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Abstract

We present a random field based model for stereo vision
with explicit occlusion labeling in a probabilistic frame-
work. The model employs non-parametric cost functions
that can be learnt automatically using the structured sup-
port vector machine. The learning algorithm enables the
training of models that are steered towards optimizing for
a particular desired loss function, such as the metric used
to evaluate the quality of the stereo labeling. Experimen-
tal results demonstrate that the performance of our method
surpasses that of previous learning approaches and is com-
parable to the state-of-the-art for pixel-based stereo. More-
over, our method achieves good results even when trained
on different image sets, in contrast with the common prac-
tice of hand tuning to specific benchmark images. In addi-
tion, we investigate the impact of graph structure on model
performance. Our study shows that random field mod-
els with longer-range edges generally outperform the 4-
connected grid and that this advantage is especially pro-
nounced for noisy images.

1. Introduction
Stereo is among the most widely studied low-level prob-

lems in computer vision. It is an especially challenging task
due to the inherent ambiguity in pixel matching, which is
further complicated by phenomena such as occlusion and
untextured regions. Random field models [3], which ad-
dress the ambiguity problem by enforcing global consis-
tency using spatial priors, have substantially advanced the
state of the art of stereo vision, as noted in [21, 22]. De-
spite the progress, however, the parameters of most of these
models remain hand-tuned. This is in sharp contrast with
higher-level vision, such as object recognition, where ma-
chine learning is almost ubiquitous. Manually setting the
parameters for low-level vision can be tedious, involving
considerable human effort. This also limits our understand-
ing of the adaptability of models, because of the difficulty
of optimizing models by hand for new environments.

In this paper we present a conditional random field [13]
based model for stereo vision with non-parametric cost
functions, which can be learnt automatically using the struc-
tured support vector machine (structured SVM) [24] with
linear kernels. We choose the discriminative conditional
random field (CRF) over its generative counterpart, the
Markov random field (MRF), because the former avoids
the necessity to define a generative process, which is some-
what difficult to characterize in stereo. For instance it is
common and often desirable to use gradient-adaptive spa-
tial terms, which tend to violate the Markovian indepen-
dence assumptions of generative models. Deviating from
the traditional approach in random field based stereo, we
use non-parametric cost functions to model the node and
clique potentials of the CRF. In addition to providing flexi-
bility in functional forms, this non-parametric approach al-
lows us to express the total cost of the model as the inner
product of a feature vector and a vector of the correspond-
ing costs, where the costs correspond to the parameters of
the model. The negated costs are commonly called “fea-
ture weights” in the machine learning literature. This linear
form of the model enables us to use the structured SVM to
learn the model parameters.1

The structured SVM is a large-margin method for es-
timating parameters, and can be an attractive alternative
to the commonly used maximum likelihood estimator. A
major advantage of the structured SVM, and large-margin
methods in general, is that they take the loss function into
consideration during training. Therefore, the approach can
be used to train different models that specifically target dif-
ferent types of loss. In contrast, the maximum likelihood
method is oblivious to loss; in fact it can be regarded as
always minimizing the expected aggregate 0/1 loss (which
is 0 if the labeling is completely correct and 1 otherwise).
Such a loss function is clearly not optimal for most low-
level vision problems, which usually have pixel-based per-
formance criteria.

The main contribution of this paper is a formulation of
stereo vision in terms of non-parametric CRF models and

1In this work, we only consider structured SVM with linear kernels.
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a technique for training them using the structured SVM.
This approach naturally allows us to learn models using the
kinds of evaluation criteria that are normally used to assess
stereo, such as the number of pixels whose labels are within
1 unit of the correct disparity level [16]. In our experiments
we demonstrate that our method significantly outperforms
other pixel-based stereo methods that have parametric (e.g.
Potts) potentials trained using maximum likelihood. We
also investigate the effect of the underlying graph structure
on model performance, and show that the addition of ex-
plicit non-local interactions generally improves accuracy on
more difficult scenes and especially in the presence of im-
age noise.

1.1. Related Work

Random field models [3] have a long history of appli-
cation in computer vision (e.g. [7, 20]). The classical
Bayesian formulation decomposes the problem into a prior
that enforces spatial consistency of the labels, and a likeli-
hood function that encourages agreement between the labels
and the observed data. For discriminative models, these two
are more commonly called the spatial term and data term
respectively. Inference on random fields with loops is gen-
erally intractable. However, high-quality approximate solu-
tions are relatively easy to obtain owing to the development
of efficient energy minimization methods, some of which
are reviewed in [21, 22].

Commonly used forms of the spatial term are parametric
functions of the disparity difference between neighboring
pixels, which usually model the distribution as a mixture of
a line process and an outlier process (e.g. in [19, 17, 29]).
Common forms include Potts and truncated linear mod-
els. The functions are sometimes gradient adaptive (e.g.
in [15]) to encourage discontinuity in disparity to coincide
with change in image intensity. The data term is typically
the value of some dissimilarity measure, such as the abso-
lute intensity difference.

While these functional forms have been successfully
used to produce good results, some fundamental issues re-
main unaddressed. Reasonable and intuitive as they are,
parametric spatial terms such as the Potts and line-outlier
models make particular assumptions about the form of the
disparity distribution, which may not be true for the data.
Therefore these models can be over-restrictive and fail to
fit the data well. Using any dissimilarity measures di-
rectly as the cost function for the data term is also problem-
atic. While a sophisticated metric, such as the sampling-
insensitive dissimilarity [4], can provide a faithful measure
of image difference and hence a reliable input to the data
term, the metric itself is not necessarily a good cost func-
tion. In our model, the spatial term is a non-parametric
function of disparity difference and discretized image gra-
dient, and the data term is a non-parametric function of dis-

cretized dissimilarity value. While non-parametric stereo
has been studied in many earlier works (e.g. [28, 2]), these
approaches are typically based on ordering transforms and
formulated as purely local methods rather than the global
models that we investigate here.

Learning for stereo vision is a challenging subject. Con-
siderable progress has been made in recent years, largely
owing to the increasing availability of ground truth data.
The work of [12] learns a probability model for matching
errors using the scene structure of the input images. In
[29], an expectation maximization (EM) algorithm is used
to iteratively estimate disparity and re-learn the model pa-
rameters based on the estimate. While these methods have
shown promising results, they do require some initial model
whose parameters still need to be preset. Moreover they are
conducted in a manner different from the standard settings
of machine learning, where there are separate training and
testing data. In these previous works, the model is learned
from the same (unlabeled) data that is to be labeled, and the
parameters are adjusted in order to improve performance.
Our approach, on the other hand, learns the model from la-
beled training data and tests it on unseen inputs, which is a
standard form of supervised training in machine learning.

A recent paper that employs this same supervised learn-
ing paradigm is [15], where a maximum likelihood esti-
mator for the model parameters is obtained via gradient
descent. Computing the likelihood gradient, however, in-
volves the partition function, which is intractable on loopy
graphs. In the aforementioned paper the partition function is
approximated by the mode of the model distribution, which
is obtained using graph cuts (GC) [5]. However the gradient
tends to be noisy due to the approximation, as is observed
in [15], which can lead to poor estimates.

Large margin methods are an alternative to the
maximum-likelihood approach, and were originally intro-
duced in the context of binary classification using optimal
hyperplane separation [25]. The idea was first adapted to
domains with structured output in the framework of max-
margin Markov networks (M3N) [23], where the required
margin is rescaled by the loss of the inferred labeling. Since
the set of linear constraints (of the M3N quadratic program)
is exponential in size, it is replaced with a non-linear con-
straint approximately solvable by linear programming re-
laxation. The method was subsequently applied to sev-
eral low-level vision problems, including segmentation and
terrain classification, demonstrating improvement [1] over
the performance of previous models. Though a remark-
able breakthrough, M3N has its limitation. The linear pro-
gramming formulation places a restriction on the form of
admissible loss functions; more specifically, the per-label
(i.e. per-pixel) loss function must be an indicator and must
return zero if and only if the the inferred label is the exact
same as the ground truth. In particular such a form of loss



function is not well suited to stereo, where the performance
metric typically allows an error range around the true value
(e.g., [16]).

The structured SVM [24] handles the exponential num-
ber of linear constraints in the quadratic program by em-
ploying a cutting-plane method. The algorithm iteratively
finds the most violated constraint, i.e. the labeling with the
smallest cost-less-loss value, and recomputes model param-
eters. The process is repeated until no significantly more
violated constraint can be found. Thus the structured SVM
places no restrictions on the form of loss functions, as long
as the most violated constraint is feasible to compute under
such loss. For random field based stereo, finding the exact
most violated constraint is not tractable due the loopy graph
structure; nonetheless an approximate one can be obtained
using energy minimization techniques. In our work, we use
loopy belief propagation (BP) [6, 14, 27] for this purpose
and show that models trained with the approximate most
violated constraints perform well in practice.

The rest of this paper is organized as follows. We de-
fine our model for stereo matching in Section 2. Section 3
describes the learning method in greater detail, and the ex-
perimental results are presented in Section 4. We conclude
in Section 5.

2. CRF Model for Stereo
We model the problem of disparity labeling as a condi-

tional random field on a grid graph. Hence each node, rep-
resenting a pixel, is connected to its four nearest neighbors
in both the horizontal and vertical direction. Later we will
also formulate models with longer-range connections and
investigate the impact on performance from the modified
graph structure. For ease of presentation, however, we will
start by describing the model defined on the conventional
4-connected grid.

Let V be the set of nodes and E be the set of edges in the
graph. As is well known, the likelihood of a labelingX (i.e.
the disparity map) given the input I decomposes into the
product of maximal clique potentials and node potentials,

p(X|I;θ) =
1

Z(θ)

∏
(u,v)∈E

φθ
uv(xuv, I)

∏
v∈V

φθ
v(xv, I),

(1)
where θ represents the parameters of the model and Z(θ)
is the partition function. The notations xuv and xv de-
note the labeling over clique (u, v) and node v respectively.
Note that the maximal cliques are simply the edges in the
grid, since the graph is pairwise. As is a common prac-
tice, we assume that the distribution is in the general ex-
ponential family with φθ

uv(xuv, I) = exp[−fθ
uv(xuv, I)]

and φθ
v(xv, I) = exp[−gθ

v (xv, I)], where fθ
uv and gθ

v are
cost functions for the spatial and the data terms respectively.
Hence the cost of labeling X , given input I , can be defined

in the negative log-likelihood space as

Eθ(X, I) = − log p(X|I;θ)− logZ(θ)

=
∑

(u,v)∈E

fθ
uv(xuv, I) +

∑
v∈V

gθ
v (xv, I).(2)

This quantity is also commonly referred to as the energy
of the random field, and we will use the words “energy”
and “cost” interchangeably. Since the input I is a con-
stant and the log partition function logZ(θ) does not de-
pend onX , finding a labeling that maximizes the likelihood
p(X|I;θ) is equivalent to finding one that minimizes the
cost Eθ(X, I).

The input for stereo consists of two images I = (IL, IR),
where IL is the one taken by the left camera and IR by
the right. We assume without loss of generality that the
disparity map is always computed for the left camera scene
IL. Since we model occlusion explicitly, the set of labels
include the set of integer disparity levels plus occlusion.

2.1. Spatial Term

The spatial cost fθ
uv is a function of disparity levels at

neighboring pixels u and v as well as the local image gradi-
ent. More specifically,

fθ
uv(xuv, I) = fθ

uv(J(xu, xv),K(u, v)), (3)

(recall from Equation 1 that xuv and xv are the labelings of
the clique (u, v) and the node v respectively) with discrete
valued functions J and K

J(xu, xv) =


xv − xu if neither u nor v is occluded
left occl if u is occluded
right occl if v is occluded
0 if both u and v are occluded

(4)
and

K(u, v) = b|I ′L(v)− I ′L(u)|c. (5)

For fθ
uv we assume that (u, v) is in the horizontal direction,

since the case for vertical direction is entirely analogous. In
K(u, v), I ′L is IL after a small amount of Gaussian smooth-
ing, which is applied to reduce the impact of texture and
noise. In the case of color images, |I ′L(v)− I ′L(u)| is aver-
aged over the color channels.

Since the structured SVM requires the model to
have a linear discriminative function, the cost function
fθ

uv(J(xu, xv),K(u, v)), abbreviated as fθ(J,K), has to
be linear; in other words, fθ(J,K) needs to be expressible
as the inner product of a parameter vector and some feature
vector. This can be achieved using the following form for
the cost function

fθ(J,K) = θf(jk) if J = j and K = k , (6)



where θf(jk) are real valued model parameters. Let
ψuv(j, k) be the indicator function that J(xu, xv) = j and
K(u, v) = k, i.e. it is one if the condition holds and zero
otherwise. Let ψuv(xuv, I) denote the vector whose en-
tries are ψuv(j, k) for each combination of j and k at clique
(u, v). Let θf be the vector that contains the corresponding
parameters θf(jk). Hence fθ

uv can be written as the inner
product of θf and ψuv(xuv, I), i.e.

fθ
uv(xuv, I) = 〈θf ,ψuv(xuv, I)〉 . (7)

For notational convenience we assume that horizontal
and vertical cliques (i.e. edges in pairwise models) share
the same spatial parameters. Below we will discuss the ex-
tension to anisotropic clique potentials, which is straight-
forward. We define the spatial feature vector

Ψf (X, I) =
∑

(u,v)∈E

ψuv(xuv, I). (8)

Hence the total spatial cost (i.e. the first term of Equation 2)
is

Eθ,f (X, I) = 〈θf ,Ψf (X, I)〉 . (9)

When horizontal and vertical cliques have different po-
tentials, we simply have separate parameter and feature vec-
tors for each type of cliques. The overall vectors are just the
concatenations over the different clique types, and hence
the cost is still the inner product of the parameter vector
and the feature vector as in Equation 9. The same extension
also applies directly to the scenario where there are multiple
classes of edges in the graph that may correspond to various
lengths and orientations.

2.2. Data Term

Similar to the spatial cost, the data cost gθ
v is also defined

as a non-parametric function

gθ
v (xv, I) =


cv · θg(k) if v is not occluded and

bδ(v, IL, v − xv, IR)c = k

cv · θg(occl) if v is occluded
(10)

where cv is some constant scalar and δ(v, IL, v − xv, IR)
is the sampling-insensitive dissimilarity [4] between pixel v
in image IL and its match in IR.

As before, let θg be the vector containing all data term
parameters θg(k) (including θg(occl)) and let ψv(xv, I) be
the corresponding vector of indicators for the conditions
in Equation 10. Hence gθ

v is the inner product of θg and
cvψv(xv, I)

gθ
v (xv, I) = 〈θg, cvψv(xv, I)〉 . (11)

Analogous to spatial features, the data feature vector is de-
fined as

Ψg(X, I) =
∑
v∈V

cvψv(xv, I). (12)

We let cv equal the degree of node v, so that the ratio be-
tween the total counts of spatial features and data features
is constant with respect to the number edges. This prevents
potential imbalance between the norms of the spatial and
the data feature vectors when the model has multiple fam-
ilies edges and hence a higher edge-to-node ratio. Thus it
ensures that SVM never places too much attention on one
type of features and not enough on the other.

The total data cost (i.e. the second term of Equation 9) is
also the inner product of the data parameter vector and the
data feature vector,

Eθ,g(X, I) = 〈θg,Ψg(X, I)〉 . (13)

Therefore, the total cost of labeling X given input I is

Eθ(X, I) = 〈θ,Ψ(X, I)〉 (14)

where parameter vector θ = (θT
f ,θ

T
g )T and feature vector

Ψ(X, I) = (Ψf (X, I)T ,Ψg(X, I)T )T are both concate-
nated over the spatial and the data terms. The desired la-
beling under the model is simply the one with minimum
cost.

2.3. Graph Structure with Long-range Edges

In addition to the grid graph, we also explore struc-
tures with long-range edges. In particular, we consider
horizontal and vertical edges that have length 3k for k =
0, 1, 2, · · · ,K − 1. The larger K, the greater the maximum
range of explicit interaction is modeled. Thus the grid graph
is a special case where K = 1. We choose 3 as the base,
since it is the smallest integer for which the random field re-
mains strictly pairwise (i.e. the maximal cliques are still of
size two and thus the same formalization applies). The ex-
ponentially increasing edge length also enables us to model
longer range of interaction at relatively lower computational
expense, compared with earlier models with denser edges
(e.g. [8]).

The cost function in this more general setting is still
the inner product between parameters and features, where
the spatial term vectors are concatenated over each type of
edges. Hence the form of Equation 14 remains valid under
this extension.

3. Parameter Learning

The model parameters are learnt using the structured
SVM [24]. Let ((I(1), X(1)), · · · , (I(n), X(n))) be the
training examples, each of which is an input-output pair.
The structured SVM optimizes for parameters θ by min-
imizing a quadratic objective function subject to a set of



linear soft margin constraints

min
θ,ξ

1
2
‖θ‖2 +

C

n

n∑
i=1

ξi (15)

s.t. ∀i,∀X ∈ X : 〈θ, δΨi(X)〉 ≥ ∆(X(i), X)− ξi

where X is the set of all possible labelings, ξi are the slack
variables associated with each example, and ∆(X(i), X) is
the loss function, which we will define later in this section.
Also δΨi(X) denotes Ψi(X)−Ψi(X(i)) with Ψi(X) be-
ing shorthand for Ψ(X, I(i)), and C > 0 is a constant that
controls the trade-off between margin and training error.
Rearranging the terms of Equation 16 shows that the SVM
objective function is an upper bound on average training
loss (up to a constant factor C), as long as a labeling with
cost no higher than that of the ground truth can be found for
every training example. While this condition is not guaran-
teed due to the intractability of exact energy minimization
on loopy graphs, it is often true in many real-world low-
level vision problems and especially stereo [21].

The apparent difficulty in this formulation is the expo-
nential sized labeling set X . The structured SVM addresses
this problem by replacing it with a collection of finite con-
straint sets Si. Initially all the constraint sets Si are empty
and the parameter vector θ is set to some arbitrary value,
typically all-zeros. At each iteration and for each example
i, the algorithm computes the most violated constraint, i.e.
one with the largest slack ξi, and adds it to the constraint
set Si if it is more violated than those already in the set.
The solution to the quadratic program is then recomputed
and hence θ updated. The algorithm iterates until no new
constraints are added.

Since maximizing ξi is equivalent to minimizing
〈θ, δΨi(X)〉 − ∆(X(i), X) and Eθ(X(i), I(i)) =〈
θ,Ψi(X(i))

〉
is a constant, the most violated con-

straint for example i is just the one with the smallest
cost-less-loss value

X̂ = arg min
X∈X

{
Eθ(X, I(i))−∆(X(i), X)

}
. (16)

For any per-pixel loss function, approximate solutions for
X̂ can be obtained efficiently using energy minimization
techniques. It is worth noting that the structured SVM also
provides several other formulations of the quadratic pro-
gram [24]. However, the version with linear slack penalties
and margin rescaling (Equation 16) is the only one under
which there are known efficient approximation algorithms
for X̂ in stereo.

A challenge for learning non-parametric functions using
the structured SVM is that the parameters, namely the dis-
crete cost function outputs, are treated as independent vari-
ables by the learning algorithm, and hence the learnt cost
functions may have certain characteristics that are unnatural

for the underlying problem. In stereo, this is mainly mani-
fested as fluctuations in the shape of the data cost function.
Though the learnt function does have the expected over-
all trend of increasing with dissimilarity, it is not strictly
monotone as it should be for stereo. We address this prob-
lem by imposing a monotonicity constraint on the data cost
function after training. This is done by setting θg(k) to
min(θg(k), θg(k+1)) in decreasing order of k (k 6= occl, i.e.
occlusion cost is unchanged). In this way, we capture the
domain-specific knowledge without further restricting the
form of the cost function.

We also noticed that the lowest training error is usually
achieved not by the final output of the SVM, but by some
θ produced after one of the intermediate training iterations.
This is not surprising since the SVM objective function is
not the same as training error, even though it is an upper
bound on the loss. One reason to formulate learning as con-
strained optimization of such a bound is that directly mini-
mizing training error is usually not feasible. Also in SVM
theory, minimizing the norm of the learnt parameter vector
(i.e. the first term of the objective function) is equivalent to
increasing the margin [25] and hence guards against over-
fitting. For our stereo learning problem, however, we found
that overfitting hardly occurs and that generalization error is
much more closely correlated with training error than with
the value of the SVM objection function. Therefore, we
choose from all learnt θ vectors (produced after each itera-
tion) the one with the lowest training error as the model pa-
rameter. Parameters learnt in this way are still large margin
estimates since they are obtained through SVM optimiza-
tion. This modified training procedure can be considered as
exploring a subset of the parameter space that has the large
margin properties, and choosing the best instance based on
training performance.

3.1. Loss Functions

The most natural choice of loss function is simply the er-
ror function under which model performance is evaluated.
For stereo this is usually the number of bad pixels in non-
occluded regions (determined by the ground truth), where
a pixel is bad if the disparity estimated by the model dif-
fers from the true disparity by an amount greater than some
threshold r. The conventional choice in stereo is r = 1,
which we use in our work. Hence the loss function is

∆(l) =
∑
v∈V

l(v) (17)

where l is the pixel-wise loss and in the case of standard
stereo evaluation metric it is

lstd(v) =

{
1 if v is bad and not in occluded regions
0 otherwise.

(18)



Both l and ∆(l) take as arguments the ground truth and
the proposed labeling, which are omitted from the notation
above for conciseness. It is easy to see that lstd discour-
ages labeling of occlusion, since every non-occluded pixel
mislabeled as occlusion encounters a loss while there is no
penalty for occluded pixels mislabeled as non-occlusion.
Such a loss function tends to produce models that label very
little or no occlusion, though this is consistent with the goal
of achieving the best performance in non-occluded regions.

We can extend the definition of bad (i.e. mislabeled)
pixel to occluded region. In particular, we consider a pixel
a false negative if it is occluded in the ground truth but not
labeled so by the model; similarly it is a false positive if
the opposite happens. In either case, the pixel is regarded
as mislabeled. We can define a new pixel-wise loss that
is aimed at achieving lower overall error rates by correctly
identifying occluded regions

loccl(v) =


q if v is a false positive
1 if v is otherwise mislabeled
0 if v is correctly labeled

(19)

where constant q adjusts the extent to which occlusion la-
beling shall be encouraged. If q = 1 then ∆(loccl) would
measure the model performance as the number of bad pixels
over the whole scene. For use as an SVM loss function, we
find that a smaller value of 0.06 proves to be a better choice
for improving overall accuracy.

4. Experimental Results
For performance evaluation we train and test our model

mainly on the Middlebury-2005 stereo data set release in
[15], which contains scenes that are more complex and chal-
lenging than the older ones on the Middlebury Stereo Eval-
uation page [16]. Since the stereo benchmark does not la-
bel occlusions, we simply fill in the occluded region by re-
placing the occluded pixel (inferred by the model) with the
disparity of the first non-occluded pixel to its left (or to its
right if it is near the left boundary) when evaluating per-
formance. This is obviously suboptimal and fails to exploit
the full benefit of occlusion labeling; nonetheless, finding
a good extrapolation scheme for occluded regions is be-
yond the scope of this work. For training of all models, we
use Joachims’s SVM-struct [24] with a C value (see equa-
tion 16) of 10−3 that is empirically chosen based on train-
ing error. The outcomes are nevertheless rather insensitive
to the choice of C, and in fact values from 10−4 to 10−1

produce models that are indistinguishable in performance.
We compare our results with several other pixel-based

stereo algorithms [15, 16, 18], and show that our model
achieves a high level of performance. The error rates of our
models are compared with those of [15] whenever possible
(i.e. when the corresponding data is available in [15]). The

Figure 1. Sample disparity maps for stereo scenes Art and Cones
produced by long-range CRF models (K = 3) learnt with loccl

loss function. For “Art” (top), the model is trained on the rest 5
scenes in the same data set; for “Cones” (bottom), the model is
trained on all 6 scenes in the Middlebury-2005 data set (which
contains “Art” but not “Cones”). Occluded regions inferred by the
model are masked in full black.

comparison with [16] and [18], both non-learning based,
is limited to the “Teddy” and “Cones” scenes, since these
algorithms predate [15] and hence no results are reported
on the Middlebury-2005 data. It should be noted that our
method is raw-pixel based and treats stereo as a generic
random field labeling problem, and does not use techniques
such as local support windows, segmentation, or plane fit-
ting (e.g. [11, 26, 30]). Therefore comparison with these
more specialized stereo algorithms is not meaningful. How-
ever, many of these more involved methods use MRF or
CRF models at some stage, and thus our learning technique
should prove useful to further work on such approaches to
stereo.

The results in Table 1 show that our method achieves per-
formance superior to that of [15], which also uses machine
learning. Comparing with the non-learning based meth-
ods, the performance of our learnt models by far surpasses
[16] and is comparable with [18], one of the top-performing
stereo algorithms. This is despite the fact that [18] gener-
ates a second disparity map using the other image of the
stereo pair in order to exploit visibility constraints, while
our models are generic random fields and do not make use
of this property.

Table 2 shows the error rates of leave-one-out cross val-
idation, where for each scene the model is trained on all
the other scenes in the data set. In addition we also train
our model on the 2006 data set from the Middlebury Stereo
website, which has very different characteristics, and test it
on the 2005 data set. As one can see, the performance of
leave-one-out cross validation is close to that of training on



Model \ Scene Art Books Dolls Laundry Moebius Reindeer average Teddy Cones
- Grid (K = 1), lstd loss 14.66 19.12 12.70 19.16 10.88 11.72 14.71 11.34 4.68
- Grid, loccl 15.24 21.13 12.11 17.14 11.28 16.47 15.56 10.92 4.27
- Long-range (K = 3), lstd 12.11 15.68 12.14 15.82 10.80 15.26 13.64 8.89 3.94
- Long-range, loccl 12.69 16.29 12.57 15.79 11.30 15.70 14.06 8.15 3.77

- [15] w/ 2 gradient bins – – – – – – 18† 11.3 10.7
- [15] w/ 6 gradient bins – – – – – – 20 14.5 16.8

- [16] w/ GC (non-learning) – – – – – – – 16.5 7.70
- [18] (non-learning) – – – – – – – 6.47 4.79

Table 1. Performance of models on the Middlebury-2005 data set [15] as well as the “Teddy” and “Cones” scenes from the Middlebury
Stereo Evaluation page [16]. Here the learnt models are trained on all the 6 scenes in Middlebury-2005. The table shows error rates
measured as the percentage of bad pixels, lower is better, calculated in non-occluded regions (as is common). Bold fonts indicate the
lowest error rates among the models being compared, and “–” indicates result not available.

† Read from the plots in Figure 6 – 8 of [15].

Model \ Scene Art Books Dolls Laundry Moebius Reindeer average
Leave-one-out
- Grid, lstd 15.54 20.81 12.83 18.21 11.69 13.04 15.35
- Grid, loccl 15.11 21.97 12.88 18.10 11.13 14.09 15.55
- Long-range, lstd 12.77 17.56 12.40 16.75 11.25 15.41 14.36
- Long-range, loccl 13.49 15.98 12.89 17.06 10.64 18.94 14.83

- [15] w/ 2 gradient bins – – – – 17 14 –
- [15] w/ 6 gradient bins – – – – 13 18 –
Train on Middlebury-2006
- Long-range, lstd 13.60 16.13 13.86 20.65 12.21 17.90 15.73
- Long-range, loccl 14.37 16.79 12.87 17.14 12.84 15.76 14.96

Table 2. Performance of learnt models in leave-one-out cross validation on the Middlebury-2005 data set (top) and performance of models
trained on Middlebury-2006 and tested on Middlebury-2005 (bottom). The error rates are measured in the same way as in Table 1.

the whole data set; moreover, training on a very different
data set yields only slightly higher error rates. This indi-
cates that model and the training method generalize well to
unseen data.

Another observation from the two tables is that when the
models are trained directly using loss functions that encour-
age occlusion labeling (i.e. loccl) they have nearly the same
level of performance as those trained using the evaluation
metric itself as the loss function (i.e. lstd). This demon-
strates that our method is able to handle occlusion without
sacrificing much accuracy in the non-occluded regions. Fig-
ure 1 displays some sample output disparity maps produced
by models trained with loccl loss. One can see that most of
the occluded regions are correctly identified.

Moreover, the figures in both Table 1 and 2 suggest that
models with explicit long-range interactions generally per-
form better than those with only local connections, namely
the grid model (e.g. compare row 1, 2 with row 3, 4). This
indicates that the inclusion of sparse long-range edges does
yield some benefit. To investigate this further, we study
the trends in which model performance degenerates with

Model \ Noise σ 3 5 7 10
Grid 18.84 24.18 32.25 46.44

Long-range 15.55 18.23 21.20 24.20

Table 3. Model performance on noisy stereo input (Middlebury-
2005 data set). The images from the testing scenes are corrupted
by additive Gaussian noise with standard deviation σ. Models are
trained on the original (non-noisy) images with lstd loss. (The sce-
nario for using loccl is essentially the same.) Evaluation is based
on leave-one-out cross validation and the error rates are averaged
over the whole data set.

increasing image noise. This bears practical concern for
stereo, since in real-world situations the input images are
unlikely to be as noise-free as those taken in the lab. In fact,
noise in stereo has been a subject of study in several recent
papers, e.g. [10, 9].

Table 3 shows the percentage error rates of grid and long-
range models on stereo inputs with Gaussian noise. Here
the difference is much more pronounced. The performance
of the 4-connected grid model rapidly declines as the noise
level increases, whereas the one with long range connec-



tions undergoes a much more graceful degradation. Note
that the goal of this comparison is not to develop a new
method for noisy stereo, which is itself a separate research
topic; it is simply shows the advantage of increased robust-
ness of long-range models over the grid under equal condi-
tions.

5. Conclusion
We presented a technique for learning random field

based non-parametric models for stereo using the struc-
tured support vector machine. Experiments illustrate that
our method achieves significantly better performance than
previous learning approaches and moreover is capable of
explicitly labeling occlusion. We also found that models
with long-range interactions generally outperform the grid
model, which has only local connections; the performance
gap becomes more evident as the noise level increases.
Though only applied to stereo, our model is formulated as a
generic random field labeling problem and the learning al-
gorithm makes few assumptions specific to stereo. As such,
it can be adapted to other low-level vision problems and
hence may serve as a useful tool for other research areas.
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