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Abstract

We present a system for fast model-based segmentation
and 3D pose estimation of specular objects using appear-
ance based specular features. We use observed (a) specular
reflection and (b) specular flow as cues, which are matched
against similar cues generated from a CAD model of the
object in various poses. We avoid estimating 3D geome-
try or depths, which is difficult and unreliable for specu-
lar scenes. In the first method, the environment map of the
scene is utilized to generate a database containing synthe-
sized specular reflections of the object for densely sampled
3D poses. This database is compared with captured images
of the scene at run time to locate and estimate the 3D pose
of the object. In the second method, specular flows are gen-
erated for dense 3D poses as illumination invariant features
and are matched to the specular flow of the scene.

We incorporate several practical heuristics such as use
of saturated/highlight pixels for fast matching and nor-
mal selection to minimize the effects of inter-reflections
and cluttered backgrounds. Despite its simplicity, our ap-
proach is effective in scenes with multiple specular objects,
partial occlusions, inter-reflections, cluttered backgrounds
and changes in ambient illumination. Experimental results
demonstrate the effectiveness of our method for various syn-
thetic and real objects.

1. Introduction

Consider the scene shown in Figure 1 which has multi-
ple specular objects on a cluttered background, resulting in
occlusions and inter-reflections. In this paper, we present a
simple and yet effective and fast system to locate and esti-
mate the 3D pose of specular objects in such scenes. As-
suming a known CAD model of the object, we show that
simple appearance/feature matching can surprisingly give
fast and reliable segmentation and pose estimates for such
challenging scenarios.

Model based 3D pose estimation is a classical vision
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Figure 1. Localization and pose estimation of specular objects
is challenging in typical scenes as shown due to clutter, inter-
reflections and partial occlusions.

problem and a variety of solutions based on feature cor-
respondences, texture cues, and range data have been pro-
posed. However, pose estimation and segmentation remains
a challenging problem for specular objects. Model based
pose estimation has been extensively studied for diffuse ob-
jects. Classical approaches attempt to match geometric 3D
features on the object to 2D features from images to es-
timate the object pose, typically ignoring the illumination
information. These techniques rely on texture or intensity
cues in 2D images or video [15, 18, 21, 22, 23, 28, 32],
where it is assumed that the texture is invariant against po-
tential variations of the scene. However, this assumption
does not hold if there are severe illumination changes or
shadows. Moreover, textureless objects cannot be handled
by these approaches.

Knowledge of accurate 3D or depth information can also
help in several vision problems such as pose estimation. A
straightforward approach for 3D pose estimation would be
to estimate 3D/depths in the scene and match it with the ob-
ject model to estimate the pose. Several range image based
methods [4, 8, 10, 11, 12, 29, 30] have been proposed along
those lines. However, for specular objects, 3D estimation is
challenging, noisy, and non-robust.

Registering real images with synthetic images were pro-
posed by Horn and Bachman [16, 17] for image understand-
ing and automatic terrain classification, where a reflectance
model was used to generate synthetic images. In contrast,
we simply assume perfect mirror reflection for specular ob-
jects, although the actual BRDF may have a diffuse com-
ponent. We analyze the effect of this assumption on pose
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estimation.

Recently, [3] proposed to use multiple monocular cues
including polarization and synthesized CAD model images
for 3D pose estimation. However, we only use image inten-
sities and propose to use specular flow as another cue. Spec-
ular reflection has been used for 3D pose refinement [20],
starting from a known coarse pose. Their approach uses
both texture and specular cues and handles only a single
object in the scene. However, absolute pose estimation and
segmentation of specular objects is much more difficult than
pose refinement. We handle multiple specular objects in
cluttered environments. In addition, we specifically use a
mirror sphere to obtain the environment map, which is used
to render the synthetic images.

Note that the process of pose estimation indirectly gives
segmentation (localization of the object). For matching real
photos to synthetic images by rendering the specular ob-
ject requires additional information about the illumination,
which is often simplified and represented by the 2D envi-
ronment map. In our second approach, the requirement of
the environment map can be removed by matching specular
flows as an illumination-invariant feature.

As computational power keeps on increasing, one can
use simple, brute-force methods for challenging vision
problems such as pose estimation. Our goal is to develop
a simple, fast and practical system. We report recognition
time of few seconds on commodity hardware (without using
GPUs) by matching 25000 synthesized images. We propose
practical heuristics such as the use of saturated/highlight
pixels for fast matching and normal selection to minimize
the effects of inter-reflections and cluttered backgrounds.

1.1. Benefits and limitations

We demonstrate that the proposed system handles chal-
lenging scenes with partial occlusions, background clut-
ters, and inter-reflections. Our method does not require
3D/depths estimation of the target scene and is conceptu-
ally simple and easy to implement. The limitations of our
approach are as follows.

e We require placing a calibration object (mirror sphere)
in the target scene to capture the environment map.

e We require the environment map to be of sufficiently
high frequency to induce variations in the synthesized
images.

e The specular-flow based method requires specific mo-
tion of the environment to induce the specular flow.

e Planar surfaces and surfaces with low curvature cannot
be handled.

1.2. Related work

3D pose refinement using specular reflections has been
proposed in [20]. Given a short image sequence and initial

pose estimates computed by the standard template match-
ing, their approach first separate Lambertian and specular
components for each frame and derive environment maps
from the estimated specular images. The environment maps
are then aligned in conjunction with image textures to in-
crease the accuracy of the pose refinement. Similar to [20],
our approach also exploits specular reflections for 3D pose
estimation. However, we focus on absolute pose estimation
and segmentation of specular objects in a scene rather than
pose refinement. Our approach does not require the object
to be textured to compute an initial pose estimate and can
estimate the absolute 3D pose directly from specular reflec-
tion.

Specular surface reconstruction: A wide range of
methods derive sparse 3D shape information from the iden-
tification and/or tracking of distorted reflections of light
sources and special features [5, 6, 26, 31, 34]. Dense mea-
surements can also be obtained based on the general frame-
work of light-path triangulation as shown in [7, 19, 24].
However, these methods usually need to perform accurate
calibration and control of environments surrounding the tar-
get object and require several input images. On the other
hand, our method uses a simple mirror-like sphere as a
calibration object and requires just two input images (or a
HDR image). In addition, we do not need to estimate the
3D/depths in the scene.

Specular flow [27] refers to the flow induced by a small
environmental motion on the image plane for a specular ob-
ject. It can be utilized for specular surface reconstruction
without any environment calibration as shown in [1, 33] for
synthetic examples, or for detecting specular surfaces in im-
age [9]. Surface reconstruction using specular flow requires
a pair of linear PDE’s to be solved using initial conditions,
which are not easy to estimate in real situations. In addi-
tion, the accuracy of 3D reconstruction using specular flow
has not been established for real scenes yet. We show that
specular flow can also be used as a cue for 3D pose estima-
tion. Since we avoid 3D reconstruction, we only require to
generate the specular flows corresponding to different ob-
ject poses for subsequent matching.

2. Problem statement

Given a scene consisting of several specular objects, our
goal is to simultaneously locate and estimate the absolute
3D pose for a given object using its CAD model. We as-
sume that the target object has perfect mirror-like BRDF,
although in practice the actual BRDF may differ. The 3D
pose is defined by a 3D translation vector (z,y, z) and ro-
tation angles (0, ¢, o). Additionally, it is assumed that the
distance between the camera and the target object is approx-
imately known (z ~ zg). This is a reasonable assumption
under many controlled applications. All equations in this
paper are derived from the assumption of the orthographic
projection for notational simplicity. But they can be easily
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Figure 2. Overview of environment map based pose estimation.

generalized to the perspective case and we actually use the
perspective projection for experiments.

We pursue a top-down approach, where we assume
known high level information such as the object’s geomet-
ric and photometric properties and/or illumination informa-
tion, and then generate and utilize the low level features
observable in 2D image to estimate 3D pose. Specifically,
we render the given 3D model with the mirror-like BRDF
and estimate the best 3D pose and location of the object,
which makes the resultant synthetic specular features well
matched to the features in the real input image. We use a
brute-force matching strategy to obtain a coarse pose, which
is further refined using optimization techniques. Now we
describe two methods that utilize (a) rendered specular im-
ages and (b) specular flows as the cues for matching.

3. Environment map based pose estimation

In this method, we first measure the environmental illu-
mination. In general, this information can be formulated
by a 5D plenoptic function [2]. We assume that the tar-
get object is sufficiently far away from its surrounding en-
vironments, which simplifies it to a 2D environment map.
Specifically, we put a small mirror-like sphere in the target
scene and use its image as the 2D environment map. To han-
dle wide dynamic range, we capture two environment maps,
FE; and Eg at large and small exposure times respectively.

3.1. Generating synthetic specular images

Let the object surface S(z,y) = (x,y, f(z,y)) be
viewed orthographically from above and illuminated by a
far-field environment F as in Figure 3. Let r = (0,0, 1) be
the viewing direction, n(z, y) the surface normal at surface

X

Figure 3. Image formation for a specular object.

point (z,y, f(z,y)), and i(z, y) the direction of the incident
light ray which can be represented as two spherical angles
a(z,y) (elevation) and B(x,y) (azimuth). Using the law of
the reflection (i = 2(f1- #)fi — 1), the spherical angles of the
incident light ray in terms of surface derivatives are given
by a = tan_l(%) and 3 = tan_l(%). Then the
image of the specular surface is given by

' . 1
(tan (248 tan ()

The above equation can be used to generate reference
specular images corresponding to pre-defined pose hy-
potheses, assuming known CAD model. The number of
these pose hypotheses should be sufficiently large in order
to cover large pose variations. We uniformly sample the ro-
tation angles to generate 25000 — 50000 reference images
by environment mapping [13, 14]. Let Rf, , and Rj ,
denote the synthetic specular images using E;, and Eg as
the environment map respectively.

3.2. Matching for pose estimation

Let I, and Ig denote the two input images captured us-
ing the same exposure times used for environment maps.
We compare the input images with the reference specular
images corresponding to densely sampled pose hypotheses
and then obtain a coarse pose estimate as the best matched
pose hypothesis. We propose following two heuristics to
improve the speed and reliability of matching.

Using highlights/saturated pixels: In general, the spec-
ular image consists of highlights (saturated pixels) due to
bright light sources. For mirror-like or metallic objects, the
highlight pixels are extracted by applying a simple thresh-
old to the short exposure images. The resulting binary im-
ages are referred to as highlight images. Let Dy and Dy
refer to the distance transform of the highlight images cor-
responding to the input and reference highlight images. We
use the highlight pixels for fast localization/pose estimation
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by minimizing

CHL(97¢a oa$7y) =

where (u, v) is pixel coordinate and Ny, denotes the num-
ber of highlight pixels.

The highlight based cost function has several advantages.
Firstly, the highlights are usually sparse in the input image,
so they can be used as a strong constraint for restricting
the object’s location. Secondly, distance transform makes
the cost distribution smoother. Finally, since the stencil of
the highlights contains a very small number of pixels, com-
puting the above cost function can be done efficiently. In
our experiments, the proposed highlights based cost func-
tion converges well to a global minimum rapidly.

Normal selection for geometrically reliable pixels: To
account for inter-reflections and background clutter, we pro-
pose a normal selection procedure to use only geometri-
cally reliable pixels by avoiding illumination directions cor-
responding to small elevation angles. Our geometric sten-
cil selection is as follows. First, we compute the incident
light ray direction i for each pixel of the reference image
using the law of reflection and known surface normal for
the given pose. Then, the reliability of the pixel informa-
tion is defined by considering the illumination direction as
shown in Figure 4. Illumination directions corresponding
to small elevation angles are usually less reliable because of
inter-reflections between the specular object and its neigh-
bors. We use only those specular pixels for which incident
light rays have the elevation angles larger than 90 degrees.
We define a second cost function based on geometrically
reliable pixels

CGR(97 ¢7 g,%, y) = l—g(IL(U,,”U), Raqb,o-(u_xa U_y))a

where ¢() denotes the normalized cross correlation (NCC)
function. Although it seems natural to use the object’s seg-
mentation mask as the stencil for NCC computation, we
found that using only geometrically reliable specular pix-
els as the stencil produces better results in practice.

Coarse pose estimation: The best match among the ref-
erence images is found in two steps. In the first step, for
each rotational pose, the best translation in the image plane
with its associated cost is obtained using only the highlight
pixels based cost function. For this translation optimization,
we use the downhill simplex algorithm [25]. As the initial
points for the downhill simplex algorithm, we use the three
corner points of the input image. Then the translation is re-
fined by performing optimization considering all geometri-
cally reliable pixels. Once we have the optimal translations
and cost values for each rotation, we compare these cost
values and choose the rotation with the minimum cost. We
refer to the obtained pose as coarse pose, since it depends

(a) (b)
Figure 4. Reliability computation is illustrated in (a). Illumina-
tions from i; and i, are considered as reliable and unreliable, re-
spectively. Examples of reliable and unreliable pixels for a mirror
sphere are shown in (b).

on the discretization of the database (number of reference
images).

Pose refinement: Since the above pose estimate is ob-
tained by matching the reference images, it is accurate only
up to the discretization of the database. The estimated 3D
pose is further refined by optimizing over all five pose pa-
rameters using a steepest descent algorithm, where the gra-
dient at each step is computed numerically. We minimize
the reliable pixels based cost function and initialize the pose
parameters as the coarse pose estimate obtained above.

4. Specular flow based pose estimation

In this method, we utilize specular flow [27] as fea-
tures for matching, which is defined as the optical flow in-
duced by the camera or scene/object motion in the images
for specular reflection. While previously specular flow has
been used for 3D shape reconstruction [1], we propose to
use it for 3D pose estimation. Similarly to [1], we keep the
relative pose between the camera and object fixed, and only
assume environmental motion. We capture two images of
the target scene under pre-defined rotation of environment
around known direction (e.g. camera’s viewing direction).
We use a simple block matching algorithm to obtain the 2D
displacement vectors for each pixel.

Note that since the relative pose between the camera and
the scene is fixed, optical flow is mainly observed on specu-
lar objects due to illumination change. Therefore, in a clut-
tered scene, this motion cue can be used for strongly con-
straining the specular object’s location, similar to the high-
lights in the environment map based method.

4.1. Generating reference specular flows

The angular motion of far-field environment can be rep-
resented as a vector field w(a, ) = (22, 92) on the unit
sphere. This environment motion induces a specular flow

dat > dt
u(z,y) = (%, %) on the image plane. This flow is related
to the environment motion through the Jacobian J and can

be written as
u=1J *1w, ()
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Figure 5. Overview of specular flow based pose estimation.

where the Jacobian can be expressed in terms of surface
shape as

Sefeatfyfoy Sfofoy+Fyfyy
ya 9@pB) | VAHFVAD AV
8(Ey zJzy —Jylzx zJyy —JyJxy
) 2171 2T

3)
This equation can be used for generating reference specular
flows corresponding to densely sampled pose hypotheses.
Let the reference specular flow image synthesized from ori-
entation (6, ¢, o) be denoted by Ry 4 .-

The specular flow does not depend on the illumination
information but only on the motion and the object’s shape
and pose. Therefore, under the assumption that the mo-
tion and the object’s shape are given, it can be used as
the illumination-invariant feature for pose estimation. Note

that the determinant of J can be written as det(J) =
2K (14 V£]1?)

V£l i
face. Thus, planar surfaces and surfaces with low curvatures

cannot be handled by this method. In addition, for the spec-
ular flow to be estimated reliably, the environment should
have sufficiently high frequency variations.

, where K is the Gaussian curvature of the sur-

4.2. Matching specular flows

Similarly to the previous method, the reference specular
flows are compared with the input specular flow I to esti-
mate a coarse pose as follows:

Using motion segmentation for fast matching: We de-
fine a motion segmentation image as the binary image indi-
cating the presence/absence of specular flow. As discussed,
since the relative pose of the camera and object is fixed, the
motion segmentation image gives strong cues for location

of specular objects, similar to saturated pixels in environ-
ment map based approach. Thus, a fast location search can
be done using motion segmentation image.

Again, let D; and D, denote the distance transformation
of motion segmentation images for scene specular flow and
the reference specular flow Ry 4 , respectively. A motion
segmentation based cost function is defined as

CMS(97¢70-’$7:U) =

Z(u,v)(Dl(u’ v) — D%¢7U(u -,V = y))2

Nurs

where the summation is carried out for motion segmenta-
tion pixels of Ry ¢ » and Njsg denotes the number of such
pixels.

Using specular flow: We define a matching error be-
tween the input specular flow I(u,v) with the translated
reference specular flow Ry 4 o(u — z,v — y). In reality,
specular flow contains many outliers, so simple cost func-
tions such as sum of squared differences (SSD) does not
work well. Instead, we use a robust cost function based on
the number of inlier pixels. First, we define the inlier pix-
els as ones where the difference between the input specular
flow vector I(u,v) and the reference specular flow vector
Rg,¢.0(w — x,v — y) is less than a small threshold (1.0 in
our experiments). Then, the matching cost function C'g - is
defined as

CSF(Q, ¢a 0, T, y) = _|M|a

where M is the set of inlier pixels.

Coarse pose estimation: First, translation (z, y) is opti-
mized for each rotation (6, ¢, o) by using the downhill sim-
plex algorithm and motion segmentation based cost func-
tion, initialized by three corner points of the input image.
Then translation is refined by minimizing C's . Finally, by
comparing best costs from all translation optimized poses,
the best rotation values are chosen.

Pose refinement: Using the above coarse pose as the
initial starting pose, we refine all five DOF parameters for
pose by minimizing the SSD cost function.

5. Experimental results

In this section, we present the results of both approaches
on various synthetic and real objects. All experiments have
been performed on a standard PC with 2.66 GHz Intel quad-
core CPU and 3.25 GB RAM. Before pose estimation, ref-
erence synthetic images in Section 3 or reference specu-
lar flows in Section 4 are synthesized (using OpenGL) and
stored off-line. The resolutions of the input images and the
reference images are 400 x 300 and 100 x 100, respectively.

For the environment map based method using 25000 ref-
erence images, on average our approach takes 2.26 and 0.44
seconds for coarse pose estimation and fine pose refine-
ment respectively. The corresponding numbers for spec-
ular flow based approach are 32.99 and 0.49 seconds re-
spectively. Note that the computation time is dominated
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z (mm) | ymm) | 6C) | ¢C) | o)
Env. Map 0.29 039 [ 212 ] 1.64 [ 1.69
Spec. Flow | 046 039 | 3.64 | 2.85 | 2.06

Table 1. Average pose errors for successful pose estimates (max-
imum error less than 1 mm and 10° for translation and rotation
respectively).

by coarse pose estimation which utilizes brute-force match-
ing and the downhill simplex algorithm. We believe that
this process can be parallelized by using modern graphics
processing units (GPUs) similarly to [12], and could be re-
duced.

5.1. Synthetic objects

For the quantitative evaluation of our methods, we per-
formed experiments using a synthetic object, but with a real
environment map captured using a mirror ball. The refer-
ence synthetic images are generated using the known CAD
model and the environment map, assuming perfect mirror-
like BRDF. To evaluate the pose estimation accuracy, we
generate a noisy input image using a random pose and
added Gaussian noise. For the specular flow based method,
two input images are generated by assuming small rotation
(5°) of the environment map. The input specular flows are
similarly generated using a random pose for the object.

We compare the results with ground truth pose parame-
ters. The resultant pose is regarded as success if the maxi-
mum pose errors are less than 1 mm and 10° for translation
and rotation angles respectively. The average pose errors for
successful pose estimates after 50 trials for both methods
are shown in Table 1. The environment map based method
appears to be more accurate than the specular flow based
method. Horn and Bachman [16, 17] argues that using pixel
intensities instead of first extracting features is better for
matching real images to synthetic images. Our results also
show that the environment map based method is more accu-
rate than the specular flow based method.

5.2. Robustness analysis

Note that we made simplifying assumptions on BRDF
(mirror-like) as well as assumed that exact geometry and en-
vironment map is available. In practice, however, the BRDF
could consist of diffuse component as well as a specular
lobe. In addition, the CAD model may not be accurate and
the changes in ambient illumination could effect the envi-
ronment map. We investigate how these deviations degrade
the performance of our system.

We first generate reference synthetic images/specular
flows from noiseless 3D model assuming perfect specu-
lar reflection and known environment map. We then ap-
ply both techniques to input images synthesized by assum-
ing variations in (a) object geometry (b) object reflectance,
and (c) environment map. The resultant success rates and
mean/variance of rotational pose errors are shown in Ta-

Env. Map (%) 0 (°) ¢ (°) o (°)
Geometric 94 | 259 473|180 208 | 195 225
Photometric 94 | 259 526|215 433|207 341
Environment | 95 | 2.36 429 | 1.86 2.68 | 1.87 2.51
Spec. Flow (%) 0 () ¢ (°) o (°)
Geometric 44 | 501 6.86 | 266 2.72 | 3.38
Photometric 80 | 3.28 543|240 259 | 201

Table 2. Success rates and rotational pose errors (mean/variance)
for various deviations from the ideal case for environment map
based method and specular flow based method, respectively.

(a) (b) (c) (d)
Figure 6. Variations of the environment map. (a) Using half of
original exposure time. (b) Adding people and opening door. (c)
Opening window. (d) Translating mirror to side for environment
map capture.

ble 2. For the geometric and photometric variations, we
added noise to the normal vectors of the 3D model and a
small diffuse component to the specular reflection, respec-
tively. The environment map variations are summarized in
Figure 6. Note that these variations are handled well by the
environment map approach. We can see that both methods
are robust to variations except the geometric variation in
the specular flow based method. This is because the spec-
ular flow depends on the first and second derivatives of the
surface function, so it is highly sensitive to noise in the 3D
model.

5.3. Real objects

We performed real experiments using specular objects in
cluttered environments along with multiple diffuse/specular
objects. To obtain the CAD model of the specular object,
we spray-paint the object to make it diffuse and use a com-
mercial laser scanner. Note that this will result in an imper-
fect CAD model. We applied our techniques to various real
scenes including partial occlusions, cluttered backgrounds,
and multiple specular objects with inter-reflections. Since
the ground truth 3D pose is not available, qualitative eval-
uation is performed by overlaying the rendered image syn-
thesized using the estimated pose on the input images.

Examples of real experimental results using both meth-
ods are illustrated in Figures 2, 5, and 7. Figures 2 and 7
show that the environment map based method works well
as the rendered silhouettes are well matched with the in-
put images. In Figure 5, the computed input specular flow
seems to be noisy and sparse because of textureless regions
in the input image. Nonetheless, the proposed specular flow
based method detects the target object with correct pose.

Cluttered background: Object detection and pose es-
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Figure 7. The environment map based method and the specular flow based method are applied to various real scenes containing (a)
cluttered background, (b) multiple specular objects of same kind, and (c) specular objects of different kind. Rendered synthetic silhouettes
in estimated pose are overlaid on input images. The corresponding reference specular images or specular flows are displayed in corner.

Figure 8. Failure cases for pose estimation approaches. (a) Since
discriminative features are not visible on the end of pipe, estimated
pose has large out of plane rotation error. (b) Specular reflec-
tions on a different object having similar shape lead to an incorrect
match.

timation is usually difficult in cluttered backgrounds due
to several local minima/longer convergence time. We han-
dle this effectively using the highlights/motion segmenta-
tion information. Notice that this sparse binary information
efficiently constrains the pose of the specular object in Fig-
ures 2 and 5. Other examples in Figure 7(a) show that the
proposed approach is robust to the cluttered backgrounds.

Multiple specular objects of same kind make the seg-
mentation and 3D pose estimation problem challenging due
to severe inter-reflections between them. Our approach
works reasonably well for this case as illustrated in Fig-

ure 7(b). We found that our technique for obtaining geo-
metrically reliable pixels in Section 3.2 plays an important
role in this case by excluding inter-reflection pixels.

Mixed specular objects of different kind can be also
handled by our approach as illustrated in Figure 7(c). Com-
plex specular reflections from different kind of objects are
observed in this case. This makes the pose discrimination
more ambiguous especially for the sparse information such
as highlights or motion segmentation. We can see that our
approach resolves this difficulty and detects different kind
of objects in the same scene.

Failure cases: Figure 8 illustrates typical failure cases.
In Figure 8(a), the estimated pose has out of plane rotational
error along the main axis of the long pipe. Typically, in-
plane rotation and translation has better estimation accuracy
compared to out of plane rotation and depth estimate. In
Figure 8(b), pose estimate is located on different specular
object due to similar specular reflections.

6. Discussions

We demonstrated that specular reflections can be used
for localization and pose estimation of specular objects us-
ing a known CAD model. We showed that simple fea-
ture/intensity matching can surprisingly handle textureless
and highly specular objects in challenging scenes with clut-
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tered background, inter-reflections and partial occlusions.
Our approach uses monocular camera images and does not
require 3D scanning of the target scene. The proposed ap-
proach uses simple matching cost functions and optimiza-
tion algorithms, and is fast and easy to implement. Fast
nearest neighbor search using k-d trees and dimensionality
reduction algorithms can further reduce the computational
cost of our approach.

Apparent limitation of our approach is that both pro-
posed methods require specific assumptions such as sparse
highlights have to be observed in the input image or motion
has to be restricted to only the small environmental motion.
Removing these assumptions and extending our approach to
handle more general (e.g. partially diffuse and specular) or
challenging (e.g. translucent) objects is an interesting future
work.
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