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Efficient Algorithms for Subwindow Search in Object Detection and Localization

Senjian An, Patrick Peursum, Wanquan Liu and Svetha Venkatesh
Dept. of Computing, Curtin University of Technology

GPO Box U1987, Perth, WA 6845, Australia.
s.an,p.peursum, w.liu, s.venkatesh@curtin.edu.au

Abstract

Recently, a simple yet powerful branch-and-bound
method called Efficient Subwindow Search (ESS) was de-
veloped to speed up sliding window search in object de-
tection. A major drawback of ESS is that its computa-
tional complexity varies widely from O(n2) to O(n4) for
n × n matrices. Our experimental experience shows that
the ESS’s performance is highly related to the optimal con-
fidence levels which indicate the probability of the object’s
presence. In particular, when the object is not in the image,
the optimal subwindow scores low and ESS may take a large
amount of iterations to converge to the optimal solution and
so perform very slow. Addressing this problem, we present
two significantly faster methods based on the linear-time
Kadane’s Algorithm for 1D maximum subarray search. The
first algorithm is a novel, computationally superior branch-
and-bound method where the worst case complexity is re-
duced to O(n3). Experiments on the PASCAL VOC 2006
data set demonstrate that this method is significantly and
consistently faster (approximately 30 times faster on av-
erage) than the original ESS. Our second algorithm is an
approximate algorithm based on alternating search, whose
computational complexity is typically O(n2). Experiments
shows that (on average) it is 30 times faster again than our
first algorithm, or 900 times faster than ESS. It is thus well-
suited for real time object detection.

1. Introduction

Object detection and localization is one of the most im-
portant topics in computer vision, and sliding window meth-
ods are widely applied in finding objects [5, 9, 13, 10].
Sliding window methods first train a quality function based
on the extracted SIFT[11], SURF [1] or other type of fea-
tures from the training images, and then apply the quality
function on all possible sub-images to find the object by
maximizing the quality scores. As O(n4) subwindows ex-
ist for n × n images, an exhaustive search is computation-
ally prohibitive and thus approximate methods were pro-

posed [6, 7, 18]. To overcome this, recently a branch and
bound method, called Efficient Subwindow Search (ESS)
[12], was developed to efficiently find the optimal subwin-
dow. When the quality function is linear on the histogram
of the extracted features, the quality score of a subwindow
just simply sums up the contributions of the extracted fea-
tures [12]. This allows the subwindow search problem to be
reduced to a maximum submatrix problem which finds a re-
gion in a matrix with the largest sum of entries, wherein the
matrix entry A[i, j] is defined as the sum of the contribu-
tions of the features extracted at pixel (i, j). Similarly, for
spatial pyramid matching [14], the quality function com-
pares over a few pyramid levels and sums up their contri-
butions [12]. The subwindow search problem can also be
formulated as a maximum submatrix search problem but
the matrix entry is defined as the sum of the feature contri-
butions for any pyramid level, that is A[i, j] =

∑
l Al[i, j]

where l represents the pyramid levels and Al[i, j] represents
the contributions of the features extracted at pixel (i, j) for
comparison in pyramid level l.

The maximum subarray search problem is a classical
combinational problem which was first discussed by Bent-
ley in his “Programming Pearls” column of Communica-
tions of the ACM [2, 3] as an example to demonstrate the
rules for computational efficiency. The problem is to find
a subarray that maximises the sum of the elements within
that subarray, as compared to all other possible subarrays.
For one-dimensional (1D) arrays, we have an optimal lin-
ear time solution known as Kadane’s algorithm [2]. By a
simple extension, Bentley [3] gave a solution in O(n3) time
for n × n two dimensional (2D) arrays. Motivated by the
linear time solution of the 1D maximum subarray problem,
much effort has been made to develop a subcubic (or ide-
ally quadratic) algorithm to solve the 2D maximum sub-
array problem. Unfortunately, the idea of Kadane’s algo-
rithm cannot be extended to 2D arrays since, unlike in 1D
arrays, there are multiple ways of ordering the elements in
a 2D array. So far, the best known algorithm [16, 17] is
of complexity O(n3(log log n/ log n)1/2). This sub-cubic
algorithm is based on Takaoka’s distance matrix multipli-

264978-1-4244-3991-1/09/$25.00 ©2009 IEEE



cation algorithm [15]. Whilst it is theoretically important,
the algorithm’s practical use is limited to very large n (say,
larger than a million) since its preprocessing overheads are
high. In most practical situations where n is not so large, the
subcubic algorithm is actually less efficient than Bentley’s
cubic algorithm.

Our experiments shows that, although ESS is usually
faster than Bentley’s cubic algorithm when the confidence
score is high (which indicates that the object is in the image
with high probability), when the confidence score is low it
can be much slower. The upper bound for the number of it-
erations in ESS is O(n4) and thus the worst case complexity
can be as high as this (though it rarely happens).

In this paper, based on the Kadane’s linear-time solution
for 1D maximum subarray search, we present two improved
algorithms for efficient subwindow search for object detec-
tion and localization.

The first one, called Improved ESS (I-ESS), applies the
idea of branch-and-bound row-wise, using Kadane’s algo-
rithm to compute the bound column-wise. The iterations
required are less than (n(n + 1)/2), leading to a worst case
complexity of O(n3) (since Kadane’s search is linear in n).
The novelty of this approach lies in the combination of key
ideas from Bentley [2, 3] and its application to modify ESS
to deliver a significant computational advantage whilst pro-
viding the same (optimal) results.

The second technique, called Alternating ESS (A-ESS)
is based on alternating search. Given an initial row interval,
we optimize the column interval using Kadane’s 1D sub-
array search by summing over the rows in the interval. We
then use this column interval to optimize the row interval,
summing only over the columns in the found column in-
terval. This alternating row-column optimisation process is
repeated until it converges. The iterations required are very
small (3 to 6 typically), and thus the computational com-
plexity is quadratic and can be reduced to be linear on the
number of feature points for large sparse matrices. How-
ever, the approach is not guaranteed to find the globally op-
timal solution, although empirical results indicate that the
errors are not significant.

The layout of the rest in this paper is as follows. In Sec-
tion 2, we review the formulation of maximum subarray
problem and the state-of-art algorithms. Section 3 addresses
the novel branch and bound method to solve the 2D subar-
ray problem and Section 4 address the alternating method.
The computational complexity is analyzed in Section 5 and
experiment results are reported in Section 6 to compare the
efficiency of the proposed algorithms to that of ESS and
Bentley’s algorithm.

2. Overview of Maximum Subarray Problem

2.1. The Problem Formulation

Given a 1D array a[1 : n], the maximum subarray prob-
lem is to find a subarray a[l : r] such that the sum of the
contained elements is greater than or at least equal to the
sum of the elements of any other possible subarrays. De-
note

SUM
{
a[l : r]

}
�

r∑
i=l

a[i]. (1)

The maximum subarray problem is then to find l∗ and r∗ so
that SUM

{
a[l∗ : r∗]

}
is equal or greater than SUM

{
a[l :

r]
}

for any subarray a[l : r] with [l : r] ⊂ [1 : n].
Similarly, for a two-dimensional (2D) array A[1 : n, 1 :

m], which is often called a matrix, the maximum subarray
problem is to maximize the function

SUM
{
A[t : b, l : r]

}
�

b∑
i=t

r∑
j=l

A[i, j], (2)

that is, to find a sub-matrix of A so that its sum is maximal
among all A’s sub-matrices.

2.2. Kadane’s Algorithm [2]

If all the elements of a[1 : n] are non-positive, it is easy
to see that the maximum subarray is the maximal element
and the problem can be solved in linear time. Hereafter, we
assume that the array has at least one positive element.

Algorithm 1: Kadane’s Algorithm on Maximum Sub-
array Search

Input: 1D array a[1 : n]
Output: Maximum subarray a[l : r] and its sum s
Initialization: (l, r, c, j, s) := (0, 0, 0, 1, 0);
foreach i := 1 to n do

c := c + a[i];
if c > s then

(l, r) := (j, i); s := c;
end
if c < 0 then

c := 0; j := i + 1 ;
end

end

The linear time Kadane’s algorithm is based on the fol-
lowing two facts: First, the maximum subarray starts and
ends in positive elements; Second, if we start from the first
positive element, say a[l], and sum over the subsequent el-
ements until the sum drops negative at a[r], then the opti-
mal subarray is either in a[l : r] and starts from a[l], or in
a[r + 1 : n]. Based on these two observations, one can find
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a candidate by starting from the first positive element, sum-
ming over the subsequent elements and updating the max-
imum sum until the sum drops negative, say at a[r]. By
repeating this process from the next positive element after
a[r], one can find another candidate– by going through all
the elements in the array, one can find the maximum sub-
array in linear time O(n). The algorithm is summarized in
Algorithm 1. This algorithm consists of n additions and at
most 2n comparisons, so the complexity is around 3n.

2.3. Bentley’s Algorithm [3]

Bentley’s algorithm simply applies Kadane’s algorithm
to every possible row interval, summing over the rows in
each interval to produce a 1D array for Kadane’s algorithm
to find the optimal column interval. One of the central
ideas of Bentley’s algorithm is the prefix sum, which aims
to avoid repeating summations when processing subsequent
row intervals. Given an array A[1 : m, 1 : n], the row-wise
prefix sum, denoted by Ā, is defined as

Āk �
k∑

i=1

Ai, k = 1, 2, · · · ,m (3)

where Ak and Āk denote the kth row of A and Ā respec-
tively. Note that Āk+1 = Āk + Ak+1. The computation of
Ā consists of mn additions. A closely related concept is the
integral image, which sums over columns and rows rather
than just the rows.

With the prefix sum Ā, the sum of A over rows in [t : b]
can be computed as

a = Āb − Āt−1 (4)

where a[j] �
∑b

i=t A[i, j], j = 1, 2, · · · , n and Ā0 is de-
fined as a zero vector.{

[t : b]
∣∣[t, b] ⊆ [1,m]

}
consists of m(m + 1)/2 differ-

ent intervals. Bentley’s algorithm simply applies Kadane’s
algorithm on a = Āb − Āt−1 for each interval [t, b] and
find the maximum sum. The complexity is of O(m2n). If
m > n, it can be speeded up by simply rotating the matrix
so that it has less rows than columns.

2.4. Efficient Subwindow Search: A Branch and
Bound Method

Here we only describe ESS method for maximum sub-
matrix search which relates the object detection problem
when the quality function is linear on the histogram of the
extracted features.

One of the central ideas of ESS [12] is to model the full
window set in terms of four intervals

Wfull �
{
[t : b, l : r]

∣∣t ∈ [1,m], b ∈ [1,m],
l ∈ [1, n], r ∈ [1, n]

}
.

(5)

The ESS algorithm starts by splitting Wfull along its
largest interval and computing the bounds of the two dis-
joint window sets. Then at each iteration, one splits the
maximum-bound window set along the largest interval, us-
ing a priority queue to efficiently store window sets or-
dered by their bounds. The procedure is repeated until the
maximum-bound window set consists of a single window,
which is the optimal solution. After L iterations, Wfull is
split into L+1 disjoint window sets W1,W2,WL+1. Since
Wfull has mn(m + 1)(n + 1)/4 members, the ESS algo-
rithm converges and takes at most (mn(m+1)(n+1)/4−1)
iterations.

For each iteration, the computation of the bound is con-
stant (based on the integral images), and insertions into the
priority queue takes log(L) computations. Hence, the com-
plexity is O(L log(L)), plus the overhead of calculating the
integral images (which is O(n2)). Since the upper bound
of L is (mn(m + 1)(n + 1)/4 − 1), the worst case com-
plexity of ESS is O(n4 log n) (when m = n). The iteration
number is closely related to the optimal confidence level.
When the optimal confidence level is low and thus the op-
timal subwindow does not significantly higher than other
randomly selected subwindows, it will take a large amount
of iterations to converge the optimal solution. In our exper-
iments on PASCAL VOC 2006 data set, we note that, when
the optimal confidence score is large (which means that the
object is in the image with high probability), the iterations
are typically small and sub-linear on the number of pixels,
but when the confidence score is small, it may take millions
of iterations for some images and ESS performs actually
slower than Bentley’s algorithm. In the next section, we de-
velop a novel branch-and-bound subwindow search method
for object detection and localization.

3. A New Branch-and-Bound Method

The main idea of the proposed method is a combi-
nation of the key ideas from ESS and Bentley’s algo-
rithm. Roughly speaking, we apply the branch-and-bound
method to search for the optimal row interval while apply-
ing Kadane’s algorithm to compute the bound. The opti-
mal column interval is also obtained by Kadane’s algorithm
when the optimal row interval is found. Next, we will in-
troduce the bound function and its computation, and then
explain the splitting procedure and the whole algorithm.

3.1. The Bound Function

Let us consider a general interval set

I �
{
[t, b]

∣∣t ∈ [t0, t1], b ∈ [b0, b1]
}

(6)

and its associated window set W defined as

W �
{
[t : b, l : r]

∣∣[t, b] ∈ I, [l, r] ⊆ [1, n]
}

(7)
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For convenience, we will call [t0, t1] the t-interval and
[b0, b1] the b-interval. We also assume that

t0 ≤ t1, t0 ≤ b0, t1 ≤ b1. (8)

without loss of generality. For a non-empty interval set I
defined in (6), if the condition (8) does not hold, one can
always find (t̄0, t̄1, b̄0, b̄1) satisfying (8) so that I can be
described as I =

{
[t, b]

∣∣t ∈ [t̄0, t̄1], b ∈ [b̄0, b̄1]
}

.
In order to define the upper bound for

max
[t:b,l:r]∈W

SUM
{
A[t : b, l : r]

}
(9)

we need to introduce two complementary arrays a+[1 : n]
and a−[1 : n] which are defined as

a+(j) =
∑b1

k=t0
A+[k, j], j = 1, 2, · · · , n

a−(j) =
{

0, j = 1, 2, · · · , n, if b0 < t1;∑b0
k=t1

A−[k, j], j = 1, 2, · · · , n, otherwise.
(10)

where A+ and A− are defined as

A+[i, j] = max
(
0, A[i, j]

)
, A−[i, j] = min

(
0, A[i, j]

)
.

(11)
Note that A+ consists of only the A’s positive elements
while A− consists of only the A’s negative elements (in ad-
dition to zero elements).

Then, for any [t, b] ∈ I, we have [t, b] ⊆ [t0, b1] and
[t, b] ⊇ [t1, b0] and therefore

a+(j) ≥ ∑b
k=t A+[k, j]

a−(j) ≥ ∑b
k=t A−[k, j]

(12)

which implies a+[j] + a−[j] ≥ ∑b
k=t A[k, j]. Note that

this is true for any [t, b] ∈ I and j = 1, 2, · · · , n, we have

max
[t:b,l:r]∈W

SUM
{
A[t : b, l : r]

}
≤ max

[l,r]∈[1,n]
SUM

{
a+[l : r] + a−[l : r]

}
.

(13)

We define

g(I) � max
[l,r]∈[1,n]

SUM
{
a+[l : r] + a−[l : r]

}
(14)

as a bound function since g(I) is an upper bound for
SUM

{
A[t : b, l : r]

}
with windows within W and W is

directly related to I (see (7)).
The right side optimization in (14) is actually a 1D max-

imum subarray search problem and thus the bound g(I) can
be found in linear time by applying Kadane’s algorithm.

Now, we show that if I consists of only one interval,
i.e., t0 = t1, b0 = b1, the bound g(I) is achieved by
SUM

{
A[t0 : b0, l∗ : r∗]

}
where [l∗, r∗] is the solution

of the right side maximization problem in (14). Since I

contains only one member, the largest and the smallest
size intervals are identical and thus a+ + a− = a where
a[j] =

∑b0
i=t0

A[i, j], j = 1, 2, · · · , n. Therefore the equal-
ity holds in (13) and this implies that g(I) is achieved by
SUM

{
A[t0 : b0, l∗ : r∗]

}
and the claim is true.

Hence, if we can split the full interval set

Ifull �
{
[t, b]

∣∣t ∈ [1,m], b ∈ [1,m]
}

(15)

into a series of disjoint interval sets Ifull = ∪L
k=1Ik and

the maximum-bound interval set IL consists of only one in-
terval, then we have 1). g(IL) is achieved by SUM

{
A[t0 :

b0, l∗ : r∗]
}

where [t0, b0] is the unique interval in IL and
[l∗, r∗] is the solution of Kadane’s search in computing the
bound g(IL); 2). g(IL) ≥ g(Ik) for any k < L. Based on
these two statements and note that g(Ik) is an upper bound
for SUM

{
A[t : b, l : r]

}
with windows within

Wk �
{
[t : b, l : r]

∣∣[t, b] ∈ Ik, [l, r] ⊆ [1, n]
}

(16)

and the full window set

Wfull �
{
[t : b, l : r]

∣∣[t, b] ⊆ [1,m], [l, r] ⊆ [1, n]
}

(17)

equals ∪L
k=1Wk, we conclude that A[t0 : b0, l∗ : r∗] is

the maximum subarray. i.e., the unique interval in the
maximum-bound interval set is the optimal row interval and
the optimal column interval is the solution of Kadane’s al-
gorithm in computing the maximum bound g(IL).

In order to compute the sequences a+ and a− efficiently
for each iteration, we computes the row-wise prefix sum Ā+

and Ā− in advance which are defined as

Ā+
i =

∑i
k=1 A+

k

Â−
k =

∑i
k=1 A−

k

(18)

where Ā+
i , Ā−

i , A+
i and A−

i denote the ith row of the ma-
trices Ā+, Ā−, A+ and A− respectively.

With these two row-wise prefix sum matrices,

a+ = Ā+
b1

− Ā+
t0−1,

a− =
{

0, if b0 < t1;
Ā−

b0
− Ā−

t1−1, otherwise.
(19)

and thus can be computed in O(n) time in any iteration.

3.2. The Splitting

For an interval set I, we split it into two disjoint
nonempty sets along the t-interval or b-interval (the one
with larger size), say [t0, t1] = [t0, t̃] ∪ [t̃, t1] where t̃ is
the largest integer not greater than (t0 + t1)/2. Then I is
split into two disjoint nonempty sets I = I1 ∪ I2 where

I1 �
{

[t, b]
∣∣t ∈ [t0, t̃], b ∈ [b0, b1]

}
I2 �

{
[t, b]

∣∣t ∈ [t̃ + 1, t1], b ∈ [max(t̃ + 1, b0), b1]
}

.

(20)
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Accordingly, W is split into W1 ∪W2 where

W1 �
{

[t : b, l : r]
∣∣[t, b] ∈ I1, [l, r] ⊆ [1, n]

}
,

W2 �
{

[t : b, l : r]
∣∣[t, b] ∈ I2, [l, r] ⊆ [1, n]

}
.

(21)

3.3. The Algorithm

The algorithm starts by splitting the full interval set Ifull

and computing the bounds of the two disjoint interval sets.
Then at each iteration, one splits the maximum-bound in-
terval set along the t-interval or b-interval (the one with
larger size), using a priority queue to efficiently store the
interval sets ordered by their bounds. The procedure is re-
peated until the maximum-bound interval set consists of
a single interval, which is actually the optimal row inter-
val. After L iterations, Ifull is split into L + 1 disjoint
interval sets I1, I2, IL+1. Since Ifull has m(m + 1)/2
members, the proposed algorithm converges, taking at most
(m(m+1)/2− 1) iterations. The algorithm is summarized
as follows. The input and output are the same as that in
Bentley’s algorithm and thus omitted.

Algorithm 2: Improved Efficient Subwindow Search
(I-ESS)

Input: Matrix A[1 : m, 1 : n]
Output: Maximum submatrix A[t : b, l : r]
Ini.: Set Ifull as the max-bound interval set, set the
priority queue P empty;
Preproc.: Compute the prefix sum matrices Ā+, Ā−;
while Size of max-bound interval set is not 1 do

1. Split max-bound interval set into two disjoint sets
along the t-interval or b-interval;

2. Compute bounds of two new interval sets using
Kadane’s algorithm;

3. Push both interval sets onto P , ordered by bounds;

4. Pop maximum-bound interval set from P ;

end

For each iteration, the computation of the bound is O(n)
and insertions into the priority queue take O(log(L)) (<<
m < n). Hence, the overall complexity is O(Ln) (disre-
garding the small log L term). Since L ≤ m(m + 1)/2,
I-ESS is more efficient than Bentley’s algorithm if L is not
very close to m(m + 1)/2, which is typically the case. And
similarly to ESS, the larger the optimal confidence score,
the smaller L will be. However, iteration number of I-ESS
is less dependent on the optimal confidence level than that
of ESS since I-ESS only applies branch and bound methods
along rows.

4. Alternating Search: An Approximate
Faster Algorithm

Suppose [t∗ : b∗, l∗ : r∗] is the optimal sub-window
which maximizes the function SUM

{
A[t : b, l : r]

}
. Then

[t∗ : b∗, l∗ : r∗] satisfies the following two conditions:

1. [t∗ : b∗] is the solution of the maximum subarray prob-
lem for 1D array a[1 : m] where

a[i] �
r∗∑

j=l∗
A[i, j]. (22)

2. [l∗ : r∗] is the solution of the maximum subarray prob-
lem for 1D array b[1 : n] where

b[j] �
b∗∑

i=t∗
A[i, j]. (23)

However, the subwindows satisfying the above two con-
ditions may not be the globally optimal solution. Instead,
locally optimal solutions may be found.

Based on the above observations and the fact that there
is a linear time algorithm to solve the 1D maximum sub-
array problem, we propose the following alternating search
algorithm A-ESS. We start by initializing [t : b] = [1 : m]
and optimize the column interval [l : r] by summing over
the rows and applying Kadane’s algorithm. Then we fix
the column interval and optimize the row interval [t : b] by
summing over the columns (within the column interval) and
applying Kadane’s algorithm to this. This alternating opti-
mization of the row and column intervals is repeated until
convergence. The convergence is guaranteed since the max-
imum sum function is bounded and non-decreasing for each
iteration. More precisely, let [tk : bk] be the optimal row in-
terval obtained in kth iteration with fixed column interval
[lk−1 : rk−1] (which is obtained from the last iteration). Let

fk � SUM{A[tk : bk, lk−1 : rk−1]}. (24)

Note that the summation operation of a matrix is defined in
section 2.1. In the next iteration, the row interval [tk : bk] is
fixed and we optimize the column interval. Let [lk+1 : rk+1]
be the optimal solution. Then we have

fk+1 � SUM{A[tk : bk, lk+1 : rk+1]}
= maxl∈[1,n],r∈[1,n] SUM{A[tk : bk, l : r]
� SUM{A[tk : bk, lk−1 : rk−1]}
= fk

(25)
and therefore the score function is non-decreasing for each
iteration. Also, the optimal score is bounded by the sum of
all the matrix’s positive elements, and hence the alternating
search algorithm is convergent. However, it may converges
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to a locally optimal submatrix instead of the global optimal
solution. The algorithm is summarized as follows. The in-
put and output are the same as that in I-ESS algorithm and
thus omitted.

Algorithm 3: Alternating ESS (A-ESS)

Initialization: Set (t, b) = (1,m) and g = 1;
while g > 0 do

1. Compute a[j] =
∑b

i=t A[i, j], j = 1, 2, · · · ,m;

2. Apply Kadane’s algorithm on a and find the optimal
column interval [l, r] and the maximum s1;

3. Compute b[i] =
∑r

j=l A[i, j], i = 1, 2, · · · , n;

4. Apply Kadane’s algorithm on b and find the optimal
row interval [t, b] and the maximum s;

5. Set the gain g = s − s1.

end

Similarly, one can also start the algorithm by initializ-
ing the column interval [l, r] = [1, n] rather than starting
from the rows. In our implementation, we apply both initial-
izations and choose the solution that yields the larger sum.
This can help reduce the problem of encountering a local
maxima.

In step 2 and step 4, Kadane’s algorithms takes O(m+n)
operations. For the computations in step 1 and step 3,
we recommend to compute, in advance, the row-wise and
column-wise prefix sum matrices Ā and Â where Ā[i, 1 :
n] =

∑i
k=1 Ak[k, 1 : n] and Âi[1 : m, i] =

∑i
k=1 A[1 :

m, k]. Then the vectors a in step 1 and b in step 3 can be
computed as a = Ā[b, :] − Ā[t − 1, :] and b = Â[:, r] − Â[:
, l − 1] which involve O(n + m) operations. Hence A-
ESS involves O(mn) computations in computing the prefix
sum matrices and O(l(n + m)) computations in searching
where l is the number of iterations. Since there are at most
(m + 1)m/2 row intervals and at most (n + 1)n/2 col-
umn intervals, the iteration number is less than any of them.
Hence the computation complexity may vary from O(n2) to
O(n3). However, A-ESS typically takes 3 to 6 iterations for
convergence in our experiments for a large variation of ma-
trix sizes and thus the complexity of A-ESS is dominated
by the computations of the prefix sum matrices and thus
quadratic. We conjecture that the iteration number depends
on the statistical property rather than the size of the matrix.

In the case that the matrix is sparse and the matrix size
is so large that the quadratic algorithm is expensive, one
may choose to compute a and b directly from the matrix’s
nonzero elements instead of using the prefix sum matrices.
Since the iteration number is typically small and indepen-
dent of the matrix size, the time and memory complexity

will be reduced to be linear on the number of nonzero en-
tries of the sparse matrix.

5. Complexity Analysis

Except for Bentley’s algorithm, the computational com-
plexity of the other three algorithms depends on their iter-
ations and so is difficult to estimate. However, we can es-
timate the complexity for the best and worst cases. For an
n×n matrix, the time complexity and memory requirement
are reported in Table 1.

Table 1. Time Complexity and Memory Requirement for n × n
Matrices.

Time Complexity Memory Requirement
Methods Best Case Worst Case Best Case Worst Case
BENT O(n3) O(n3) O(n2) O(n2)
ESS O(n2) O(n4) O(n2) O(n4)

I-ESS O(n2) O(n3) O(n2) O(n2)
A-ESS O(n2) O(n3) O(n2) O(n2)

We summarize the major points about the complexity
analysis as follows.

1. Bentley’s algorithm has the same complexity for best
and worst cases. The complexity depends only on the
matrix size.

2. ESS varies the most for best and worst cases. Both
the time and memory complexity vary from O(n2) to
O(n4). The performance variation of ESS can be very
large for different matrices.

3. Both memory and time complexity of I-ESS are less
than or equal to that of the Bentley’s algorithm and
thus we expect that I-ESS performs better than the
Bentley’s algorithm for most matrices.

4. Though the best and worst complexity of A-ESS is
the same as that of I-ESS, its iteration number is usu-
ally much smaller and independent of the matrix sizes.
Moreover, for large sparse matrices, the computation
complexity can be reduced to be linear on the number
of matrix’s nonzero elements.

6. Experimental Results

The experiments were conducted on the PASCAL VOC
2006 database [8] and based on the classifiers generated by
the structured output regression method [4]. So as to en-
sure a fair and unbiased comparison to ESS we obtained
and used the actual feature point data (including weights)
and their ESS code1 from the authors of [4, 12].

1Kindly supplied by the authors of [4, 12] at
http://christoph.lampert.googlepages.com/software
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All experiments 2 were conducted on a standard desk-
top PC (Intel Core 2 Duo 3.0GHz E8400) running Win-
dows XP, compiled using Visual Studio .NET 2005. The
PASCAL VOC 2006 database consists of 5304 images con-
taining 9507 objects from 10 categories. For each image
and each category, we have a 2D array. In total we conduct
53040 subwindow searches for each method and compare
their efficiency.

6.1. Search Time Comparison

The performance of Bentley’s algorithm (BENT), ESS
and the two proposed methods I-ESS, A-ESS, are shown in
Table 2 and Figure 1. Table 2 shows the clear computational
advantage of the two proposed algorithms. On average, I-
ESS is about 30 times and 28 times faster than ESS and
Bentley’s algorithm respectively, and the A-ESS is a further
30 times faster than I-ESS.

The histograms of ratios of the search times of ESS, I-
ESS and A-ESS against Bentley’s algorithm for all 53,040
subwindow searches are presented in Figure 1, which
demonstrates that I-ESS and A-ESS are consistently faster
than Bentley’s algorithm. Note that I-ESS and A-ESS are
generally faster and have lower performance variance than
ESS. While ESS can be 70 times faster than Bentley’s al-
gorithm in some cases, it can also be more than 10 times
slower than Bentley’s algorithm in other cases. This coin-
cides with our analysis on ESS that its upper bound of iter-
ations is O(n4) and so the variation of its performance can
be very large. Roughly speaking, ESS is usually fast when
the object is clearly in the image yielding high confidence
scores in sub-window search. However, if the image does
not contain the object, the optimal confidence score may be
low and ESS may be significantly slower. Figure 2 shows
the search times of ESS, I-ESS and A-ESS against the opti-
mal confidence levels. The confidence levels are quantized
into 15 grids and the search time are averaged in each grid.
From Figure 2, one can see that the search time decreases
as optimal confidence level increases for all the three al-
gorithms. However, ESS is much more dependent on the
confidence levels than I-ESS and A-ESS.

Table 2. Search Time Comparison on PASCAL VOC 2006.

CPU Time (milliseconds)
Methods Average minimum Maximum
BENT 489 48 1342
ESS 538 4.13 25440

I-ESS 17.6 1.1 129
A-ESS 0.58 0.15 1.92

2Codes available at http://impca.cs.curtin.edu.au/downloads/software.php
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Figure 1. Search Time Comparison with Bentley as a Base Algo-
rithm.
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Figure 2. Search Time Versus Optimal Confidence Levels.

6.2. A-ESS’s Accuracy

In all 53040 subwindow searches by A-ESS, there are
around 2.7% of the cases with a confidence score that dif-
fers by more than 5% from ESS. The scores of A-ESS of
these 2.7% worst cases are reported in Figure 3 with a com-
parison to the optimal scores. From Figure 3, one can see
that, the significant errors are encountered only when the
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optimal score is low ( ≤ 0.2) and thus does not effect the
detection performance. This is because the optimal score is
already low enough to show the non-presence of the object
and it does not matter if A-ESS finds a subwindow with a
lower score. Note that Figure 3 only reports the worst 2.7%
cases and the maximum score 0.35 is also low enough to
show the non-presence of the object. The highest score for
all the cases is 1.7025.
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Figure 3. A-ESS’s Error Analysis. This figure reports the cases
with more than 5% relative errors and the cases are sorted by in-
creasing optimal scores. Note that the maximum score 0.35 in
these cases is low enough to show the non-presence of the object.
The highest score for all the cases is 1.7025

7. Conclusion

We have proposed a novel branch and bound method
which is consistently and significantly faster than the state-
of-art algorithms for maximum subwindow search. An even
faster, sub-quadratic time method called alternating efficient
subwindow search (A-ESS) is also proposed, although it
may find only a local maxima. With features available, A-
ESS always completes object detection within two millisec-
onds for the images in the PASCAL VOC 2006 database.
Thus it is highly suitable for use in online applications.

The proposed algorithms are applicable in applications
of objection detection when quality function is linear on the
extracted features. They can also be applied for linear spa-
tial pyramid machining. However, the proposed algorithms
are not applicable for nonlinear quality functions so far. We
are now working to extend the ideas to speed up subwindow
search when the quality function is some typical nonlinear
kernel functions.
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