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Abstract the resultant classifier, the use of fewer features is ak® le
computationally expensive and thus implies faster testing
Feature selection plays a fundamental role in many pat- Moreover, it can eliminate the need to collect a large num-
tern recognition problems. However, most efforts have beenber of irrelevant and redundant features, and thus reduces
focused on the supervised scenario, while unsupervised feathe cost. Finally, with the discovery of fewer features, the
ture selection remains as a rarely touched research topic. resultant model can be more easily understood by human.
In this paper, we propose Manifold-Based Maximum Mar-  In feature selection, the features may be scored either
gin Feature Selection (M3FS) to select the most discrimi- individually or as a subset. In general, there are three ap-
native features for clustering. M3FS targets to find those proaches to score them: filters, wrappers, and embedded
features that would result in the maximal separation of dif- methods §]. Filters score the features as a pre-processing
ferent clusters and incorporates manifold information by step, independently of the classifier. Wrappers score the
enforcing smoothness constraint on the clustering functio features according to their prediction performance when
Specifically, we define scale factor for each feature to mea-used with the classifier. Both filters and wrappers rely on
sure its relevance to clustering, and irrelevant featuress a  search strategies to guide the search for the “best” feature
identified by assigning zero weights. Feature selection issubset. While a large number of search strategies can be
then achieved by the sparsity constraints on scale factors.used, often one is limited to the computationally simple
Computationally, M3FS is formulated as an integer pro- greedy (forward or backward) strategies. Finally, embed-
gramming problem and we propose a cutting plane algo- ded methods combine feature selection with the classifier.
rithm to efficiently solve it. Experimental results on both While the design of embedded methods is tightly coupled
toy and real-world data sets demonstrate its effectiveness with the specific classifier, they are often considered as
more efficient than filters and wrappef.|

While supervised feature selection has been extensively
1. Introduction studied for decades, feature selection in the unsupervised
learning setting has received relatively little attentidiis

Real-world data sets are often high-dimensional and con-is partly due to the fact that unsupervised feature selectio
tain many spurious features. For example, in face recogni-is much more difficult because of the lack of label informa-
tion, an image of sizen x n is often represented as a vec- tion to guide the search for relevant features. While most
tor in R™”, which can be very high-dimensional for typical unsupervised feature selection methods are based on the fil-
values ofm andn. Similarly, biological databases such as ter approachd, 12, 14], some wrapperslft] and embed-
microarray data can have thousands or even tens of thouded approaches that treat clustering and feature selesition
sands of genes as features. Such a large number of featuresultaneously have also been proposéd/| 12]. However,
can easily lead to the curse of dimensionality and severethese are often based on generative models (such as Gaus-
over-fitting. Hence, dimensionality reduction, in the form sian mixtures)4, 7, 12, 16]. As is well-known, generative
of either feature extraction or feature selection, playsra f ~ models may lead to inferior performance when the model
damental role in many pattern recognition problems. assumption does not match the observed data.

In this paper, we will focus on feature selection, which Instead of relying on model-based clustering, we will
selects a relevant subset of features. Excellent reviews orpropose in this paper an embedded method that is based on
this topic can be found ing[ 10]. Note that not only can  discriminative clustering. This is motivated by the common
feature selection improve the generalization performafice belief that discriminative models are often better than-gen



erative models in supervised learning. Among the discrim- 2. Maximum Margin Clustering
inative methods, large margin methods, such as the support

vector machines, are particularly successful. Indeed, in-
spired by the superiority of large margin methods in super-
vised learning, there is growing interest in extending them : .
to unsupervised learning. For example, &tal. [21] pro- cl_ass Ia_bels are ””"”OWT‘ in unsupervised IearanglC_
posed a novel approach callethximum margin clustering fries to find a clus.te_zr labeling of the patterns, togethelr!\mt
(MMC), which performs clustering by simultaneously find- hyperplane classifier, such that the resultant margin is-max

ing the large margin separating hyperplane between clus-Imlzed among all pOSS|bIe_ !abelmg%]l].
ters. Experimental results showed that this large margin For simplicity of exposition, assume that there are only

clustering method (and its variant{]) have been very suc- WO clusters. Given a set of examplEs= [x;, -~ ,X,] €
cessful in many clustering problems. R**™ MMC targets to find the best label combination

Yy = [y1,.-.,yn] € R" € {—1,4+1}" such that arSVM
Moreover, in many computer vision and pattern recogni- trained on this{(x;, v:), ..., (X.,y.)} yields the largest
tion applications (such as face recognition and hand-ewitt margin. Computationally, it can be formulated as the fol-
digit recognition), it has been observed that the data exam-owing problem
ples often lie on a manifold. Hence, another novelty of the
proposed approach is that manifold information can also be 1 O
SW WA — Z &
2 n =

Maximum margin clustering (MMCis a recently pro-
posed clustering algorithm that extersigoport vector ma-
chines(SVM to unsupervised learning setting. Since the

incorporated into the feature selection process. Notetleat yer?i?}n vlvnéns
Laplacian scoreq], which can be used as a filter approach

for unsupervised feature selection, also utilizes madifo!

1)

st Vie{l,...,n}:

formation. However, for the Laplacian score, a feature will yi(whx;+b) > 1-&, & >0,
be considered as good if two samples that are close to each n
other on the data manifold are also close to each other ac- -l1< Z yi < L.

=1

cording to that feature. On the other hand, the proposed
method uses the manifold information by directly consid-
ering the resultant decision function and ensures that it is
smooth on the manifold. As will be seen in Sectirsince
ours is an embedded method that explicitly considers the
clustering objective, it performs much better than thefrfilte
method of Laplacian score.

where " | & is divided byn to better capture how
scales with the data set size. The last constraint)iis(of-

ten known as thelass balanceonstraint. It is introduced

to avoid the trivially “optimal” solution that assigns alhp
terns to the same class and thus achieves “infinite” margin.
Here,l > 0 is a constant controlling the class imbalance.

In this paper, we propos®lanifold-Based Maximum

Margin Feature Selection (M3FS) select the most dis- 3. Maximum Margin Feature Selection with

criminative features for clusteringM3FS targets to find Manifold Regularization
those features that would result in the maximal separation
of different clusters and incorporates manifold inforroati In this section, we present tineanifold-based maximum

by enforcing smoothness constraint on the clustering func-margin feature selectioalgorithm. We will first consider
tion. Specifically, we define a scale factor for each featuret the two-cluster case. Extension to the multi-class cade wil
measure its relevance to clustering, and irrelevant featur be discussed in Sectidh5.

are identified by assigning zero weights. Feature selection

is then achieved by the sparsity constraints on the scale fac3.1. Two-Class Manifold-Based Maximum Margin
tors. ComputationallyM3FSis formulated as an integer Feature Selection

programming problem and we propose a cutting plane al-
gorithm to efficiently solve it. Experimental results on ot
toy and real-world data sets demonstrate its effectiveness

Manifold-based maximum margin feature selection
(M3FS)is an embedded approach that performs clustering
and feature selection simultaneously. It tries to find astibs

The rest of this paper is organized as follows. In Sec- of the d given features such that the resultant clusters will
tion 2, we present a brief introduction tnaximum margin ~ be maximally separated. As mentioned in Sectipwhile
clustering Section3 presents the details of tid3FSalgo- previous efforts on unsupervised feature selection asmoft
rithm, together with theoretical analysis on both the accu- based on generative models which require strong model as-
racy and time complexity of the algorithm, and extension to sumption M3FSadoptsmaximum margin clusteringhich
the multi-class clustering setting. Experimental resatts  can often outperform conventional clustering methods.
both toy and real-world data sets are provided in Sectjon Moreover, in many computer vision and pattern recogni-
followed by some concluding remarks in Sectin tion applications, it has been observed that the data exam-



ples often lie on a manifold. Hence, our goal is to also uti- ables p4: vk € {1,...

lize this manifold information in the feature selection pro

cess. As is well-known, the data manifold can be repre-

sented by a grap8. In the following, letW € R™*" be
the similarity (or adjacency) matrix ¢f, D € R"*™ be the
diagonal degree matrix whosh entry is the sum of théh
row of W, andL = I— D~ 2 WD~ (wherel is then x n
identity matrix) be the normalized graph Laplaci&h [

To achieve the first goal, we exteMMC by associating
eachfeaturé (k = 1,2, ..., d)with alearnable scale factor
ok, Which is used to measure its “relevance” to clustering.
When learning is completed, the irrelevant features cam the
be identified as those having zero scale factath [Hence,
the resultant decision function f§x) = w’ (g ox) + b =
(woo)'x +b, whereo = [0, 09,...,04)7 ando is the

element-wise product. As for the second goal, we enforce

that the decision functiofi(x) is smooth on the whole data

,d} U, = opwg. Letv =

[v1,v2,...,v4]T, we have the following proposition:

Proposition 1 M3FS can be equivalently formulated as

VI?;H;Z—
stvie{l,...,
Vke{l,...,

d n
Zok:m, —lgz V xl—i—b <l
k=1 i=1

%i&—h\(X%—i—bl)TL(XQ—i—bl) (6)
i=1

n} : |VTX1'+b‘ Z 1—&, fz Z O
d}: 0 <o <1,

wherey is calculated agy; = sgn(v’x; + b).

3.2. Cutting Plane Algorithm

manifold. This smoothness can be achieved by adding the TheM3FSformulation in @) hasn slack variables;’s,

manifold regularizerT]
(x:)

f(5)
C )

[XT(woa)+b1]" L [X"(woo)+bl]

to the objective function. Herel € R" is the n-
dimensional vector of all ones. Combining these two to-
getherM3FScan thus be formulated as the following opti-
mization problem:

_ngwk+ Z@H [XT(woa)+b1] L

=1
-[XT(WOU)—i—bl}
Vie{l,...,n}:& >0,

d
Yi Czakwkxik-l-b) >1-&,

=1

Vke{l,...,

min
y,w,b,§,0

(@)

S.t.

(3)

d} :0<o,<l;ye{-1,+1}"

d
> o= (4)
k=1
n d
-1 < Z (Z LWL Tk +b> <l (5)
i=1 \k=1

where )\ is a user-defined regularization parameter, and

one for each data sampig. We reformulate®) as follows
to reduce the number of slack variables,

(7)

min
v,b&,0

5Z—+C§+A(X7“v+bl)TL(X7“v+bl)

ﬁZci|vTxi—|—b‘ > EZQ
i=1 1=1

d} :0 <o, <1,

s.t.¥ee{0,1}": =&, (8)

Vkedl,...,

d n
dor=m, >0, -1<Y (vIxi+b) <1
k=1 =1

Proposition 2 Any solution(v*, b*,£*, o*) to problem {)
is also a solution to probleng], and vice versa, witl§* =

DRI

The number of slack variables is now reducechby 1. On
the other hand, the number of constraintsipi¢ increased
from n to 2". To handle this exponential number of con-
straints, we employ an adaptation of theéting planealgo-
rithm [11]. It starts with an empty constraint subsgtand
computes the optimal solution to probleid) ubject to the
constraints if2. The algorithm then finds the most violated
constraint in 8) and adds it td2. In this way, we construct
a series of successively tightening approximations to prob
lem (7). The algorithm stops when no constraint 8) (s
violated by more than. The wholecutting planealgorithm

is the number of features to be selected. Note that we haveior M3FSis presented in Algorithm 1.

also relaxed the constraist, € {0,1}ono to0 < o), < 1.
The ¢, regularizer §) on o enforces sparsity. Moreover, a
slightly relaxed class balance constraint is used)f{7].
Sinceo, andwy are coupled together in the decision
function, the objective inZ) and the constraints3), (5)

are non-convex. Therefore, we apply the change of vari-

3.2.1 Optimization via the CCCP

For the optimization problem irv}, the objective is convex
(quadratic) and all the constraints except the first one are
linear. Moreover, note that although the constraintgnig



Algorithm 1 Cutting plane algorithm for M3FS The aboveSOCP problem can be solved in polynomial

Input: X, C, 1, A ande, set constraint subset = 0. time [13]. Following the CCCP, the obtained solution
repeat (v,b,0,&,t,s) from this SOCPproblem is then used as
Solve problem 1) for (v,b, o, ) under the current (v, 601 o ¢ t,5), and the iteration continues until
working constraint sef. convergence. The algorithm for solving problemgubject
Select the most violated constraintset) = QU {c}. to the constraint subsgtis summarized in Algorithm 2. As
until the newly selected constraintis violated by no  for its termination criterion, we check if the difference in
more thare. objective values from two successive iterations is less tha

a% (which is set td).01 in the experiments).

non-convexy, it can be expressed as a difference of the twoAlgorithm 2 Solve problemT) subject to constraint subset
convex functions: 37" | ¢; [vTx; + bl and Xt 37 ;i —¢. ) via the constrained concave-convex procedure.
Hence, we can solve problenT)(with the constrained Initialize (v(©, ().

concave-convex procedure (CCCMhich is designed to repeat

solve these optimization problems with a concave-convex Obtain(v, b, o, €, t) as the solution to probleni ().
objective function and concave-convex constraints].[ Setv(t+D) — v p(t+D) — pandt = ¢ + 1.

Specifically, given an initial estimate(*), 5(°)), theCCCP ’
computes (vt D) from (v b®) by replacing
LS L ci|[vTx; + b in the first constraint with its first-
order Taylor expansion &t(*), (), leading to

until the stopping criterion is satisfied.

3.2.2 ldentifying the Most Violated Constraint

d_ 2
min lzv—k+C§+A(X1§r+b1)TL(X1§z+b1) (9) The most violated constraint is the one that results in the
Ok
k=1

largesté. Since each constraint ir8)is represented by a
1 o 1 vectorc, we have the following proposition:
S.t.¥ee: ﬁzcizi (vxi+b)> 52@—5’ Proposition 3 The most violated constrairtin (8) can be
1=1

=t computed as:
Vke{l,...,d}: 0<o, <1,
i x| < 1,

d f—
Z op=m, £>0 ¢ { 0 otherwise.
k=1 Thecutting planealgorithm iteratively selects the most vio-

(11)

n lated constraint under the current hyperplane parameter an
-1 < § (vixi+b) <1 : : - ;
= . @ = then adds it to the working constraint $et until no con-
=1 straint is violated by more thani.e.,

wherezi(t) = sgn (v¥Tx; +b). Definet, as the up-

nl - T 1 S
per bound of%, s as the upper bound ofX”v + vee{0,1} 'ﬁz;ci‘v xi+b‘zﬁ;ci_(§+e) (12)
b1)TL(XTv + b1), and note thaL is symmetric positive o o
semi-definite, the above problem can be reformulated as thé\/loreover, note thatin the objective function of problef (

following second order cone programming (SOGH) there is a single slack variabfemeasuring the clustering
loss. Hence, we can simply select the stopping criterion in

] 1Y Algorithm 1 as being all the samples satisfying inequality
o9 Ztk+c§+/\3 (10) (12). Then, the approximation accuraeyf this approxi-
k=1

v,b,¢,0,t,s
mate solution is directly related to the clustering loss.
IS~ 0 BN . .
s.tVeell: Ezcizi (vi+b) > Ezcz‘—i, 3.3. Accuracy of the Cutting Plane Algorithm
1=1 1=1
Vke{l,...,d}:0<o, <1 The following proposition characterizes the accuracy of
the solution computed by thrutting planealgorithm.
Vke{l,...,d}: 20k <tpto - , :
v B te— Ok = "Rk Proposition 4 For anye > 0, the cutting plane algorithm
1 for M3FS returns a pointv, b, o, £) for which(v, b, o, £ +
1 T, sy Uy Uy » U, U,
H[ 2L ()S(_‘lf+b1) ] <s+1,&£>0 €) is feasible in problem?).

u " Based on this propositiom,indicates how close one wants
Zak —m, -1 < Z(VTXZ__H)) <1 Fo bg_to t.he error rate of the l:_)est S(_epgrating hypelrplane. Thi
P — justifies its use as the stopping criterion in Algorithm 1.



3.4. Time Complexity Analysis tion formulation

In this section, we provide theoretical analysis on d M
the time complexity of thecutting planealgorithm for min ZZ pk+ Z&—i—)\z TXLXTvp (14)
manifold-based maximum margin feature selectide will yove 275r= 0
first obtain the time involved in each iteration of the algo- st Vie{l,..., n},r e{1,..., M} :
rithm. Next, we will show that the total number of con- d
straints added into the working @ i.e., the total number Z(ink_vrk)xik_i_ng1_51.7 & >0
of iterations involved in theutting planealgorithm, is up- 1
per bounded. Specifically, we have the following two lem-
mas, Vke{l,...,d}:Ogakgl;Zcrk:m

k=1

Lemma 1 Each iteration of the cutting plane algorithm
for manifold-based maximum margin feature selection takes Vp,qe{l,...,M}:—1 SZZ(”M —vgr)Tik <,
O(d®®+nd+d?5|]) time for a working constraint set size i—1k—1
|2

Here, the subscrigtin w,; denotes theth classk denotes
thekth feature, and we have applied the change of variables
Vpe{l,...,M},ke{l,...,d} : vpp = opwp to en-
sure that the objective function and the last constraint are
convex. Similar to two-class clustering, we have also added
class balance constraints (whére- 0) in the formulation

to control class imbalance. Again, the above formulation
is an integer program, and is much more complex than the
QP problem inmulti-class SVMFortunately, we have the
following proposition.

Lemma 2 The cutting plane algorithm terminates after
adding at mostce—f” constraints, wherer is a constant in-
dependent of, andd.

Lemma 2 bounds the number of iterations in autting
planealgorithm by a constar@TR, which is independent of
n andd. Moreover, each iteration of the algorithm takes
O(d*5 + nd + d*®|Q)|) time. Therefore, theutting plane
algorithm formanifold-based maximum margin feature se-

lection has a time compIeX|ty OEm}f/i O(d*° + nd +  Proposition 6 Problem (L4) is equivalent to

d25(Q)) = O(£24nd 1 &2 Hence, we have the follow- i Mo

ing proposition. . Ypk T T
min —|— i+AY v XLX' v 15
iy 333 B C5 s iy, a9

Proposition 5 The cutting plane algorithm for manifold-
based maximum margin feature selection ta(R(a%S';;"d—i—

o d /M
) time. Z(Zzipvpk_vrk> Tik+2zip 21-8&, § 20

s.t. VzE{l,...,n},rE{l,...,M}:

i k=1 \p=1

3.5. Multi-Class M3FS d

For the multi-class scenario, we will start with an intro- VEe{l,....d}: 0<op <1 Z Ok =1
duction to themulti-class support vector machifiermula- k=1
tion proposed inff]. Given a point seX = {xy, - ,x,}
and their labelsy = (y1,...,yn) € {1,...,M}", theSVM VP, geql, ... M}l Szz(vpk_”qk)xik <,
defines a weight vectow,, for each clasp € {1,..., M} i=1k=1
and classifies sampte by p* = argmaxpe (1, vy WX \wherez, is defined a¥i € {1,...,n},p € {1,..., M} :
The weight vectors are obtained as follows:

M
M n
: 1 2 c Fip = H I[de VpkTik>Y 4 VakTik]?
W1.,.I.I.1,1v{/lM£ §;||Wp|| +Z;§i (13) o k=1Vp 1V
st Vie{l,...,n},re{l,...,M}: with I(-) being the indicator function and the label for sam-
WX+ 0y, — Wy x; >1-&; & > 0. ple x; is determined ag; = argmax, S vk =

M
L . . . Zp 1 PZip-
Similar with the two-class scenario, we define a scale fac-

tor for each feature and obtain the following unsupervised To reduce the number of slack variables, we make use of
multi-class manifold-based maximum margin feature selec-the following proposition:



Proposition 7 Problem (5) can be equivalently formu-
lated as problem(), with&* = L 3" | ¢,

Pk T T
min 522 +C£+AZV XLXv, (16)
k=1p=1
SI.VCiE{eo,elw..,ek},ZE{l,“., }:

1 n d M 1 n M

nzg:jgjjzxclezu’ CUJUpkxzk+'n:£:§E:Qp2n
i=1k=1p=1 =11
e~ 7

> — La_

_n;cle 3

VEe{l,....d}: 0<op <1,

d
Zak =m, >0
k=1
n d
7]\/[}:_ZSZZ(Upk_qu)IikSL

i=1lk=1

Vp,qe{l,...

where we define, as the)M x 1 vector with only thepth
element being 1 and others &, as theM x 1 zero vector
ande as the vector of ones.

A single slack variablé¢ is shared across all the non-convex
constraints in 16) and, again, the cutting plane algorithm

can be used to handle the exponential number of constraints.

For the inner optimization, we use tl&CCP to com-
putev**+1) fromv(*) by solving the following optimization
problem

d M 2
min = P’“+c Ay vIXLXTy 17
min FYY e z .
s.t. V[cy,...,c ]eQ,ze{l ,n}
n d M
—ZZZ c; ez —Cip vpkxzk—i- ZZczpz(t)
i=1lk=1p=1 z 1p=1
I~ .
zg;cie—é, €20
d
Vke{l,...,d}: 0<o, <1, Zak:m
k=1
n d
Vp,qe{l,...,M}:—ngZ(vpk—vqk)xik <lI,
i=1k=1
Wherezi(;) :H;”l,q#p LRI S E R P Again,

this can be formulated as 80OCPand solved efficiently.
Finally, as for the most violated constraint, it is the onatth

Proposition 8 The most violated constraintc

[c1,...,c,] can be obtained as
. d d
] e if [Zkzlvp*kxik—zkzlvr*kxik <1,
=
0 otherwise,
d
where p* = argmaxpzkzlvpka:ik and r* =

d
arg max, - Y k1 UrkTik-

4. Experiments

In this section, we validate the effectivenessanifold-
based maximum margin feature selection (M3B8&)both
toy and real-world data sets.

4.1. Setup

We use 5 data sets which are intended to cover a wide
range of propertiesionosphere, digits, letter and satel-
lite (these are from the UCI data repositdryandmnist?.
The two-class data sets are created following the same set-
ting as in 7. We also create several multi-class data sets
from thedigits, letter andmnist data. All these are sum-
marized in Tablel. For representing the manifold used

Data Size | Feature| Class
digits1v7 361 64 2
digits2v7 356 64 2

ionosphere | 354 64 2
letterAvB 1555 16 2
satellite 2236 36 2
digits0689 713 64 4
digits1279 718 64 4
letterABCD | 3096 16 4
mnist01234| 28911 196 5

Table 1. Descriptions of the data sets.
in M3FS we use a fully-connected graph connecting all
the samples, and set the pairwise similarity maWk as
wi; = exp (—||x; — x;[|?/2p?), wherep is the variance in
the Gaussian function. Besidb3FS for comparison, we
also run the following algorithms which perform clustering
with feature selection:

e Feature selection based on Gaussian mixture model
(FSGMM) [12): This is an embedded approach for un-
supervised feature selection and, as its name implies,
the clustering algorithm is based on the Gaussian mix-
ture model. Its implementation is the same aslif]

Laplacian score [9]: This is a filter method

for supervised/unsupervised  feature selec-
tion which also wuses manifold information.
The implementation code is downloaded from

results in the largegtand can be obtained by the following
proposition.

Ihttp://archive.ics.uci.edu/ml/
2http://yann.lecun.com/exdb/mnist/



http://www.cs.uiuc.edu/homes/dengcai2. Since it
is a filter, it is not particularly tied to any clustering
algorithm. In the following, we experiment with both
MMC andK-Means and the corresponding methods
are denotedlapMMC andLapKM, respectively.

Moreover, we also experiment withaximum margin clus-
tering without doing feature selection. The implementation
is the same as ir?[3], and this will be denoted adMC-all.

In the experiments, we first take a set of labeled data, re-
move all the labels and run the clustering algorithms; then
we label each of the resulting clusters with the majority
class according to the original labels. Moreover, we always

M for all the methods. These clustering algorithms (with or
without feature selection) will be evaluated by the follogi
two performance measures:

Clustering Accuracy (Acc). The first performance mea-
sure is theClustering Accuracywhich discovers the one-

As can be seenyI3FS successfully selects the 4 relevant
features and assigns zero saliency to all the noisy features
On the other hand, both theplacian scoreandFSGMM
assign non-zero saliencies to the noisy features.

[HLapScore
EFSGMM
I M3FS

o

Feature Saliency
>

123456 7 8 91011121314
Feature Number

set the number of clusters to be the true number of classedigure 1. Feature saliencies on fhis data set with 10 noisy fea-

tures added.

4.3. Clustering Performance

In this section, we report the clustering performance of

to-one relationship between clusters and classes and medhe various algorithms on the data sets in Tablghe clus-
sures the extent to which each cluster contained data point§€fing accuracy and Rand Index results are shown in Ta-

from the corresponding class. Specificaly\¢cc measures
the number of correct classifications.

Rand Index (RI) [15]. LetC = {C;1,Ca,...,Carr} be the
set of final clustering results such tltatrepresents thith
cluster, andC = {£4, L5, ..., L} denotes the set of true
data classes such that represents thith class. We define
the following four variablesa: the number of data pairs in
X that are in the same set in bathand £; b: the number
of data pairs inX that are in different sets in bothand Z;

c: the number of data pairs X that are in the same set in
C but different sets irC; d: the number of data pairs K
that are in different sets i@l but the same set id. Then the
Rand IndexR that measures the similarity betwe€rand
L can be computed aB = #’LSM. Intuitively, one can
think of @ + b as the number of agreements betwéeand

L andc + d as the number of disagreements betwéemd

L. Clearly,R has a value between 0 and 1, with 0 indicating
thatC and £ do not agree on any pair of data points, and 1
indicating thatC and£ are exactly the same.

4.2. Ability to Detect Relevant Features

In this section, we first illustrate the ability M13FSin
selecting relevant features by using tiie data set from
UCI machine learning repository. Thes data contain 3
classes of 50 instances each, and each instance is chara
terized by 4 features. We add 10 noisy features (generate
from the normal distributionV'(0, 1)) to theiris data, and
thus obtain a data set of 150 14-dimensional instances.

The saliencies of all the 14 features as calculated by the
various methods are shown in Figute For simplicity of
illustration, we order the features such that the first foer a
the original features, while the last ten are the noisy ones.

ble 2. We also demonstrate the effect when manifold in-
formation is not used by setting = 0. As can be seen,
even when no manifold information is used, both the clus-
tering accuracy anBand Indexof M3FSare comparable to
those attained bgnaximum margin clusteringsing all fea-
tures and is often better than the other unsupervised featur
selection algorithms. The addition of manifold regulariza
tion significantly improves the performance MEBFS and
enables it to be even better thisiMC-all.

4.4. Generalization Ability of M3FS

Manifold-based maximum margin feature selection
adopts the maximum margin principle %M which could
allow good generalization on unseen data. In this exper-
iment, we validate the generalization ability BI3FS on
unseen data samples. We first learn Mi@&~Smodel on a
data subset randomly drawn from the whole data set. Then
we use the learned model to cluster the whole data set. As
can be seen in Tablg, the clustering performance of the
model learned on the data subset is comparable with that of
the model learned on the whole data set. Thus, for a large
data set, we can simply perform the feature selection and
clustering process on a small subset of the data and then use
the learned model to cluster the remaining data points.

. Conclusions

In this paper, we propose a novel unsupervised feature
selection method nameadanifold-Based Maximum Margin
Feature Selection (M3FSM3FStargets to identify those
features that would result in the maximal separation of dif-
ferent clusters. As many computer vision and pattern recog-
nition problems have intrinsic manifold structure, we add



Data m LapKM LapMMC FSGMM MMC-all M3FS M3FS \=0)
digits1v7 10 | 79.50| 0.569 | 70.08 | 0.580 | 88.64 | 0.798 | 100.0 | 1.00 | 100.0 1.00 100.0 1.00
digits2v7 10 | 88.20| 0.723 | 84.27 | 0.734| 80.62 | 0.687 | 100.0 | 1.00 | 100.0 1.00 100.0 1.00
ionosphere | 10 | 69.52 | 0.575| 64.10 | 0.539 | 70.94 | 0.587 | 72.36 | 0.599 | 85.57 | 0.755 | 70.66 | 0.584
letterAvB 10 | 92.80| 0.866 | 94.21 | 0.891| 90.29| 0.825| 93.12 | 0.873 | 96.33 | 0.929 | 94.41 | 0.894

satellite 16 | 95.35| 0.911| 97.45| 0.950| 95.53| 0.915| 98.48 | 0.971 | 98.75 | 0.975 | 98.75 | 0.975
digits0689 | 20 | 54.84 | 0.735| 93.41| 0.600 | 75.32| 0.863 | 96.63 | 0.968 | 97.19 | 0.973 | 95.65 | 0.960
digits1279 | 20 | 74.65| 0.811| 89.97 | 0.583 | 79.53| 0.834 | 94.01 | 0.943 | 96.66 | 0.968 | 92.48 | 0.931

letterABCD | 10 | 66.09 | 0.773 | 62.08 | 0.731| 65.67 | 0.777 | 70.77 | 0.804 | 85.53 | 0.867 | 70.51 | 0.815
mnist01234 | 50 - - - - 71.32| 0.811| 89.98 | 0.901| 90.85 | 0.919 | 90.85 | 0.919

Table 2. Clustering accurac$) and Rand Index comparisons on the various data sets. Homeeithod, the number on the left denotes
the clustering accuracy, and the number on the right stasmdhé Rand Index. The symbol ‘-’ means that the correspanéigorithm

cannot handle the data set in reasonable time.
Data from whole set from data subset
Acc RI subset size Acc RI
letterAvB | 96.33 | 0.929 500 95.60 | 0.912
satellite 98.75| 0.975 500 98.57 | 0.972
letterABCD | 85.53 | 0.867 500 83.98 | 0.852
mnist01234| 90.85| 0.919 1000 89.11 | 0.902

Table 3. Generalization ability on unseen samples wheiBieS
model is learned only from a data subset.

Laplacian regularizer in the objective to enforce smoosisne
on the clustering function. Moreover, we also extend the [13]

M3

FSalgorithm to the multi-class setting. Finally, experi-

9]
[10]

[11]

[12]

mental results on both toy and real-world data sets demon-
strate the effectiveness of the proposed approach.
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