach
for recovering dense specular shape from general, unknown
motions in natural, unknown environments.
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Figure 1. Specular surfaces under dense, (approximately) far-field illumination are frequently encountered in everyday life, in technical applications, and in
the art. The human visual system is often able to infer specular shape under these general conditions, even when the illumination environment is unknown.
Can this task be achieved computationally also?

2. Related work

Inferring specular shape is often simplified by assuming
simple illumination environments, such as a single point
light source. In these conditions, each isolated specular-
ity provides strong constraints on the camera position, the
source position, and the surface normal at the observed
point. When the camera and source positions are known,
for example, the surface normal and the surface depth at the
specular point are both determined up to a one-parameter
family. Constraints of this type have been used computa-
tionally for different tasks, including recognition (e.g., [16])
and surface reconstruction (e.g. [8, 7, 20]). When two
(stereo) views of a specular highlight are available and il-
lumination consists of a known point-source, the apparent
shift of the specular highlight relative to the surface con-
strains the surface curvature [2, 3]. While less information
is available when the position of the source is unknown, two
views of a specular reflection are still sufficient to determine
whether a surface is locally concave or convex [24, 4].

Not unrelated to “specular stereo” are methods that seek
additional surface information from motion under simple
lighting. Relative motion between a specular surface, the
viewer, and the environment induces motion of the observed
specularities, and these specularities are known to be cre-
ated and annihilated in pairs at (or, in the near-field case [5],
close to) parabolic surface points [11, 13]. In theory, this
type of motion can be used facilitate the recovery of a sur-
face profile [24], but existing methods are limited to convex
(or concave) surfaces that are void of parabolics [15].

In addition to these methods that exploit simple light-
ing, a separate class of techniques relies on complex light-
ing that is known and controlled. Using this approach, one
can often obtain higher order surface information such as
curvature [10, 14, 18, 12, 6]. Controlled environments can
also be combined with object motion to yield complete 3D
reconstructions [22, 23].

Real-world illumination environments that are complex
and unknown (Figs. 1a,c) pose additional challenges. Un-

der these conditions, observed specular reflections are dense
and qualitatively different from the sparse or controlled
cases discussed above. while the capability of the human
visual system to handle such complex lighting is still con-
troversial (c.f., see [9] vs. [19]), the computational problem
is clearly ill-posed.

A small number of computational studies have shown
that motion can be exploited to simplify the inference of
specular shapes in unknown complex lighting. Under these
conditions, motion induces a specular flow on the image
plane. Qualitatively, specular flow is known to exhibit sin-
gularities along (or in the near-field case, close to) parabolic
curves [21], and specular flow can also be used to identify a
unique convex surface from a small parametric family [17].
Quantitatively, Adato et al. [1] show that general surfaces
can be recovered from specular flow, but their analytic so-
lution is only applicable when the motion is known and of
a very particular form. In this paper we build on this by
considering closed-form solutions when the motion is both
unknown and relatively unconstrained.

3. Background: Shape from specular flow

This section introduces notation and summarizes the rel-
evant findings of Adato et al. [1], who analyze the rela-
tionship between shape, relative object/environment mo-
tion, and the specular flow they induce.

As shown in Fig. 2, it is assumed that both the viewer
and the illumination environment are far from the observed
surface relative to the surface relief. Hence, the camera is
approximately orthographic and illumination depends only
on angular direction (i.e., the plenoptic function is bivariate
at any instant of time). It is also assumed that the viewer
is fixed relative to the object and that a specular flow is
induced by a motion of the environment. The visible re-
gion of the surface is represented by the graph of a func-
tion S(x, y) = (x, y, f(x, y)) defined over the image plane
XY, and the viewing direction is v̂ = (0, 0, 1). Let n̂(x, y)
be the surface normal at surface point (x, y, f(x, y)), and
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Figure 2. The SFSF problem involves a surface f(x, y) illuminated by a
far-field illumination environment and viewed orthographically to produce
an image I(x, y). The illumination sphere, parameterized by spherical co-
ordinates (θ, φ), moves relative to the camera and object, and this induces
a specular flow on the image plane. (Figure reproduced from [1].)

r̂(x, y) be the mirror-reflection direction at the same point
(see Fig. 2). Also, the far-field illumination environment is
represented by an unknown non-negative radiance function
defined on the sphere of directions, which is parameterized
by spherical angles θ (elevation) and φ (azimuth).

If (θ, φ) are the spherical coordinates of the normal vec-
tor at a point on the surface, then the spherical coordi-
nates of the reflection vector r̂ at that point are simply
(α, β) = (2θ, φ). Since r̂ can also be expressed in terms
of surface properties, it is possible to derive explicit rela-
tionships between the reflection direction and the first-order
derivatives of the surface:

tan α =
2‖∇f‖

1 − ‖∇f‖2
, tan β =

fy

fx
. (1)

As discussed above, the surface is observed under mo-
tion of the environment, and this environment motion field
(EMF) can be represented as a vector field on the unit
sphere:

ω(α, β)
�
= (ωα(α, β), ωβ(α, β)) =

„
dα

dt
,
dβ

dt

«
.

While an EMF could be arbitrary, a reasonable class of
motions to consider is the space of “rigid” rotations, where
the entire environment rotates at an angular velocity ω �= 0
around an axis â defined by spherical angles (α◦, β◦), i.e.,

â = (sin α◦ cos β◦, sin α◦ sin β◦, cos α◦).

Following [1], such an EMF can be written as follows:

ωα(α, β) = ω sin α◦ sin(β◦ − β)
ωβ(α, β) = ω cos α◦ − ω sin α◦ cos(β − β◦) cot α.

(2)

Observing the specular object under an EMF induces a
motion field – termed the specular flow – in the image plane.
When this specular flow is represented as a vector field

u = (u(x, y), v(x, y)) =
(

dx

dt
,
dy

dt

)
,

it can be related to the EMF through the chain rule

ω =
d(α, β)

dt
=

∂(α, β)
∂(x, y)

d(x, y)
dt

= Ju , (3)

where the entries of the Jacobian J can be expressed in
terms of the surface by differentiating Eq. 1. This yields:

J
�
=

∂(α, β)

∂(x, y)
=

0
B@

fxfxx+fyfxy

‖∇f‖·(1+‖∇f‖2)

fxfxy+fyfyy

‖∇f‖·(1+‖∇f‖2)

fxfxy−fyfxx

2‖∇f‖2
fxfyy−fyfxy

2‖∇f‖2

1
CA . (4)

As discussed by Adato et al. [1], Eq. 3 provides a coupled
pair of non-linear, second-order PDEs in terms of the un-
known surface. Thus, given an observed specular flow u
and the known parameters of an EMF (â and ω) one can
theoretically solve this equation to recover the surface. For
this reason, Eq. 3 has been termed the shape from specular
flow (SFSF) equation [1]. Importantly, since the SFSF equa-
tion does not depend on the content of the environment, it
provides the ability to recover (dense) surface shape without
any knowledge of the scene illumination.

A limitation of the SFSF approach from [1], however, is
that is requires the solution of Eq. 3, which is highly non-
trivial. For this reason, the authors only consider a very
special class of environment rotations: those in which the
rotation axis â is aligned with the viewing direction. In this
case, the EMF rotation axis becomes â = (α◦, β◦) = (0, 0)
and the general EMF (Eq. 2) reduces to a constant spheri-
cal vector field ω = (0, ω). If one now defines two auxil-
iary functions that represent the (unknown) surface gradient
magnitude and orientation,

h(x, y)
�
= f2

x + f2
y

k(x, y)
�
= tan−1(fy/fx),

(5)

the SFSF reduces to a particularly simple form:

J̃
(

u
v

)
=

(
0
2ω

)
. (6)

where, for notational convenience, we have defined

J̃
�
=

(
hx hy

kx ky

)
(7)

and the derivatives of h and k are derived directly from Eq. 5

hx = 2(fxfxx + fyfyy) hy = 2(fxfxy + fyfyy)

kx =
fxfxy−fyfxx

||∇f ||2 ky =
fxfyy−fyfxy

||∇f ||2
. (8)

Eq. 6 is a pair of decoupled, linear PDEs in h and k.
Hence, given the specular flow u = (u, v) one can solve
each of these equations in closed form using the method of
characteristics. The characteristics for both equations are
the same, and they correspond to the integral curves of the
specular flow. Once h(x, y) and k(x, y) are known, the sur-
face gradient can be recovered by inverting Eq. 5, and this
can be integrated to recover the surface f(x, y).



4. General Environment Motion

The special case described above – the case of rotation
about the view direction – is important because it enables
closed form solutions. That said, it is extremely ‘acciden-
tal’. One of the main contributions of our paper is to relax
this restriction on â while maintaining the ability to find
closed-form solutions. Our key result is that this can be
done for arbitrary â in the case when the object is observed
under two or more distinct environment motions (EMFs).

We begin by expressing the general EMF in Eq. 2 explic-
itly in terms of the surface and its derivatives. For this we
first note that

cot α = 1−‖∇f‖2

2·‖∇f‖

sin β =
−fy

‖∇f‖

cos β = −fx
‖∇f‖ ,

and substituting these expressions into Eq. 2 we obtain

ωα(α, β) =
ω sin α◦
‖∇f‖ (fy cos β◦ − fx sin β◦)

ωβ(α, β) = ω cos α◦ (9)

+ ω sin α◦
1 − ‖∇f‖2

2 · ‖∇f‖2
(fx cos β◦ + fy sin β◦) .

Using this in conjunction with the auxiliary functions from
Eqs. 5 and 8, we can therefore re-write the SFSF equation
as follows

J̃u = ω sin α◦
„

2(1 + h)(fy cos β◦ − fx sin β◦)

2 cot α0 + 1−h
h

(fx cos β◦ + fy sin β◦)

«
. (10)

At first sight, this expression (Eq. 10) seem to offer little
advantage over the original SFSF equation (Eq. 3). Indeed,
while it has been reduced from second order to first order,
the equations are still coupled and non-linear. Even worse,
it now involves three unknown and coupled functions (h,k,
and f ). As we will see, however, this form is the key to the
multiple flow approach discussed next.

4.1. Two equal-azimuth motions

Consider a specular object viewed under two different
EMFs defined by the two different rotation axes

â1 = (α1, β0)
â2 = (α2, β0)

(11)

and angular velocities ω1 �= 0 and ω2 �= 0, respectively.
Note that â1, â2 and the viewing direction are all in the same
plane, i.e., that the two rotation axes have identical azimuth
angle β0, as is also depicted graphically in Fig. 3. Note that
if either α1 = 0 or α2 = 0 then the corresponding EMF
reduces to the special solvable case of rotation around the
viewing direction. We therefore assume that neither zenith
angle vanishes.

Let u1 = (u1, v1) and u2 = (u2, v2) be the specular
flows obtained due to the first and second EMFs, respec-
tively, and consider the following “normalized” specular
flows ũi for i ∈ {1, 2}

ũi =

„
ũi

ṽi

«
�
=

ui

ωi sin αi
=

„
ui

ωi sin αi
,

vi

ωi sin αi

«
(12)

Since ωi �= 0 and αi �= 0, both normalized flows are well
defined. Rewriting Eq. 10 in terms of ũi we now obtain the
following two SFSF equations for i ∈ {1, 2}

J̃ũi =

„
2(1 + h)(fy cos β◦ − fx sin β◦)

2 cot αi + 1−h
h

(fx cos β◦ + fy sin β◦)

«
.

This equation is significant because most of it does not de-
pend on the arbitrary azimuthal angles α1 and α2. Hence,
by subtracting the equations due to the first and second
EMFs we get

J̃(ũ1 − ũ2) =
“

0
2 cot α1 − 2 cot α2

”
. (13)

Since ũ1 − ũ2 is easily computed from the measured pair
of specular flows, Eq. 13 is a set of two decoupled linear
PDEs in the unknown h and k and the known EMFs. Since
this equation resembles the case of a single EMF around the
viewing direction, it is solvable using the same technique
discussed in Sec. 3.

Eq. 13 implies that a linear combination of the two mea-
sured specular flow gives a SFSF equation of the type ob-
tained for a single EMF around the viewing direction. This
result should not come as a surprise. In fact, Eq. 2 already
suggests that if ω1 and ω2 are two equal-azimuth EMFs
(cf. Eq. 11) then there exist two constants γ1 and γ2 such
that

γ1ω1 + γ2ω2 =

„
0
1

«
, (14)

i.e., that this linear combination is an EMF around the
viewing direction (Fig. 3). Indeed, applying this require-
ment first to ωα(α, β) from Eq. 2 implies that γ1 and γ2

must satisfy

γ1ω1 sin α1 + γ2ω2 sin α2 = 0 ,

a constraint which can be trivially satisfied by the normal-
ization factor used in Eq. 12, i.e.,

γ1 =
1

ω1 sin α1
γ2 = − 1

ω2 sin α2
.

Satisfying also the requirement on ωβ(α, β) is then
achieved by further dividing both γ1 and γ2 by the common
factor (2 cot α1 − 2 cot α2) which appears in Eq. 13.

Exploiting the observation above, we can now rewrite
the SFSF for the special case of rotation around the view-
ing direction (and with angular velocity ω = 1) as a lin-
ear combination of the general SFSF equations due to two
equal-azimuth EMFs

(
0
1

)
=

2∑
i=1

γiωi = J
2∑

i=1

γiui = J̃
2∑

i=1

γiui

2
, (15)

which clearly reduce to Eq. 13 which was developed above.



Figure 3. Two EMFs with rotation axes of equal azimuthal angle. A linear combination of these two vector fields is equal to an EMF around the viewing
direction. Since the SFSF is solvable in the latter case, the specular shape can be recovered after observed under two such EMFs.

4.2. Three arbitrary motions

In the last section we showed that the shape from spec-
ular flow problem can be solved for two general EMFs
that obey one restriction—their azimuthal angle must be the
same. Here we show that this restriction can be eliminated
by using three EMFs.

Consider a specular surface viewed under three different
EMFs defined by the three different rotation axes

âi = (αi, βi) i ∈ {1, 2, 3}
and angular velocities ωi �= 0, i ∈ {1, 2, 3}, respectively.

Let ui = (ui, vi), i ∈ {1, 2, 3} be the corresponding
specular flows observed in the image plane for each EMF
and consider the following “normalized” specular flows ũi

for i ∈ {1, 2, 3}.

ũi
�
=

ui

ωi sin αi cos βi
=

„
ui

ωi sin αi cos βi
,

vi

ωi sin αi cos βi

«

Rewriting Eq. 10 in terms of these definitions we now get
the following three equations

J̃ũi =

„
2(1 + h)(fy − fx tan βi)

2 cot αi
cos βi

+ 1−h
h

(fx + fy tan βi)

«
∀ i ∈ {1, 2, 3}.

Finally, by subtracting proper weighted combinations of
pairs of equations we obtain

J̃

0
@ ũ1−ũ2

tanβ2−tanβ1
− ũ1−ũ3

tanβ3−tanβ1

ṽ1−ṽ2
tanβ2−tanβ1

− ṽ1−ṽ3
tanβ3−tanβ1

1
A =

0
@ 0

λ

1
A (16)

where λ is the following scalar defined from the three rota-
tion axes

λ =
cot α1 cos β2 − cot α2 cos β1

cos β1 sin β2 − cos β2 sin β1

−cot α1 cos β3 − cot α3 cos β1

cos β1 sin β3 − cos β3 sin β1
.

Since the weighted combinations of specular flows is
easily computed from measured data and known EMFs,
Eq. 16 is a set of decoupled linear PDEs in h and k. Once

again, we arrive at an equation that resembles in structure
the case of a single EMF around the viewing direction.
Hence, as in the previous case, this equation can be solved
using the same technique discussed in Sec. 3.

Not unlike the discussion in the case of two equal-
azimuth EMFs, here too the result should not come as a
surprise. Generalizing the discussion from Sec. 4.1, we note
that given any number of EMFs ωi, at least three of which
have mutually distinct rotation axes âi that are unaligned
with the view direction, one can find a set of constants γi

such that the weighted sum

∑
i

γiωi =
(

0
1

)
(17)

is a view-axis EMF with unit angular speed. If the rotation
axes (αi, βi) and angular velocities ωi are known, one can
use Eq. 2 to solve for γi. Then, as in the two EMF case, the
view-axis SFSF can be rewritten as a linear combination of
general SFSF equations due to the general EMFs

(
0
1

)
=

∑
i

γiωi = J
∑

i

γiui = J̃
∑

i

γiui

2
. (18)

This equation then trivially reduces to Eq. 16 and can be
solved using the technique discussed in Sec. 3.

5. Shape recovery under unknown EMFs

The previous section demonstrates that shape can be re-
covered in closed form given its specular flows under two or
more known environment motion fields. A natural question
is whether or not shape can still be recovered in the “uncal-
ibrated case”, i.e., when neither the angular velocities nor
the rotations axes of the input EMFs are known. In this sec-
tion we answer this question in the affirmative. Somewhat
surprisingly, we next show that this requires no additional
assumptions beyond those made so far.

Suppose first that the specular object is observed under
an EMF around the viewing direction, but unlike Sec. 3,
assume that the angular velocity ω is unknown. While they
do not make use of it, Adato et al. [1] point out that for



Figure 4. The auxiliary function k(x, y), i.e., the surface gradient ori-
entation field, integrates to 2Nπ along any closed characteristic, where
N ∈ {0, 1} is determined by the number of times the characteristic inter-
sects parabolic curves on the surface. Shown are several characteristics (in
gray), the k function (red unit-length vector field), and the parabolic curves
(in black) of a particular shape (Fig. 5a). Several characteristics are high-
lighted in different colors. k completes one full revolution along the blue
and red characteristics (zero and eight intersections with parabolic lines,
respectively), but zero revolutions along the green one (two intersections).

integrable surfaces, the SFSF equation provides a constraint
on ω. They note that the linear equation in k shown in Eq. 6
can be written in terms of the unit specular flow field as

û · ∇k =
2ω

||u|| , (19)

and since k is an orientation, the left hand side of this ex-
pression can be interpreted as a curvature measure, or what
they termed the specular curvature. Integrating this cur-
vature along a (closed) characteristic of the function must
yield 2Nπ for some integer N in order to satisfy surface
integrability [1]. Here we further observe that generically,
N would be either 0 or 1, which depends on the number of
times the characteristic intersects parabolic lines. While a
proof is omitted for space considerations, Fig. 4 exempli-
fies that if the characteristic crosses (transversely) parabolic
lines 2M times1 then N = 1 − (M mod 2).

The above observation translates to an algorithm for re-
covering the surface under a view-axis EMF with unknown
velocity since the latter can be computed by

ω =
πH

C
||u||−1ds

(20)

along a closed characteristic C that crosses a parabolic line
2M times, with M odd.

Armed with the ability to recover the angular velocity of
a view-axis EMF from specular flow, we proceed to address
surface reconstruction under multiple unknown EMFs. To-
ward this goal, recall that several of EMFs can be linearly
combined to yield a solvable SFSF of the sort derived in
Eqs. 15 and 18. The key observation is that we can recover

1The number of transversal intersections must be even since for a
smooth surface both curves are closed.

the coefficients γi from the observed specular flows them-
selves, without knowledge of the EMFs. To do so we ex-
ploit the behavior of specular flow fields near the occluding
contour of a smooth surface. Eq. 6 (in fact, its top row) sug-
gests that when the specular flow is induced by a rotation
about the view direction, its integral curves correspond to
iso-contours of gradient magnitude (i.e., h(x, y) from Eq. 5)
It follows, then, that under such an EMF, the occluding con-
tour of the surface is an integral curve of flow, or equiva-
lently, that the specular flow field is everywhere tangent to
the occluding contour. Thus, given a set of two or more
observed specular flows ui, the desired coefficients γi are
those that produce a combined flow u =

∑
i γiui which

satisfies this tangency condition. This tangency constraint
only determines the coefficients up to scale, but since this
scale factor is simply the angular velocity, it can be recov-
ered using the procedure described earlier in this section.

6. Experimental results

As proof of concept, we applied our theoretical re-
sults to data obtained synthetically by placing specular sur-
faces (e.g., Fig. 5a) in far-field illumination environments
(Fig. 5b) and rendering them for a far-field viewer (Fig. 5c).
This provides access to ground truth shape for comparison,
and it also enables us to compute specular flow fields (using
the generative equation of [1]) instead of measuring them
from image data. An example is shown in Fig. 5d.

Given multiple specular flows from (two or three) dis-
tinct EMFs, the “normalized” linear combination was com-
puted (Fig. 5e) by: 1) minimizing the least square error rela-
tive to the tangency condition; and 2) determining the view-
axis angular velocity as described in Sec. 5. The recovered
angular velocity ω and the coefficients γi completely deter-
mine a view-axis specular flow field. Using this flow field as
input, the view-axis SFSF equation (Eq. 18) was solved for
h(x, y) and k(x, y) (and thus the surface) using manually-
provided initial conditions.

Carrying out this reconstruction procedure numerically
requires care. While integration can be accomplished us-
ing standard numerical tools such as Runge-Kutta meth-
ods (e.g., Matlab’s ode45 PDE solver), some preprocess-
ing is necessary to deal with the singularities in specular
flow that are exhibited along parabolic curves. At these
points, specular flow exhibits singularities in both magni-
tude and orientation. Singularities in flow magnitude do
not cause any difficulty when solving Eq. 18. (The equa-
tion in h is homogeneous and is therefore independent of
flow magnitude; the equation in k depends only on inverse
magnitude, which is well-defined everywhere.) To handle
singularities in orientation, we note that parabolic curves
can be localized from the observed flow field because of
the unique behavior there; and once these curves are de-
tected, one can remove the orientation singularities by ap-



propriately ‘flipping’ the flow direction in regions between
pairs of parabolic curves. As example of this procedure is
shown in Figs. 5(e–h), where we have incorporated a com-
putational step that creates a ‘flipping mask’ (Fig. 5g) that
reflects the flow orientation in appropriate regions (Fig. 5h).
By “correcting” the specular flow field in this way, one
can then solve for h(x, y) and k(x, y) using standard nu-
merical tools. A surface recovered using this technique is
shown in Fig. 5i, and to compare this to ground truth, we
report the absolute relative error as a percent of maximum
ground truth surface height. A second example is presented
in Fig. 6.

7. Summary and discussion

This paper addresses the reconstruction of specular sur-
faces in unknown, complex environments based on observa-
tions of relative object/environment motion. Environment
motion induces a specular flow on the image plane, and this
is related to shape through a non-linear PDE (the shape from
specular flow equation). Whereas previous work has con-
sidered a limited class of environment motions (rotations
about the view direction), we relax these restrictions and
demonstrate that closed-form solutions can be found for ar-
bitrary rotations, provided that one observes multiple spec-
ular flows corresponding to distinct environment motions.
We also present a reconstruction procedure that is ‘auto-
calibrating’ in the sense that no a priori information is re-
quired about the environment motions. The combined the-
ory allows the recovery of general, non-convex surfaces in
natural environments with content and relative motion that
are both completely unknown.

As in the work of Adato et al. [1], this paper assumes
that specular flow is given as input, and it does not address
the problem of estimating specular flow from image data.
This is an important direction of future work, and it is likely
that some of the numerical tools developed here may prove
useful for this task as well.

Finally, this paper considers the case in which the camera
and object move as a fixed pair relative to a distant environ-
ment. Another important direction to pursue in the future is
to consider the more natural case in which the object (resp.
viewer) moves relative to a fixed camera (resp. object) and
environment. This is effectively what a human does when
holding a specular surface in their hand and investigating it
under small rotations. The analysis presented in this paper
is likely applicable to this case as well, and it suggests that
when shape is the desired output, observations of an object
under multiple distinct rotations may be beneficial.

Acknowledgments

Funds for this project are being provided by the US Na-
tional Science Foundation under grant IIS-0712956. O.B.S

and Y.A. also thank the generous support of the Frankel
Fund and the Paul Ivanier Robotics Center at Ben-Gurion
University. Additional funding for T.Z. and Y.V. was pro-
vided by the US National Science Foundation under CA-
REER award IIS-0546408.

References
[1] Y. Adato, Y. Vasilyev, O. Ben-Shahar, and T. Zickler. Toward a the-

ory of shape from specular flow. In ICCV, 2007.
[2] A. Blake. Specular stereo. In Proc. of the Int. Joint Conf. on Artif.

Intell., pages 973–976, 1985.
[3] A. Blake and G. Brelstaff. Geometry from specularities. In ICCV,

1988.
[4] A. Blake and H. Bülthoff. Does the brain know the physics of spec-

ular reflection? Nature, 343:165–168, 1990.
[5] A. Blake and H. Bülthoff. Shape from specularities: Computation

and psychophysics. Philosophical Transactions: Biological Sci-
ences, 331(1260):237–252, 1991.

[6] T. Bonfort, P. Sturm, and P. Gargallo. General specular surface trian-
gulation. In Proc. ACCV, pages 872–881, 2006.

[7] O. Drbohlav and M. Chantler. Can two specular pixels calibrate pho-
tometric stereo? In ICCV, pages 1850–1857, 2005.
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Figure 5. Example of specular shape reconstruction of a general specular surface observed under three arbitrary EMFs defined by the rotation axes
â1 = (120◦,−66◦), â2 = (22.5◦, 16◦), â3 = (30◦, 36◦). (a): The original surface f(x, y) =

p
4 − x2 − y2 − cos (2x − 2) − sin 2y.

This surface includes multiple maxima and several elliptic and hyperbolic regions separated by parabolic curves. (b): The illumination environment (mapped
to a disk of directions) in which the specular surface was observed. (c): One snapshot of the specular surface obtained under the first EMF. (d): A typical
specular flow obtained from one of the EMFs. Flow magnitude is color coded while direction is shown by the superimposed unit-length vector field. (e):
The weighted specular flow obtained from three different EMFs as specified in Eq. 16. (f): Detail of the weighted specular flow near a parabolic curve. Note
the singularities in both magnitude and direction. (g): Mask used to eliminate orientation singularities in the weighted specular flow. Flow in the gray region
was direction-reversed. (h): ‘Corrected’ weighted specular flow after direction flipping. (i): Reconstructed surface. (j): Absolute relative reconstruction
error. Reported values are percent of maximum input surface height.

a b c

Figure 6. A second example using the surface f(x, y) =
p

4 − x2 − y2 − cos(3x − 6) − 2 sin 2y. Note that this surface is significantly more complex
from the previous one in the sense of having more parabolic lines as well as multiple maxima, minima, and saddle points. (a): The original surface. (b):
The “corrected” weighted specular flow used in the integration. (c): The recovered surface.




