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Abstract

The accurate localization of facial features plays a fun-
damental role in any face recognition pipeline. Constrained
local models (CLM) provide an effective approach to lo-
calization by coupling ensembles of local patch detectors
for non-rigid object alignment. A recent improvement has
been made by using generic convex quadratic fitting (CQF),
which elegantly addresses the CLM warp update by enforc-
ing convexity of the patch response surfaces. In this pa-
per, CQF is generalized to a Bayesian inference problem,
in which it appears as a particular maximum likelihood so-
lution. The Bayesian viewpoint holds many advantages: for
example, the task of feature localization can explicitly build
on previous face detection stages, and multiple sets of patch
responses can be seamlessly incorporated. A second contri-
bution of the paper is an analytic solution to finding convex
approximations to patch response surfaces, which removes
CQF’s reliance on a numeric optimizer. Improvements in
feature localization performance are illustrated on the La-
beled Faces in the Wild and BioID data sets.

1. Introduction

The task of parsing and recognizing faces in an uncon-
strained environment often assumes that processing hap-
pens in adetection–alignment–recognitionpipeline, which
separates the tasks of detecting faces, aligning them by lo-
cating key fiducial points, and finally basing any recognition
task on that alignment. The recent release of the Labeled
Faces in the Wild (LFW) data set emphasizes this pipeline
[7], highlighting the dependence of each stage on its prede-
cessor.

The alignment stage is a problem of combining shape
and texture information from a training set with texture in-
formation from a target image to locate the fiducial point
locations on the target face. A Bayesian framework the
alignment stage is proposed here, and similar to LFW the
assumption is made that faces are detectable by a Viola-
Jones (VJ) face detection algorithm [17]—an assumption

that can be explicitly incorporated into a prior alignment
distribution.

Constrained Local Models (CLMs) are ideally suited to
facial feature alignment and general non-rigid object regis-
tration, as they merge shape and texture information by cou-
pling (or constraining) an ensemble of local patch or feature
detectors at a global shape level [2, 3]. This has proved to
outperform Active Appearance Models (AAMs) [1] as it is
more robust to occlusion and changes in appearance and no
texture warps are required.

A prime example of a CLM was given by Wanget
al. [19], which, through generic convex quadratic fitting
(CQF), turns the global CLM warp update into a convex
problem. By finding convex approximations to the local
patch response surfaces of feature alignment classifiers, this
circumvented the need for computationally expensive opti-
mizers (except maybe for fitting the convex surfaces). A
pleasing consequence was that a specific form of the Lucas-
Kanade [12] gradient descent image alignment algorithm
can be viewed as a generic CQF. It was also shown to be
superior to exhaustive local search (ELS) [18], which con-
strains local patch response maxima to be consistent with
the shape prior.

This paper argues that for further progress to be made in
tasks similar to LFW, the generic CQF method of Wanget
al. [19] can be generalized and improved even further:

1. The convex patch responses can be folded into a
Bayesian inference problem, where the posterior dis-
tribution of the global warp needs to be inferred. In
this Bayesian constrained local model (BCLM) formu-
lation both generic CQF and ELS appear as maximum
likelihood solutions, and more than one feature classi-
fier for each feature can easily be included.

2. The Bayesian framework allows the alignment stage’s
shape prior to explicitly model our beliefs about the
range and distribution of faces that will be received
from a given face detector.

3. The generic CQF method finds convex approximations
to patch response surfaces by solving a quadratically



constrained quadratic program, or by simplifying the
problem to only include axis-aligned functions. A sim-
ple and effective analytic method for finding general
convex approximations is proposed here.

The alignment of fiducial data points are illustrated on
faces from the LFW and BioID [8] data sets. To be truly
general, all patch classifiers were trained on a different set
of random Internet images, where, similar to LFW, faces
are detectable by a given VJ algorithm. The local patch
classifiers used here are linear and fast, but therefore sacri-
fice a degree of accuracy. In cases where noisy classifiers
imply that maximum likelihood estimates will not be suffi-
cient, the use of a Bayesian approach becomes evident and
improves alignment errors.

Numerous efforts, both similar and complimentary to
the approach presented here, have been made for facial
feature detection. Methods on which this work builds in-
clude Cristinacceet al.’s pairwise reinforcement of feature
responses [4], Cristinacce and Cootes’ CLMs [2, 3], and
Wanget al.’s ELS and generic CQF approaches [18, 19]. A
“shape-constrained” Markov random field is used by Liang
et al. to model a face [10]. Another Bayesian generative
model is Gu and Kanade’s treatment of multiple candi-
date feature alignment positions as unobserved latent vari-
ables, through which the shape-and-pose posterior mode
can be found with an expectation maximization algorithm
[5]. Liu aligns images by iteratively maximizing the score
of a classifier—a boosted appearance model—that distin-
guishes between correct and incorrect alignments, and up-
dating a low-rank shape parameter [11]; this approach is
extended with a boosted ranking model by Wuet al. [20].

The rest of the paper lays out BCLMs in section 2, and
shows a simple analytic method for fitting local convex en-
ergy functions in section 3. Section 4 presents the patch
classifiers that are used in this work, while a comparison of
BCLMs against generic CQFs and AAMs is given in section
5.

2. Bayesian Constrained Local Model

The alignment stage combines shape and texture infor-
mation to locate fiducial points on a face. In the BCLM
presented here, shape information appears in a prior distri-
bution, which models the range of faces that a given face
detector can detect, while texture information is summa-
rized in convex functions in a log-likelihood. An iterative
algorithm is presented for feature alignment, and CQF and
ELS are shown to be maximum likelihood solutions in this
Bayesian set-up.

Let x be a vector indexing feature locations across an
object, for example a face. Ifxi = (xi, yi) denotes the
centre of featurei, thenx = (x1, y1, . . . , xI , yI); with D =
2I we havex ∈ R

D.

For a shape prior, we assume that a point distribution
model transforms a lower-dimensional (K ≤ D) latent vari-
ablez ∈ R

K , with priorz ∼ N (z;0, I), tox with

x = µ + Λz . (1)

This view of the usual point distribution model is as a gen-
erative model where the only uncertainty is inz, i.e. a noise-
free formulation of Bayesian PCA [15].

In this instancex will be a set of feature locations rel-
ative to a window given by a VJ face spotter. The face
detector window is scaled to a standard size of 110-by-
110 pixels, implying an inter-ocular distance of roughly
50 pixels. This operation standardizes over global scale
and translation, whereas procrustes analysis is normally ap-
plied. The model is determined from a set of marked-up
faces containing true fiducial points{x(n)}Nn=1. Although
posterior densities overµ and Λ can plausibly be incor-
porated, a point mass estimateµ = 1

N

∑
n x

(n) is used
in this paper. An eigenvalue decompositionUDU

⊤ =
1
N

∑
n(x(n) −µ)(x(n) −µ)⊤ givesΛ = UKD

1/2
K , where

UK is a submatrix of theK eigenvectors isU correspond-
ing to the largest eigenvalues inD.

The texture model for aligning featurei is represented
by a convex energy function centered atci,

Ei(xi) =
1

2
(xi − ci)

⊤
Ai(xi − ci) , (2)

with Ai being positive definite. For now our only assump-
tion is thatci andAi are chosen such thatEi(xi) is small
if pixel xi lies close to the true location of fiducial pointi,
and large otherwise. This is the same setup as the generic
CQF [19].

Section 3 presents an analytic approach for determining
Ei(xi)—or approximatingAi andci—from outputs of fea-
ture i’s patch alignment classifier. An alignment classifier
uses a localpatchof pixels around a certain point to deter-
mine the probability of it aligning to some fiducial point;
this is discussed in section 4. Figure 1 illustrates examples
of Ei(xi), along with the local patch classifier outputs and a
final alignment.

2.1. An explicit Bayesian formulation

Using the linear relation in (1), each local convex energy
functionEi(xi) can be treated as a negative log-likelihood
for z, givensome knowledge ofci andAi. This givesI
different likelihood functions for the warpz, for which we
already have a prior.

Let µi andΛi correspond to the appropriate rows ofµ

and Λ, and from (1) assume a deterministic relationship
without additive noise:xi = µi + Λiz. Let

∆mi = ci − µi (3)



Figure 1. Alignment classifiers and convex energy functions: At
the top patch classifier outputs (15, 19) are shown for the right eye
and nose corners, foreachpixel in a windowW(x∗

i ; L) of widthL

pixels centered on somex∗

i . Their convex approximationsEi(xi)
in (2) are shown at the bottom. Uncertainty in patch classifications
(see the middle illustration that matches the right nose corner) can
be treated by iteratively centeringW(x∗

i ; L) on a current align-
ment and reducingL in algorithm 1. The final alignment is shown
on the right face, and located at the crossed lines in the other fig-
ures.

be the offset of the local energy function from the mean
feature location. This observed quantity is dependent onz

in a generative model: With

Ei(xi) = Ei(µi + Λiz) (4)

=
1

2
(∆mi −Λiz)

⊤
Ai(∆mi −Λiz) (5)

being a negative log likelihood forz, we havep(∆mi|z) =
1
Z exp(−Ei(xi)), and therefore the likelihood for each local
alignment is

p(∆mi|z) = N (∆mi;Λiz,A
−1
i ) . (6)

As ∆mi ∈ R
2, let ∆m ∈ R

2I be the vector concatena-
tion of all I patch alignment offsets∆xi, and letA =
diag({Ai}) ∈ R

2I×2I have submatricesAi along its di-
agonal.

Bayes’ theorem provides the posterior distribution ofz,

p(z|∆m) =
p(∆m|z)p(z)

p(∆m)
=

∏
i p(∆mi|z)p(z)

p(∆m)
, (7)

which is GaussianN (z; ν,S) with covariance and mean

S = (Λ⊤
AΛ + I)−1 (8)

ν = SΛ
⊤
A∆m . (9)

The mean is also the maximum a posteriori (MAP) estimate.
The global model forx constrains the posterior to be

consistent with a low-rank representation of typical align-
ments. This constraint can be relaxed by increasingK to

Algorithm 1 Bayesian Constrained Local Model
1: initialize (Preprocessed) face imageI from VJ detec-

tor; patch experts{wi}Ii=1 (section 4);Λ andµ; ini-
tial window sizeL; minimum window sizeLmin; initial
warpν = 0.

2: repeat
3: for i = 1 to I do
4: Findx

∗
i ← µi + Λiν and determineW(x∗

i ; L).
5: Determinepi(xi) for each possible alignment cen-

trexi ∈ W(x∗
i ; L) using (19).

6: Findci andAi in (16).
7: end for
8: ∆m← c− µ andA← diag({Ai})
9: ν ← (Λ⊤

AΛ + I)−1
Λ

⊤
A∆m

10: L← L− 2
11: until L < Lmin

12: return x
∗ ← µ + Λν

D, but with a range of appearance variations and occlusions
the patch classifiers will not be exact, and a workable com-
promise has to be made. In this work the warpz hasK = 5
degrees of freedom.

2.2. A practical algorithm

A practical algorithm has to address cases, as illustrated
in figure 1, where the patch classifiers can give false or
noisy responses. One solution is to iteratively use the poste-
rior mode to shift and decrease the window size over which
E(xi) is estimated, as false responses can skewE . Equa-
tion (7) implies that “imprecise” energy functions are al-
ways correlated with (and aided by) more precise patch
responses. Similar to an annealing schedule, the energy
functions therefore become more sharply peaked as false
responses are disregarded.

LetW(x∗
i ; L) be a square window of widthL pixels cen-

tered onx∗
i , so that all possible alignments around the cur-

rent estimatex∗
i are considered when estimating the “ob-

servation” parametersci andAi of E(xi). These parame-
ters are determined through a range ofI classifiers, each of
which gives the probabilitypi(xi) that somexi aligns with
an unknown fiducial pointi. The probabilitypi(xi) typi-
cally takes a localpatchof pixels aroundxi into account,
and this process is explained in sections 3 and 4.

In algorithm 1 this method is referred to as a Bayesian
constrained local model (BCLM).

2.3. Maximum likelihood solutions

The generic CQF and ELS methods of Wanget al.
[18, 19] iteratively fit versions of the maximum likelihood
(ML) estimate ofp(∆m|z) in (7). As ML solutions are
equivalent to MAP solutions with a non-informative prior,



this is useful when we don’t have any prior belief about the
(low-rank) distribution of features on a face. In practice
this argument is less strong, as alignment methods often
fail when initialized too far away from the “truth”. Prior
knowledge about typical faces that pass through the detec-
tion stage may also be available.

Generic CQF The energy function in (2) can be rear-
ranged so that the likelihood function appears in terms of
warp updates∆z = z − ν

∗, with ν
∗ coming from a pre-

ceding iteration in algorithm 1. Using∆xi = xi − x
∗
i we

have

Ei(xi) =
1

2

(
∆xi − (ci − x

∗
i )

)⊤

Ai

(
∆xi − (ci − x

∗
i )

)
.

(10)
The relation∆xi = Λi∆z specifies how much the fiducial
points should be adjusted given a warp update∆z, asx∗ =
Λν

∗ + µ.
If ∆m

′
i = ci − x

∗
i is defined as an observation of the

offset of the local energy function from the current fiducial
point estimate, and (10) is treated as a negative log likeli-
hood, thenp(∆m

′
i|∆z) = N (∆m

′
i ; Λi∆z,A−1

i ), and the
ML solution tomax∆z

∏
i p(∆m

′
i|∆z),

∆̂z = (Λ⊤
AΛ)−1

Λ
⊤
A∆m

′ , (11)

is equivalent to the warp update of equation (9) in [19].

ELS Each step in ELS searches locally, i.e. in a window
W(x∗

i ; L), for the highest alignment response, defined as

ci = argmax
xi∈W(x∗

i
;L)

p(xi) . (12)

By defining the certainty in the approximation to be
e.g. proportional toAi = diag(p(ci), p(ci)), and using it
in (10), the ML solution in (11) is equivalent to the ELS
weighed least squares optimizationwarp update.

As ELS is based on local maxima in the patch response
surfaces, it is clear why CQF is superior when the patch
classifiers are noisy, as it incorporates responses in a whole
window.

2.4. Multiple sets of feature detectors

The Bayesian framework allows different patch align-
ment classifiers to be seamlessly incorporated into the
model. Generalizing further, letr = 1, . . . , R index sets of
patch alignment classifiers{Mri}Ii=1, with each giving rise

to a convex error function with parametersc
(r)
i andA

(r)
i ,

where featuresi = 1, . . . , I are to be aligned.

With multiple observations∆m
(r)
i = c

(r)
i −µi, the pos-

terior distribution ofz is again Gaussian with covariance

and mean

S =

[
Λ

⊤

( ∑

r

A
(r)

)
Λ + I

]−1

(13)

ν = SΛ
⊤

∑

r

A
(r)∆m

(r) . (14)

This approach is motivated by the fact that classifiers—
especially when designed to be fast—may give a few false
responses. Section 5 illustrates how a combination ofR =
2 sets of classifiers can improve on the alignments resulting
from when either set is used individually.

3. Local convex energy functions

In this section a simple analytic method is presented for
determining the convex energy functions. Wanget al. pos-
tulated using a quadratically constrained quadratic program
that is costly to solve directly [19], but rather simplified the
problem to a quadratic program by constraining the form of
Ai to be axis-aligned. This restriction is not ideal when the
feature responses are e.g. diagonal, and theE is required to
model these possibilities.

Letxi = (xi, yi) be the centre of aP×P patch of pixels.
Define the patch on the (possibly preprocessed) imageI
asI(xi): it is the vector concatenation of theP 2 patch of
pixels inI, centered atxi. Finally define the binary variable
ai such that

pi(xi) = p(ai = 1 | I(xi),Mi) (15)

is the probability thatxi aligns with (or is centered at) the
ith fiducial point,given its surrounding patchI(xi) and a
patch classification modelMi.

Parametersci andAi in (2) can be found by minimizing

arg min
Ai,ci

∑

xi∈W(x∗

i
;L)

pi(xi) Ei(xi) , (16)

which equivalently fits a Gaussian density to weighted data
in W(x∗

i ; L). The sufficient requirement forAi being
positive definite is thatpi(xi) > 0, so that any posi-
tive function which gives proportionally higher weight to
good alignments can realistically be used. Withs =∑

xi∈W(x∗

i
;L) pi(xi) the minimum is straight-forward:

ci =
1

s

∑

xi∈W(x∗

i
;L)

pi(xi)xi (17)

A
−1
i =

1

s

∑

xi∈W(x∗

i
;L)

pi(xi)(xi − ci)(xi − ci)
⊤ . (18)

Figure 1 illustratespi(xi) and the resulting convex approx-
imations.



4. The patch classifiers

The patch classifiers can be constructed around any prob-
abilistic method. Fully probabilistic kernel-based classifiers
[14] are ideal, but the evaluation of even a moderate amount
of kernels to classify aP 2 patch foreachpixel inW(x∗

i ; L)
poses a time vs. accuracy trade-off. Linear logistic regres-
sion (similar to the linear support vector machine in [19]) is
only based on a dot product, and used here because of its
computational speed.

For each featurei a data setDi = {I(x
(m)
i ), a

(m)
i }Mm=1

was created, wherea(m)
i = 1 if the patch is aligned and

−1 otherwise. The data set was purposefully built around
faces from publicly available Internet images, that were de-
tected by a VJ detector. This formed the basis of our prior
assumption of faces entering the alignment stage of the
pipeline, and parallels the LFW assumptions [7]. A total
of N = 1750 faces were marked up with 33 feature points
each (for use in an AAM in section 5), of whichI = 12
were used for patch classifiers. Foreachfeaturei a total of
7000 aligned and 17500 misaligned patches of sizeP = 19
were used to giveM = 24500 training examples. The
aligned patches were sampled from the exact alignment, and
from the alignment offset with a random 1-pixel shift. Half
the misaligned patches were sampled from within a 3-19
pixel window around the exact alignment, while the sec-
ond half were drawn randomly from the rest of the image.
EachI(x(m)

i ) is normalized in a preprocessing step by sub-
tracting the mean pixel value of all the patches inDi, and
dividing by the variance of all the pixels inDi. The same
preprocessing is done when aligning patchi on a new face.
FinallyI(xi) is concatenated with an additional offset value
clamped at 1, so thatI(xi) ∈ R

P 2+1.
Let the probability of a correct (or incorrect) alignment

be
p(ai | I(xi),wi) = σ

(
aiw

⊤
i I(xi)

)
, (19)

wherewi ∈ R
P 2+1 defines a patch classifier, andσ(z) =

1/(1 + e−z). The parameterswi are found by minimizing
the error function (a negative log likelihood plus negative
log prior) for each patchi,

L(wi) = −
∑

m

log
[
(1− ǫ)σ

(
a
(m)
i w

⊤
i I(x

(m)
i )

)
+ ǫ

]

+
α

2
w

⊤
i wi , (20)

with a conjugate gradient-based algorithm. A small value
ǫ > 0 aids in numeric stability when optimizing forwi,
and can be interpreted as a probability oflabel noise: when
a subject wears dark glasses, for example, we account for
the possibility of the patch not being a good example of
an alignment. The value ofα is chosen through cross-
validation.

Figure 2. A selection of BCLM alignments from the LFW data set,
usingpi,prod(xi) as patch classifier.

Figure 3. A few example errors from the LFW data set: a weak
eyebrow and eyebrow-like eye response misaligns the eyes; afalse
left mouth corner detection; a lack of a strong right eye corner
detection enforces a best guess.pi,prod(xi) was used as patch
classifier.

On data with a similar distribution toDi the classifiers
gave error rates of 8 to 13 percent over the various features.
False positives, e.g. a “centre of upper lip” patch, which will
give a positive response along the upper lip and not merely
for one or two pixels, can be judiciously treated, as was
proposed in section 2.2.

5. Results

The accuracy of algorithm 1’s BCLM was tested on
faces from the LFW [7] and BioID [8] data sets. For each
test set 200 faces were marked up with 33 (for an AAM
tested against here) true feature point locations, of which
12 were used for a generic CQF and BCLM. CQF was al-
ready shown to be superior to ELS [19], and is not compared
against here. The training set comprised of 1750 similarly
marked up faces from publicly available Internet images,
and contains faces similar to the LFW data set.
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Figure 4. The alignment error for different methods on the LFW
data set. The AAM shape parameter was randomly initialized ac-
cording to the prior described in section 2. “h+h” refers to acom-
bination ofpi,harris(xi) andpi,hist(xi) in the posterior mode in
(14), and improves an AAM, a CLM, and their separate use in
BCLMs.
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Figure 5. The alignment error for different methods on the BioID
data set. The AAM shape parameter was randomly initialized us-
ing the BCLM feature point locations withpi,prod(xi).
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Figure 6. Improving results by taking the average of an alignment
and an alignment of a horizontal mirror image of the same face.

Four different BCLM settings are explored. The face is
preprocessed in two ways, so thatR = 2 sets of linear clas-
sifiers are trained and used:

1. A histogram-normalized image givespi,hist(xi) for
featurei’s centre.

2. A Harris image, where the image is preprocessed
with a Harris corner and edge detector [6], and the
(log) gradient magnitude used for each pixel, gives
pi,harris(xi).

Thirdly, the classifier outputs are also multiplied with

pi,prod(xi) = pi,harris(xi)× pi,hist(xi) , (21)

so that a strong positive response occurs when both classi-
fiers are in agreement. Finally, the outputs frompi,harris(xi)
andpi,hist(xi) are combined using (14). Figures 2 and 3 il-
lustrate typical alignments, and example misalignments that
can occur.

The AAM [1] was trained on the same set of (scale
and translation normalized) faces, and used a 7-dimensional
shape parameter. The appearance parameters were kept sep-
arate [13] as they are useful as a largely shape-independent
feature vector in the recognition stage [9, 16]. For each test
set thebestset of patch classifiers from the BCLM results
were employed in the generic CQF. The BCLM started with
an initial window size ofL = 31, which proved to be suf-
ficiently large for a variety of features to be detected in the
first iteration of the algorithm. The majority of computation
time for alignment is consumed by classifier evaluations;
using a single set of 12 patch classifiers a face is aligned in
0.2 to 0.3 seconds on a 2 GHz processor.

Test results are plotted in figures 4 and 5 in terms of
alignment convergence curves, which show the percentage
of faces that achieve a better average root mean squared
point error (RMS-PE) than the givenx-axis value. A combi-
nation of classifiers in a BCLM generally improves on their
separate use and on a generic CQF, and shows a marked



improvement over an AAM. The mean in (1) is shown as a
baseline.

The final result in figure 6 shows that instead of combin-
ing two sets of classifiers, a better fit can also be achieved
by averaging the alignment with the alignment of a hori-
zontal mirror image of the same face. This result can be
expected: because eachDi was created from random patch
samples from the training images,p(ai | I(xi),wi) is not
symmetric around horizontal flips ofI(xi).

In practice, the tail of the alignment convergence curve
is significant in a detection–alignment–recognitionpipeline,
as it represents the fraction of “badly aligned” faces that
would typically be passed to the recognition stage. Con-
sidering results on the LFW dataset in figures 4 and 6, the
BCLM is therefore most useful when faces appear in an un-
constrained environment.

6. Conclusion

The generic CQF can be generalized to a Bayesian ver-
sion, which allows multiple sets of patch alignment classi-
fiers to be used. For even better alignment, the choice ofK
(where more degrees of freedom will allow for more accu-
rate fits) needs to be traded against the quality and speed of
the patch classifiers. As the BCLM formulation is proba-
bilistic, other parameters and beliefs can be included in its
Bayesian network to further improve accuracy in this task.
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