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Abstract
To correctly estimate the camera motion parameters and reconstruct the structure of the
surrounding tissues from endoscopic image sequences, we need not only to deal with outliers (e.g.,
mismatches), which may involve more than 50% of the data, but also to accurately distinguish
inliers (correct matches) from outliers. In this paper, we propose a new robust estimator, Adaptive
Scale Kernel Consensus (ASKC), which can tolerate more than 50 percent outliers while
automatically estimating the scale of inliers. With ASKC, we develop a reliable feature tracking
algorithm. This, in turn, allows us to develop a complete system for estimating endoscopic camera
motion and reconstructing anatomical structures from endoscopic image sequences. Preliminary
experiments on endoscopic sinus imagery have achieved promising results.

1. Introduction
Endoscopic anterior skull based surgery has the potential to significantly reduce patient
morbidities associated with operating on the undersurface of the front third of the brain. Of
the anterior skull based approaches, the endoscopic transnasal approach to the sphenoid
sinus, which is a small structure and is surrounded by major blood vessels, is most mature
and utilized. Surgery in this area is technically challenging and requires an accurate
appreciation of the patient’s anatomy. Failure to correctly interpret a patient’s anatomy can
result in catastrophic outcomes.

Traditional navigation systems [1,2] rely on an external tracking system and fiducial or
anatomical landmarks for registration. These systems have many fundamental limitations [3]
in terms of accuracy and flexibility with the workflow in the operating room. Another
approach to surgical navigation systems is to directly register endoscopic images to the
patient anatomy [3,4,5]. However, this is nontrivial because endoscopic images involve a
number of challenges such as low texture, abundant specularities and extreme illumination
changes from the light source attached to the endoscope, and blurring from the movement of
the endoscope. These difficulties may result in a number of outliers (including both feature
localization errors and mismatches) which can not be easily handled by traditional robust
statistical methods such as LMedS [6] and RANSAC [7].

To recover the surface structure of surrounding tissues and further to register this
information against a preoperative volumetric image (such as CT or MRI), we need not only
to accurately estimate the motion of an endoscopic camera from endoscopic image
sequences but also to correctly distinguish inliers from outliers. This can be realized by
employing advanced techniques from robust statistics.
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1.1. Background on Robust Statistics
Various robust estimation techniques have appeared in the literature during the last decades.
Maximum-likelihood estimators (M-estimators) [8] minimize the sum of symmetric,
positive-definite functions of residuals with a unique minimum at zero. The Least Median of
Squares (LMedS) estimator [6] minimizes the median of squared residuals. However, it has
been shown that the breakdown points of M-estimators and LMedS are no more than 50%,.
Chen and Meer [9] modified the cost function of the M-estimators to create a projection
based M-estimator (pbM-estimator). The authors of [10] and [11] further improved the
performance of the pbM-estimator by modifying its objective function. All of these
modifications are concentrated on the projection pursuit paradigm [9]. RANSAC [7] and its
variant MSAC [12] can resist the influence of more than 50% outliers. However, the
performance of RANSAC and MSAC depends on a user-specified error tolerance (or the
scale of inliers), which is not known a priori in many practical environments. MUSE [13],
MINPRAN [14], ALKS [15], RESC [16] and ASSC [17] can deal with more than 50%
outliers. However, MUSE needs a lookup table for the scale estimator correction.
MINPRAN and ALKS are computationally expensive and cannot effectively deal with
multiple structures with extreme outliers. RESC needs the user to tune many parameters.
ASSC weights all inliers equally, thus it is less efficient.

The main contributions in this paper are: (1) we employ kernel density estimation techniques
to create a new robust estimator, Adaptive Scale Kernel Consensus (ASKC) which can
simultaneously estimate both the model parameters and the scale of inliers. ASKC can be
treated as a generalized form of RANSAC [7] and ASSC [17] (see Section 2 for details); (2)
we propose an effective feature tracking approach; and, (3) we integrate the robust ASKC
estimator and the feature tracking approach into a complete system for estimating
endoscopic camera motion and performing surface reconstruction of sinus anatomy from
endoscopic image sequences. Experiments show our system has achieved promising results.

2. The Adaptive Scale Kernel Consensus (ASKC) estimator
2.1. The kernel density estimation

Given a model parameter estimate θ̂, the fixed bandwidth kernel density estimate with the
kernel K(.) and a bandwidth h can be written as [18]:

(1)

where {ri,θ̂}i=1,…,n is the residuals and n is the number of data points.

An alternative is to select a different bandwidth h = h(θ̂) ≡ hθ̂ for each value of θ̂. The
variable bandwidth kernel density estimate can be written as:

(2)

In this paper, we consider two popular kernels, the Epanechnikov kernel KE(r) and the
normal kernel KN(r):
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(3)

(4)

The Epanechnikov kernel yields the minimum asymptotic mean integrated square error
(AMISE) measure. However, the Epanechnikov profile is not differentiable at the boundary.
As pointed out by the authors of [19], the path of the mean shift procedure employing a
normal kernel follows a smooth trajectory.

Although we are interested in investigating the properties of ASKC with the Epanechnikov
kernel (termed as ASKC1) and the normal kernel (termed as ASKC2) in this paper, our
method can employ arbitrary kernels.

2.2. Estimating the bandwidth/the scale of inliers
As noted above, the bandwidth h is a crucial parameter in kernel density estimation. An
over-smoothed bandwidth selector with the scale estimate σ̂θ is suggested in [20].

(5)

It is recommended that the bandwidth is set as chĥθ(0< ch <1) to avoid over-smoothing
([20], p.62).

Robust scale estimators (such as the median [6], the MAD [9], or the robust k scale
estimator [15]) can be employed to yield a scale estimate. The authors of [17] have shown
that TSSE, which employs the mean shift and the mean shift valley procedure, can
effectively estimate the scale under multiple modes. The valley closest to zero detected by
the mean shift valley procedure on the ordered absolute residuals can be a sensitive point to
determine the inliers/outliers dichotomy.

In our method, we use a procedure similar to TSSE. We use a robust k scale estimator (the k
value is set to 0.1 so that at least 10 percent of the data points are included in the shortest
window) to yield an initial scale estimate. In [17], the authors use the Epanechnikov kernel
for both the mean shift and the mean shift valley approaches. This can be different in our
case when we use different kernels.

Figure 1 shows the procedure of the TSSE-like scale estimator. When the model parameter
estimate θ̂ is incorrect, the detected valley is far away from the origin and the kernel density
estimate at the origin is lower. In contrast, when the θ̂ estimate is correct, the residual value
corresponding to the detected valley is closer to the origin and the kernel density at the
origin is higher.
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2.3. The ASKC estimator
We assume that inliers involve a relative majority of the data, i.e., inliers may involve less
than 50% of the data but they involve more data points than structured pseudo-outliers. Our
method considers the kernel density at the origin point as its objective function. Given a set
of residuals {ri,θ ̂}i=1,…,n subject to θ̂, the objective function of ASKC is:

(6)

The ASKC estimator can be written as:

(7)

If we consider the RANSAC estimator [7]:

(8)

and the ASSC estimator [17]:

(9)

where n ̂θ̂ is the number of inliers within an error tolerance (for RANSAC) or the scale of
inliers (for ASSC) and Ŝθ̂ is the estimated scale of inliers given a set of residuals relative to
θ̂, we can see that RANSAC and ASSC are actually special cases of ASKC with the uniform
kernel:

(10)

where C is a normalization constant.

More specifically, RANSAC is one case of ASKC with the uniform kernel and a fixed
bandwidth, and ASSC is another case of ASKC with the uniform kernel and a variable
bandwidth. However, the efficiency of the uniform kernel is low as it weights all inliers
equally.

To get the solution of equation (7), we need to sample a set of candidates. We can employ a
random sampling scheme [6, 7], or a guided sampling technique [21].

Figure 2 shows a histogram of ASKC scores (equation 6) computed from 10000 random
samples from the data in Figure 1 (a). It shows that most of the samples have small score
values which means that the samples are most likely contaminated with outliers. To improve
the computational efficiency, it is not necessary to run the TSSE-like procedure for all
samples. We only run the TSSE-like procedure for the samples with high ASKC scores.
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With this strategy, only about 7% of the 10000 samples are further processed with the
TSSE-like procedure.

2.4. The ASKC procedure
The procedure of the ASKC estimator is shown in Figure 3. In step 3, the purpose using data
other than the sample candidate is to avoid extreme low scale estimates. In step 5, an
additional TSSE-like procedure may refine the scale estimate for heavily contaminated data.

2.5. The performance of ASKC
In this subsection, we test the performance of the ASKC estimator employing the
Epanechnikov kernel (ASKC1) and the normal kernel (ASKC2) and we compare the
performance of ASKC1/ASKC2 with those of several other robust estimators (ASSC,
RESC, and LMedS).

In the first example, we generate three lines (each line contains 40 data points) and 380
random outliers. We apply the robust estimators to sequentially extract all three lines. As
shown in Figure 4, both RESC and LMedS fail to extract any line. ASSC extracts one line
but fails in two. ASKC1/ASKC2 successfully extract all three lines.

In the second example, we use 3D data. There are 500 data points including 4 planes (each
contains 50 data points) and 300 randomly distributed outliers. Likewise, we sequentially
extract all planes with the robust estimators.

Figure 5 shows that ASKC1/ASKC2 correctly extract all planes. In contrast, RESC succeeds
on 2 planes while ASSC succeeds on 3. LMedS fails to extract any plane.

3. Structure and motion recovery with ASKC
We now consider a camera observing a 3D point X on a surface from two camera positions,
the point X will project to two image locations x1 = (u1,v1,1)T and x2 = (u2,v2,1)T. The
following condition holds [22]:

(11)

where 1 and 2 are respectively the intrinsic camera matrices corresponding to the two
images. [Γ]x is the skew matrix of the translation vector Γ and R is the rotation matrix.

The essential matrix E=[Γ]xR encodes the motion information of the camera. Given the
camera matrices, the essential matrix E can be estimated using the nonlinear five-point
algorithm [23]. The camera motion (R and Γ ) can be recovered from E by the Singular
Value Decomposition (SVD) approach [22] and the translation can only be estimated up to a
scale factor (we use Γ̃ to represent the estimated scaled translation vector and Γ = λΓ̃). The
scale λ can be recovered by registering the reconstructed 3D model to a pre-operative CT
scan [3].

3.1. Feature detection and matching
To estimate the motion parameters of a camera between a pair of images, we need to
robustly detect features in the images and then match these features. We employ the SIFT
feature detector [24] in our method. To find the matches between feature points, we use the
SVD matching algorithm [25]. The reason that we employ the SVD matching algorithm
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rather than the SIFT matching function [24] is that we have found that the SVD matching
approach can return more correct matches.

Figure 6 shows one example where ASKC can correctly estimate the epipolar geometry and
the scale of inliers, and select most correct matches even when outlier percentage is larger
than 70%.

3.2. SIFT feature tracking
We need to track SIFT features through a video sequence to derive the projection matrix at
each frame and further recover the structure. To track a set of SIFT features {Si}i=1,…,m’, we
maintain a feature list ℒ = {li}i=1,…,m' = {ui, vi, wi, si}i=1,…,m' which records, for each
frame, the feature locations (ui, vi), the number of the frames that a feature is continuously
tracked (wi), and the status (si) of each feature. For the Fth frame, we also maintain a chain

matrix , to record all past locations
(trajectories) of each tracked feature. The SIFT features at the frames F and F−1 are

robustly matched and we can obtain newly selected matches . The status

of each SIFT feature  may have three possibilities: (1) “active”, (2) “inactive”, and (3)
“new”.

(1) If a feature  of the match  has a correspondence with

 in the feature list LF−1, the status of  in the list LF is
labeled as “active” and . In this case, the location  is updated by the image

coordinates  is updated with .

(2) If there is no correspondence between  is labeled as “inactive” and
. We set . When the number of times that the value of  continuously remains

zero is larger than a threshold, we assume the feature is out of view and it is removed from
the list ℒF and the chain matrix F.

(3) If there is no correspondence between , we add the new feature

 to LF and  is labeled as “new”. We set

 is initialized with  and the
value of m’ is update (m′=m′+1).

Figure 7 summarizes the procedures of the SIFT feature tracking algorithm. The trajectories
of the tracked SIFT features on an endoscopic sinus image sequence are shown in Figure 8.
We can see that most significant SIFT features are tracked. Even when the image is
seriously blurred, there are still sufficient SIFT features tracked.

3.3. Structure recovery from endoscopic images
We assume a calibrated camera is used and the optical distortion is removed by undistortion
[27].

Let Xi = (Xi, Yi, Zi,1)T be a 3D point in the world system. The 3D point Xi is projected to an
image point  at the frame F by a 3×4 projection matrix PF. We have:
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(12)

Let the first camera be at the center of the world coordinate, we have:

(13)

where 1RF and 1ΓF are respectively the rotation and the translation of the camera at the Fth

frame relative to those of the camera at the first frame. Note: The camera matrix  of the
endoscope remains fixed throughout the sequence.

At the beginning, the structure is initialized using two selected frames through triangulation
[22].

For a new frame F, we relate it to its previous frame F − 1. Assuming we have known PF−1
= [1RF−1 | 1ΓF−1] at the frame F−1, PF can be written as:

(14)

Let:

(15)

From equations (12), (14) and (15), we can derive:

(16)

If we define the following:

(17)

We can calculate the scale value λF by:

(18)

However, as both the feature’s location {xi} and the 3D points may be in error, we estimate
λF in a robust way:
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(19)

where  and hj is estimated from equation (5) with the robust k scale
estimator.

After P̂F is estimated, the 3D points {Xi} having correspondences to the tracked SIFT
features are refined:

(20)

Newly appearing 3D points are initialized and added to the structure. Figure 9 gives an
outline of the reconstruction algorithm.

4. Experiments
4.1. Data Collection

We collected endoscopic sinus image data on a cadaverous porcine specimen. Images were
captured using a Storz Telecam, 202212113U NTSC with a zero degree rigid rod monocular
endoscope, 7210AA. An external tracking system (Optotrack, Northern Digital Corp.
Waterloo) was used to measure and record the motion of the endoscope during the
procedure of image acquisition and we use the Optotrack motion data as the ground truth to
which the estimated endoscopic motion was compared. Images from a standard optical
calibration target were also recorded using the endoscope before the data collection was
performed. We perform an offline calibration [26] of the endoscope using a Matlab Camera
Calibration Toolkit [27].

4.2. Motion estimation
To evaluate the performance of our system, first, we compare our proposed robust estimator
ASKC (ASKC1/ASKC2) with five other robust estimators (LMedS, MSAC, RANSAC,
RESC and ASSC) in motion estimation. Following [12], we used a median scale estimator
for MSAC. For RANSAC, we specify the error tolerance value with which optimal results
are achieved.

To get quantitative results, we apply the methods to one hundred pairs of endoscopic sinus
images. The distance between the positions of the endoscopic camera in each pair of images
is larger than 1mm. To measure the accuracy of the motion estimation, both translation error
and rotation error are tested. We use a formula similar to that of [28].

Each of the methods is run for the 100 pairs of images. The median error values, the mean
error values and the standard variances of the estimate errors in translation and rotation are
used to evaluate the performance of the methods.

From Table 1, our methods (ASKC1/ASKC2) achieve the most accurate results among the
comparative methods. LMedS and MSAC achieve the worst results as the median scale
estimator is not robust to more than 50% outliers. RANSAC with a user-specified error
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tolerance achieves better results than LMedS and MSAC, but worse than the rest. This is
because RANSAC requires different error tolerance values for different image pairs and it is
hard to find a global optimal value. The results of ASSC are better than those of RESC but
less accurate than those of ASKC1/ASKC2. Between ASKC1 and ASKC2, ASKC2
outperforms ASKC1 in the translation estimation while ASKC1 is slightly better in rotation
estimation.

4.3. Structure reconstruction
We test our reconstruction algorithm with a sinus image sequence including 130 frames with
the frame size of 640×480. The endoscope performed several movements (sideways,
forward, and backward) during the acquisition of the image sequence. The image sequence
was digitally captured at a rate of roughly 30 frames per second. As a result, the baselines
between the consecutive frames are too close together which results in ill-conditioned
epipolar geometry estimation. To avoid this problem, we only consider a set of key frames
that are far enough apart for the motion and structure recovery.

We use the reconstruction algorithm proposed in subsection (3.3) to recover the structure of
the sinus. We choose to use ASKC2 in the system but ASKC1 can also be employed in the
system.

Figure 10 shows the reconstruction results on the sinus image sequence. As we can see the
main structure of the surrounding tissues of the sinus is recovered by our system. In
comparison, when we use the LMedS estimator and estimate the projection matrices
{Pi}i=1,2, …, N by the approach in [29] (we call it as M1), it fails to recover the structure and
most recovered 3D points are clustered in a small area pointed out by the arrow (see the
middle and right column of the bottom row in Figure 10).

5. Conclusions
In this paper, we present a new robust estimator (ASKC) that can tolerate more than 50% (or
even 80%) outliers. We also propose a reliable feature tracking algorithm that can track
features even when images involve significant blurring, illumination changes and geometry
distortion. We integrate ASKC and the feature tracking approach to a complete system for
motion and structure recovery from sinus endoscopic image sequences. The primarily
experiments show that ASKC outperforms several other robust estimators (including
LMedS, MSAC RANSAC, RESC, and ASSC) and our system has achieved promising
results.
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Figure 1.
Simultaneous scale estimate of inliers and outlier detection. (a). The detected peaks and
valleys with incorrect model parameters (b) and correct model parameters (c).
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Figure 2.
The histogram of ASKC scores of 10000 random samples. By way of illustration,
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Figure 3.
The procedure of the ASKC estimator
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Figure 4.
Lines extracted by the robust estimators.
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Figure 5.
Planes extracted by the robust estimators.
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Figure 6.
(a) and (b) a pair of original sinus endoscopic images; (c) the matches obtained by the SVD-
matching algorithm; (d) the matches selected by the ASKC estimator on the left undistorted
image; (e) and (f) the recovered epipolar geometry.
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Figure 7.
Overview of the SIFT feature tracking algorithm.
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Figure 8.
The trajectories of the tracked SIFT features.
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Figure 9.
Overview of the reconstruction algorithm.
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Figure 10.
Top row: the first, middle and last frame of the image sequence. Middle row: the recovered
structure corresponding to the top row. Blue points are the newly recovered 3D points.
Bottom row: (left) another view of the final recovered structure; (middle and right) two
views of the final recovered structure by M1.
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