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Abstract

One of the principal bottlenecks in applying learning
techniques to classification problems is the large amount of
labeled training data required. Especially for images and
video, providing training data is very expensive in terms
of human time and effort. In this paper we propose an
active learning approach to tackle the problem. Instead of
passively accepting random training examples, the active
learning algorithm iteratively selects unlabeled examples
for the user to label, so that human effort is focused
on labeling the most “useful” examples. Our method
relies on the idea of uncertainty sampling, in which the
algorithm selects unlabeled examples that it finds hardest
to classify. Specifically, we propose an uncertainty measure
that generalizes margin-based uncertainty to the multi-class
case and is easy to compute, so that active learning can
handle a large number of classes and large data sizes
efficiently. We demonstrate results for letter and digit
recognition on datasets from the UCI repository, object
recognition results on the Caltech-101 dataset, and scene
categorization results on a dataset of 13 natural scene
categories. The proposed method gives large reductions
in the number of training examples required over random
selection to achieve similar classification accuracy, with
little computational overhead.

1. Introduction
Most methods for image classification use statistical

models that are learned from labeled training data. In
the typical setting, a learning algorithm passively accepts
randomly provided training examples. However, providing
labeled examples is costly in terms of human time and
effort. Further, small training sizes can lead to poor
future classification performance. In this paper, we
propose an active learning approach for minimizing the
number of training examples required, and achieving good
classification at the same time. In active learning, the
learning algorithm selects “useful” examples for the user
to label, instead of passively accepting data. Theoretical
results show that active selection can significantly reduce
the number of examples required compared to random
selection for achieving similar classification accuracy (cf.
[4] and references therein). Even though most of these
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results require strict assumptions and are applicable to
binary classification, they serve as a motivation to develop
active learning algorithms for multi-class problems.

The principal idea in active learning is that not all
examples are of equal value to a classifier, especially
for classifiers that have sparse solutions. For example,
consider a Support Vector Machine trained on some training
examples. The classification surface remains the same if all
data except the support vectors are omitted from the training
set. Thus, only a few examples define the separating surface
and all the other examples are redundant to the classifier.
We wish to exploit this aspect in order to actively select
examples that are useful for classification.

The primary contribution of this paper is an active
learning method that i) can easily handle multi-class
problems, ii) works without knowledge of the number of
classes (so that this number may increase with time),
and iii) is computationally and interactively efficient,
allowing application to large datasets with little human time
consumed. For better clarity, comparisons of our method to
previous work are made in a later section after describing
our approach in detail.

Pool-based learning setup

Here we describe pool-based learning, which is a very
common setup for active learning. We consider that a
classifier is trained using a small number of randomly
selected labeled examples called the seed set. The active
learning algorithm can then select examples to query the
user (for labels) from a pool of unlabeled examples referred
to as the active pool. The actively selected examples along
with user-provided labels are then added to the training
set. This querying process is iterative such that after
each iteration of user feedback, the classifier is retrained.
Finally, performance evaluation is done on a separate test
set different from the seed set and the active learning pool.
In this work, we use Support Vector Machines (SVM)
as the primary classifier for evaluation, however, other
classification techniques could potentially be employed.

2. Multi-class active learning
Our approach follows the idea of uncertainty sampling

[2, 7], wherein examples on which the current classifier
is uncertain are selected to query the user. Distance from
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the hyperplane for margin-based classifiers has been used
as a notion of uncertainty in previous work. However, this
does not easily extend to multi-class classification due to the
presence of multiple hyperplanes. We use a different notion
of uncertainty that is easily applicable to a large number
of classes. The uncertainty can be obtained from the
class membership probability estimates for the unlabeled
examples as output by the multi-class classifier. In the case
of a probabilistic model, these values are directly available.
For other classifiers such as SVM, we need to first estimate
class membership probabilities of the unlabeled examples.
In the following, we outline our approach for estimating the
probability values for multi-class SVM. However, such an
approach for estimating probabilities can be used with many
other non-probabilistic classification techniques also.

2.1. Probability estimation
Our uncertainty sampling method relies on probability

estimates of class membership for all the examples in the
active pool. In order to obtain these estimates, we follow
the approach proposed by [13], which is a modified version
of Platt’s method to extract probabilistic outputs from SVM
[16].

The basic idea is to approximate the class probability
using a sigmoid function. Suppose that xi ∈ Rn are the
feature vectors, yi ∈ {−1, 1} are their corresponding labels,
and f(x) is the decision function of the SVM which can
be used to find the class prediction by thresholding. The
conditional probability of class membership P (y = 1|x)
can be approximated using

p(y = 1|x) =
1

1 + exp(Af(x) + B)
, (1)

where A and B are parameters to be estimated. Maximum
likelihood estimation is used to solve for the parameters:

min
(A,B)

−
l∑

i=i

(ti log(pi) + (1− ti) log(1− pi)), (2)

where,

pi =
1

1 + exp(Af(xi) + B)
,

ti =

{
Np+1
Np+2 if yi = 1 ;

1
Nn+2 if yi = −1.

Np and Nn are the number of examples belonging to the
positive and the negative class respectively in the training
set. Newton’s method with backtracking line search can be
used to solve the above optimization problem to obtain the
probability estimates [13].

The primary SVM classifier considered above is binary.
We use the one-versus-one approach (a classifier trained
for each pair of classes) for multi-class classification.
The one-versus-one method for SVM is computationally
efficient and shows good classification performance [10].
Probability estimates for the multi-class case can be
obtained through a method such as pairwise coupling [20].

In order to estimate these probabilities, we first need
binary probability estimates which can be obtained from
the method described above. Assume that rij are the binary
probability estimates of P (y = i|y = i or j,x), obtained
from the method above. In the multi-class case, denote the
probability estimate for class i to be pi. Using pairwise
coupling the problem can be formulated as

minp
1
2

∑k
i=1

∑
j,j 6=i(rjipi − rijpj)2,

subject to
∑k

i=1 pi = 1, pi ≥ 0,∀i,

where k denotes the number of classes. The above
optimization problem can be shown to be convex and
thereby admits a unique global minimum. It can be
solved using a direct method such as Gaussian elimination,
or a simple iterative algorithm. We use the toolbox
LIBSVM [3] that implements the methods described above
for classification and probability estimation in the multi-
class problem.

In the following, we propose two methods for
uncertainty sampling based active learning using class
membership probability estimates.

2.2. Entropy measure (EP)
Each labeled training example belongs to a certain class

denoted by y ∈ {1, . . . , k}. However, we do not know
true class labels for examples in the active pool. For each
unlabeled example, we can consider the class membership
variable to be a random variable denoted by Y . We
have a distribution p for Y of estimated class membership
probabilities computed in the way described above. Entropy
is a measure of uncertainty of a random variable. Since we
are looking for measures that indicate uncertainty in class
membership Y, its discrete entropy is a natural choice. The
discrete entropy of Y can be estimated by

H(Y ) = −
∑k

i=1 pi log(pi).
Higher values of entropy imply more uncertainty in the
distribution; this can be used as an indicator of uncertainty
of an example. If an example has a distribution with
high entropy, the classifier is uncertain about its class
membership.

The algorithm proceeds in the following way. At each
round of active learning, we compute class membership
probabilities for all examples in the active pool. Examples
with the highest estimated value of discrete entropy are
selected to query the user. User labels are obtained and the
corresponding examples are incorporated in the training set
and the classifier is retrained. As will be seen in Section
3, active learning through entropy (EP)-based selection
outperforms random selection in some cases.

2.3. Best-versus-Second Best (BvSB)
Even though EP-based active learning is often better than

random selection, it has a drawback. A problem of the EP
measure is that its value is heavily influenced by probability
values of unimportant classes. See Figure 1 for a simple
illustration. The figure shows estimated probability values
for two examples on a 10-class problem. The example on
the left has a smaller entropy than the one on the right.



However, from a classification perspective, the classifier
is more confused about about the former since it assigns
close probability values to two classes. For the example
in Figure 1(b), small probability values of unimportant
classes contribute to the high entropy score, even though the
classifier is much more confident about the classification of
the example. This problem becomes even more acute when
a large number of classes are present. Although entropy
is a true indicator of uncertainty of a random variable, we
are interested in a more specific type of uncertainty relating
only to classification amongst the most confused classes
(the example is virtually guaranteed to not belong to classes
having a small probability estimate).

Instead of relying on the entropy score, we take a more
greedy approach to account for the problem mentioned. We
consider the difference between the probability values of the
two classes having the highest estimated probability value
as a measure of uncertainty. Since it is a comparison of
the best guess and the second best guess, we refer to it
as the Best-versus-Second-Best (BvSB) approach. Such
a measure is a more direct way of estimating confusion
about class membership from a classification standpoint.
Using the BvSB measure, the example on the left in
Figure 1 will be selected to query the user. As mentioned

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Class

E
st
im
a
te
d
 p
ro
b
a
b
il
it
y

Discrete entropy = 1.34

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Class

E
st
im
a
te
d
 p
ro
b
a
b
il
it
y

Discrete entropy = 1.69

(a) (b)

Figure 1. An illustration of why entropy can be a poor estimate
of classification uncertainty. The plots show estimated probability
distributions for two unlabeled examples in a 10 class problem. In (a), the
classifier is highly confused between classes 4 and 5. In (b), the classifier
is relatively more confident that the example belongs to class 4, but is
assigned higher entropy. The entropy measure is influenced by probability
values of unimportant classes.

previously, confidence estimates are reliable in the sense
that classes assigned low probabilities are very rarely the
true classes of the examples. However, this is only true
if the initial training set size is large enough for good
probability estimation. In our experiments, we start from
as few as 2 examples for training in a 100 class problem.
In such cases, initially the probability estimates are not
very reliable, and random example selection gives similar
results. As the number of examples in the training set
grows, active learning through BvSB quickly dominates
random selection by a significant margin.

2.3.1 Another perspective
One way to see why active selection works is to consider
the BvSB measure as a greedy approximation to entropy
for estimating classification uncertainty. We describe
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Figure 2. Illustration of one-vs-one classification (classes that each
classifier separates are noted). Assuming that the estimated distribution
for the unlabeled example (shown as a blue disk) peaks at ‘Class 4’, the
set of classifiers in contention is shown as red lines. BvSB estimates the
highest uncertainty in this set – uncertainty of other classifiers is irrelevant.

another perspective that explains why selecting examples
in this way is beneficial. The understanding crucially
relies on our use of one-versus-one approach for multi-
class classification. Suppose that we wish to estimate the
value of a certain example for active selection. Say its true
class label is l (note that this is unknown when selecting
the example). We wish to find whether the example
is informative, i.e., if it will modify the classification
boundary of any of the classifiers, once its label is known.
Since its true label is l, it can only modify the boundary of
the classifiers that separate class l from the other classes.
We call these classifiers as those in contention, and denote
them by Cl = {C(l,i) | i = 1, . . . , k, i 6= l}, where C(i,j)

indicates the binary classifier that separates class i from
class j. Furthermore, in order to be informative at all, the
selected example needs to modify the current boundary (be
a good candidate for a new support vector – as indicated
by its uncertainty). Therefore, one way to look at multi-
class active selection for one-versus-one SVMs is the task
of finding an example that is likely to be a support vector for
one of the classifiers in contention, without knowing which
classifiers are in contention. See Figure 2 for an illustration.

Say that our estimated probability distribution for a
certain example is denoted by p, where pi denotes the
membership probability for class i. Also suppose that the
distribution p has a maximum value for class h. Based
on current knowledge, the most likely set of classifiers
in contention is Ch. The classification confidence for the
classifiers in this set is indicated by the difference in the
estimated class probability values, ph − pi. This difference
is an indicator of how informative the particular example
is to a certain classifier. Minimizing the difference ph − pi,
or equivalently, maximizing the confusion (uncertainty), we
obtain the BvSB measure. This perspective shows that
our intuition behind choosing the difference in the top two
probability values of the estimated distribution has a valid
underlying interpretation – it is a measure of uncertainty
for the most likely classifier in contention. Also, the
BvSB measure can then be considered to be an efficient
approximation for selecting examples that are likely to be
informative, in terms of changing classification boundaries.



2.3.2 Binary classification

For binary classification problems, our method reduces to
selecting examples closest to the classification boundary,
i.e., examples having the smallest margin. In binary
problems, the BvSB measure finds the difference in class
membership probability estimates between the two classes.
The probabilities are estimated using Equation 1, that relies
on the function value f(x) of each unlabeled example.
Furthermore, the sigmoid fit is monotonic with the function
value – the difference in class probability estimates is larger
for examples away from the margin. Therefore, our active
learning method can be considered to be a generalization of
binary active learning schemes that select examples having
the smallest margin.

2.4. Computational cost
There are two aspects to the cost of active selection.

One is the cost of training the SVM on the training set
at each iteration. Second is probability estimation on the
active pool, and selecting examples with the highest BvSB
score. SVM training is by far the most computationally
intensive component of the entire process. However, the
essence of active learning is to minimize training set sizes
through intelligent example selection. Therefore, it is more
important to consider the cost of probability estimation
and example selection on the relatively much larger active
pool. The first cost comes from probability estimation in
binary SVM classifiers. The estimation is efficient since
it is performed using Newton’s method with backtracking
line search that guarantees quadratic rate of convergence.
Given class probability values for binary SVMs, multi-
class probability estimates can be obtained in O(k) time
per example [20], where k is the number of classes. Due
to the linear relationship, the algorithm is scalable to
problems having a large number of classes, unlike most
previous methods. In the experiments, we also demonstrate
empirical observations indicating linear time relationship
with the active pool size. We were easily able to perform
experiments with seed set sizes varying from 2 to 500
examples, active pool sizes of up to 10000 examples, and
a up to 102-class classification problems. A typical run
with seed set of 50 examples, active pool of 5000 examples,
and a 10-class problem took about 22 seconds for 20 active
learning rounds with 5 examples added at each round.
The machine used had a 1.87 Ghz single core processor
with 2 Gb of memory. All the active selection code was
written in Matlab, and SVM implementation was done
using LIBSVM (written in C) interfaced with Matlab. The
total time includes the time taken to train the SVM, to
produce binary probability values, and to estimate multi-
class probability distribution for each example in the active
pool at each round.

2.5. Previous work
Tong and Chang [18] propose active learning for SVM in

a relevance feedback framework for image retrieval. Their
approach relies on the margins for unlabeled examples for
binary classification. Tong et al. [19] use an active learning

method to minimize the version space1 at each iteration.
However, both these approaches target binary classification.

Gaussian processes (GP) have been used for object
categorization by Kapoor et al. [11]. They demonstrate
an active learning approach through uncertainty
estimation based on GP regression, which requires
O(N3) computations, cubic in the number of training
examples. They use one-versus-all SVM formulation
for multi-class classification, and select one example per
classifier at each iteration of active learning. In our work,
we use the one-versus-one SVM formulation, and allow
the addition of a variable number of examples at each
iteration. Holub et al. [9] recently proposed a multi-class
active learning method. Their methods selects examples
from the active pool, whose addition to the training set
minimizes the expected entropy of the system. In essence,
it is an information-based approach. Note that our method
computes the uncertainty through probability estimates
of class membership, which is an uncertainty sampling
approach. The entropy-based approach proposed in [9]
requires O(k3N3) computations, where N is the number of
examples in the active pool and k is the number of classes.
Qi et al. [17] demonstrate a multi-label active learning
approach. Their method employs active selection along two
dimensions – examples and their labels. Label correlations
are exploited for selecting the examples and labels to query
the user.

For handling multiple image selection at each iteration,
Hoi et al. [8] introduced batch mode active learning
with SVMs. Since their method is targeted towards
image retrieval, the primary classification task is binary;
to determine whether an image belongs to the class of the
query image. Active learning with uncertainty sampling has
been demonstrated by Li and Sethi [12], in which they use
conditional error as a metric of uncertainty, and work with
binary classification.

In summary, compared to previous work, our active
learning method handles the multi-class case efficiently,
allowing application to huge datasets with a large number
of categories.

3. Experimental results
This section reports experimental results of our active

selection algorithm compared to random example selection.
We demonstrate results on standard image datasets available
from the UCI repository [1], the Caltech-101 dataset
of object categories, and a dataset of 13 natural scene
categories. All the results show significant improvement
owing to active example selection.

3.1. Standard datasets
We choose three datasets that are relevant to image

classification tasks. The chosen datasets and their properties
are summarized in Table 1 along with seed set, active pool,
and test set sizes used in our experiments. We also report
the kernel chosen for the SVM classifier. For choosing the

1Version space is the subset consisting of all hypotheses that are
consistent with the training data [14].



Dataset # classes Feature dimension Seed set size Active pool size Test set size Kernel
Pendigits 10 16 100 5000 2000 Linear

USPS 10 256 100 7000 2000 RBF (σ = 256)
Letter 26 16 100 7000 5000 RBF (σ = 16)

Table 1. Dataset properties and the corresponding sizes used. Pendigits: Pen-based Recognition of handwritten digits. USPS: Optical recognition of
handwritten digits originally from the US Postal Service. Letter: Letter recognition dataset. All obtained from UCI [1].
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Figure 3. Classification accuracy on (a) Pendigits, (b) Letter, and (c) USPS datasets. Note the improvement in accuracy obtained by BvSB approach over
random selection. For similar accuracy, the active learning method requires far fewer training examples. In (b), EP-based selection performs poorly due to
the larger number of classes.

kernel, we ran experiments using the linear, polynomial,
and Radial Basis Function (RBF) kernels on a randomly
chosen training set, and picked the kernel that gave the best
classification accuracy averaging over multiple runs.

Figure 3(a) shows classification results on the pendigits
dataset2. The three methods compared are EP-based
selection, BvSB-based selection, and random example
selection. All three methods start with the same seed
set of 100 examples. At each round of active learning,
we select n = 5 examples to query the user for labels.
BvSB selects useful examples for learning, and gradually
dominates both the other approaches. Given the same size
of training data, as indicated by the same point on the
x-axis, BvSB gives significantly improved classification
accuracy. From another perspective, for achieving the
same value of classification accuracy on the test data (same
point on the y-axis), our active learning method needs far
fewer training examples than random selection. The result
indicates that the method selects useful examples at each
iteration, so that user input can be effectively utilized on
the most relevant examples. Note that EP-based selection
does marginally better than random. The difference can be
attributed to the fact that entropy is a somewhat indicative
measure of classification uncertainty. However, as pointed
out in Section 2.3, the entropy value has problems of
high dependence on unlikely classes. The BvSB measure
performs better by greedily focusing on the confusion in
class membership between the most likely classes instead.

This difference between the two active selection methods
becomes more clear when we look at the results on a 26
class problem. Figure 3(b) shows classification accuracy
plots on the Letter dataset, which has 26 classes. EP-based
selection performs even worse on this problem due to the

2All results best viewed in color. All results in this paper are obtained
by averaging over 20 runs with seed set chosen randomly at each run.

larger number of classes, i.e., the entropy value is skewed
due to the presence of more unlikely classes. Entropy is
a bad indicator of classification uncertainty in this case,
and it gives close to random performance. Even with a
larger number of classes, the figure shows that BvSB-based
selection outperforms random selection. After 50 rounds of
active learning, the improvement in classification accuracy
is about 7%, which is significant for data having 26 classes.

In Figure 3(c), we show results on the USPS dataset,
a dataset consisting of handwritten digits from the US
Postal Service. The performance of all methods is similar
to that obtained on the Pendigits dataset shown in Figure
3(a). Active selection needs far fewer training examples
compared to random selection to achieve similar accuracy.

3.1.1 Reduction in training required

BvSB selection Random selection % Reduction in #
rounds rounds training examples

3 6 11.53
4 10 20
5 13 24.24
6 19 33.33
7 28 43.75
8 29 42.85
9 43 53.96

10 44 53.12
11 43 50.79
12 48 52.94
13 50 52.85

Table 2. Percentage reduction in the number of training examples
provided to the active learning algorithm to achieve classification accuracy
equal to or more than random example selection on the USPS dataset.

In this section, we perform experiments to quantify the
reduction in the number of training examples required for



BvSB to obtain similar classification accuracy as random
example selection. Consider a plot like Figure 3(c)
above. For each round of active learning, we find the
number of rounds of random selection to achieve the same
classification accuracy. In other words, fixing a value on the
y-axis, we measure the difference in the training set size of
both methods and report the corresponding training rounds
in Table 2. The table shows that active learning achieves a
reduction of about 50% in the number of training examples
required, i.e., it can reach near optimal performance with
50% fewer training examples. Table 2 reports results for
the USPS dataset, however, similar results were obtained
for the Pendigits dataset and the Letter dataset3.The results
show that even for problems having up to 26 classes, active
learning achieves significant reduction in the amount of
training required.

An important point to note from Table 2 is that active
learning does not provide a large benefit in the initial
rounds. One reason for this is that all methods start with the
same seed set initially. In the first few rounds, the number
of examples actively selected are far fewer compared to the
seed set size (100 examples). Actively selected examples
thus form a small fraction of the total training examples,
explaining the small difference in classification accuracy
of both methods in the initial rounds. As the number of
rounds increase, the importance of active selection becomes
clear, explained by the reduction in the amount of training
required to reach near-optimal performance.

3.2. Object recognition
In Figure 4, we demonstrate results on the Caltech-101

dataset of object categories [6]. As image features, we use
the precomputed kernel matrices obtained from the Visual
Geometry group at Oxford4. These features give state-
of-the-art performance on the Caltech dataset. The data
is divided into 15 training and 15 test images per class,
forming a total of 1530 images in the training and test sets
each (102 classes including the ‘background’ class). We
start with a seed set of only 2 images randomly selected out
of the 1530 training images. We start with an extremely
small seed set to simulate real-world scenarios. The
remaining 1528 images in the training set form the active
pool. After each round of active learning, classification
accuracy values are computed on the separate test set of
1530 images. Note that in our experiments, the training set
at each round of active learning is not necessarily balanced
across classes, since the images are chosen by the algorithm
itself. Such an experiment is closer to a realistic setting
in which balanced training sets are usually not available
(indeed, since providing balanced training sets needs human
annotation, defeating our purpose). From Figure 4, we
can see that active learning through BvSB-based selection
outperforms random example selection in this 102 class
problem. Interestingly, the difference in classification

3From Figure 3(b), it seems that the reduction in training size is not
as much for the Letter dataset. This is because the none of the methods
have reached near-optimal performance. Experiments with more training
rounds indicated that reduction was about 50% even for this dataset.

4http://www.robots.ox.ac.uk/˜vgg/research/
caltech/index.html
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Figure 4. Active learning on the Caltech-101 dataset.

accuracy between active selection and random selection
starts decreasing after about 70 rounds of learning. This
can be attributed to the relatively limited size of the active
pool; after 70 learning rounds, about half the active pool has
been exhausted. Intuitively, the larger the active pool size,
the higher the benefit of using active learning, since it is
more unlikely for random selection to query useful images.
In real-world image classification problems, the size of
the active pool is usually extremely large, often including
thousands of images available on the web. Therefore, the
dependence on active pool sizes is not a limitation in most
cases.

3.3. Time dependence on pool size
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y = 0.00018*x - 0.035
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Figure 5. Example selection time as a function of active pool size. The
relationship is linear over a large range with the equation shown in the
figure. This demonstrates that the method is scalable to large active pool
sizes that are common in real applications.

From another perspective, the necessity of large active
pool sizes points to the importance of computational
efficiency in real-world learning scenarios. In order for
the methods to be practical, the learning algorithm must be
able to select useful images from a huge pool in reasonable
time. Empirical data reported in Figure 5 suggests that our
method requires time varying linearly with active pool size.
The method is therefore scalable to huge active pool sizes
common in real applications.



3.4. Exploring the space
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Figure 6. Space exploration of active selection – BvSB-based selection
is almost as good as random exploration, while the former achieves much
higher classification accuracy than random.

In many applications, the number of categories to be
classified is extremely large, and we start with only a few
labeled images. In such scenarios, active learning has
to balance two often conflicting objectives – exploration
and exploitation. Exploration in this context means the
the ability to obtain labeled images from classes not seen
before. Exploitation refers to classification accuracy on
the classes seen so far. Exploitation can conflict with
exploration, since in order to achieve high classification
accuracy on the seen classes, more training images from
those classes might be required, while sacrificing labeled
images from new classes. In the results so far, we show
classification accuracy on the entire test data consisting
of all classes – thus good performance requires a good
balance between exploration and exploitation. Here we
explicitly demonstrate how the different example selection
mechanisms explore the space for the Caltech-101 dataset
that has 102 categories. Figure 6 shows that the BvSB
measure finds newer classes almost as fast as random
selection, while achieving significantly higher classification
accuracy than random selection. Fast exploration of BvSB
implies that learning can be started with labeled images
from very few classes and the selection mechanism will
soon obtain images from the unseen classes. Interestingly,
EP-based selection explores the space poorly.

3.5. Scene recognition

Further, we performed experiments for the application
of classifying natural scene categories on the 13 scene
categories dataset [5]. GIST image features [15] that
provide a global representation were used. Results are
shown in Figure 7. The lower figure shows accuracy
improvement per class after 30 BvSB-based active learning
rounds. Note that although we do not explicitly minimize
redundancy amongst images, active selection leads to
significant improvements even when as many as 20 images
are selected at each active learning round.
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Figure 7. Active learning on the 13 natural scene categories dataset. EP-
based selection performs well possibly due to a smaller number of classes
and 20 (a large number of) examples selected at each iteration.

3.6. Which examples are selected?

0 8 9 5 3 5

7 1 9 0 7 1

Figure 8. Top row shows images on which the classifier is uncertain using
the BvSB score. Bottom row shows images on which the classifier is
confident. True labels are noted below the corresponding images. We can
see that the top row has more confusing images, indicating that the active
learning method chooses harder examples.

In Figure 8, we show example images from the USPS
dataset and their true labels. The top row images were
confusing for the classifier (indicated by their BvSB score)
and were therefore selected for active learning at a certain
iteration. The bottom row shows images on which the
classifier was most confident. The top row has more
confusing images even for the human eye, and ones that
do not represent their true label well. We noticed that
the most confident images (bottom row) consisted mainly
of the digits ‘1’ and ‘7’, which were clearly drawn. The
results indicate that the active learning method selects hard
examples for query.

One of the reasons active learning algorithms perform
well is the imbalanced selection of examples across classes.
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Figure 9. Y-axis: # examples correctly classified by random example
selection for a given class. X-axis: # examples of the corresponding class
chosen by active selection. The negative correlation shows that active
learning chooses more examples from harder classes.

In our case, the method chooses more examples for the
classes which are hard to classify (based on how the random
example selection algorithm performs on them). Figure
9 demonstrates the imbalanced example selection across
different classes on the Caltech-101 dataset. On the y-axis,
we plot the number of examples correctly classified by the
random example selection algorithm for each class, as an
indicator of hardness of the class. Note that the test set used
in this case is balanced with 15 images per class. On the x-
axis, we plot the number of examples selected by the active
selection algorithm for the corresponding class from the
active pool. The data shows a distinct negative correlation,
indicating that more examples are selected from the harder
classes, confirming our intuition. Notice the empty region
on the bottom left of the figure, showing that active learning
selected more images from all classes that were hard to
classify.

Next, we computed the variance in the number of
examples selected per class across the 102 classes. With
random selection, we expect low variance across classes
owing to uniform sampling and balanced class distribution
in the active pool. Random example selection gave a
variance of 3.63, while active selection had a variance of
6.40. The difference in the variance reinforces our claim
that the benefit to be obtained by active learning indeed
relies on imbalanced selection of examples across classes.
We therefore expect active learning to be particularly useful
when harder classes have fewer examples so that random
selection is unlikely to sample them. In real applications,
it is often true that interesting images/video snippets form
a rather small fraction of all the available data. We believe
that active learning can be very effective in such scenarios.

4. Conclusions
In this paper, we have proposed a simple active learning

method for multi-class image classification. The proposed
method achieves significant reduction in training required,
along with efficient scaling to a large number of categories
and huge data sizes.

There are many interesting future work directions. One

is to incorporate diversity when actively selecting multiple
images at each iteration, so that redundancy amongst the
selected images is minimized. Notably, Holub et al. [9] can
implicitly handle multiple example selection through their
information-based framework. However, a big research
challenge is to make such approaches computationally
tractable. Another direction for future research is active
learning in multi-label problems (cf. [17]), wherein each
image can belong to multiple categories simultaneously.
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