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Abstract

Local bundle adjustment (LBA) has recently been intro-
duced to estimate the geometry of image sequences taken by
a calibrated camera. Its advantage over standard (global)
bundle adjustment is a great reduction of computational
complexity, which allows real-time performances with a
similar accuracy. However, no confidence measure on the
LBA result such as uncertainty or covariance has yet been
introduced. This paper introduces statistical models and es-
timation methods for uncertainty with two desirable prop-
erties: (1) uncertainty propagation along the sequence and
(2) real-time calculation. We also explain why this problem
is more complicated than it may appear at first glance, and
we provide results on video sequences.

1. Introduction

The robust and automatic estimation of camera motion
and scene points from an image sequence (Structure-from-
Motion or SfM) is still today an active field of research. A
real-time method based on local bundle adjustment (LBA )
was introduced [10] for this problem three years ago. How-
ever, no confidence measure on the result such as uncer-
tainty or covariance was introduced before. A such measure
would be useful to give a quality information if ground truth
is not available, or even to merge the reconstruction with
data provided by other sensors such as GPS or odometer.
This Section summarizes previous works and our contribu-
tion on this topic.

Bundle Adjustment Bundle adjustment is a well known
iterative method [11] designed to solve non-linear least
square problems for SfM. It estimates a vectorx which min-
imizes a cost functionx 7→ ||y − F (x)||2. Vectorx usu-
ally concatenates 6 parameters for each camera pose and 3
parameters for each 3D point. Vectory concatenates de-
tected features in images,F concatenates projection func-
tions, and||.|| is the Euclidean norm. We call this method

global bundle adjustment (GBA) if x contains all parame-
ters of the sequence.

The time complexity of one GBA iteration isO(c3 + cp)
with c andp the numbers of camera poses and 2D points,
respectively. Although this complexity benefits the sparse
structure of the problem and the assumptionc ≪ p, real-
time GBA is impossible for long sequences.

Error Propagation Error propagation provides confi-
dence measures for bundle adjustment result [8]. Assume
that the image vectory follows a known Gaussian noise.
Then, the function which mapsy to minimizerx is approx-
imated by its linear Taylor expansion. Now, the Gaussian
noisey is propagated to Gaussian noisex such that thex
covariance matrix can be estimated. Thanks to this matrix,
uncertainty ellipsoids for a given probability can be defined
for the bundle adjustment result.

The time complexity to estimate covariances of all cam-
era poses and 3D points is at least that of one GBA iteration.

Extended Kalman Filter Bundle adjustment is based on
the Levenberg-Marquardtmethod [8], which is an improved
(damped) version of the Gauss-Newton Method. On the
other hand, the Extended Kalman Filter (EKF) may be
viewed as an incremental version of the Gauss-Newton
Method [3] and has been applied for real-time SfM [4].
EKF is known to provide less accurate results than bundle
adjustment, but it is faster. It has is own covariance man-
agement for the estimated geometry (geometry and its co-
variance are jointly updated over time). EKF requires prior
knowledge on the covariance of all estimated parameters.
A recent improvement [2] cancels this drawback, but it still
depends on linearization of constraints between frames.

Local Bundle Adjustment We recently introduced LBA
for real-time SfM [10]. The incremental SfM method is
summarized as follows. Camera poses and a sparse cloud
of 3D points are reconstructed for video frames before time
t, and a new video frame should be added to the reconstruc-
tion at timet. Interest points [7, 9] of framet are detected
and matched with those of timet − 1. Since many points
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of frame t − 1 are reconstructed, there are 2D-3D corre-
spondences for points in framet and the new pose can be
estimated. This pose is initialized by a robust method (such
as RANSAC [6]), and LBA is applied to refine the geometry
(camera poses and 3D points) of then most recent frames
t−n+1, · · · , t−1, t by maintaining consistency with pre-
vious framest−N+1, · · · , t−n (n < N ). LBA is a bundle
adjustment such that (1)x concatenates all 3D parameters
of then most recent frames and (2)y contains detected fea-
tures in theN last frames.

The time complexity of one LBA iteration isO(n3 +
np) with p the numbers of 2D points in theN last images.
Thanks to fixed and small values ofn andN (e.g. n =
3, N = 10), the GBA complexity is greatly reduced.

Our Contribution We introduce statistical models and
covariance estimation methods for the SfM parameters esti-
mated by LBA.

Section 3 describes a first method derived from the orig-
inal LBA definition using a strong independence hypothesis
(between the poses of previous framest−N +1, · · · , t−n
and the detected features in theN last frames). However,
the original LBA is not a Maximum Likelihood Estima-
tor (MLE) for this hypothesis. Then Section 4 describes
a second method derived from a new LBA which is MLE.
These two methods satisfy both desirable properties (1) un-
certainty propagation along the sequence and (2) real-time
performance.

Section 5 introduces covariance methods for both origi-
nal and new LBAs using a weak independence hypothesis,
but the real-time performance is lost. Last, we provide co-
variance results on video sequences and compare them with
the covariance derived from GBA (Section 6).

2. Notations and Definitions

Time and Frame Index The integert is both a time in-
dex and a frame index. The LBA-based SfM method distin-
guishes key-frames and non key-frames of the given video
sequence to ensure a stable estimation of 3D. Since LBA
is only applied on key-frames, we ignore non key-frame in
this paper and uset as a key-frame number and time.

Camera Poses As mentioned above, LBA is bundle ad-
justment such that estimated parametersx are all 3D pa-
rameters of then most recent frames and datay contains
detected points in theN most recent frames. We assume
thatn = 3 andN = 10 to simplify notations without loss
of generality. Notice that the camera pose of a frame is esti-
mated many times by many LBAs since the sliding window
sizen is greater than one. For this reason, a double index is
used for camera poses. After the LBA of timet, the poses of
frames0, 1, · · · t are defined by vectorsc0

t , c
1
t , · · · c

t
t respec-

tively. Vectorct′

t does not exist ift < t′. The LBA-based

SfM method has two steps:

- ∃t0 > 0 such thatc0
t0

, c1
t0

, · · · ct0
t0

are estimated by GBA.

- ∀t > t0, c
t−2
t , ct−1

t , ct
t are estimated by LBA from

c
t−9
t−1, c

t−8
t−1, · · · c

t−3
t−1.

The first step is initialization and fixes the coordinate frame
of the whole reconstruction. The second step is incremental
and does not modify the pose of framest−9, t−8, · · · t−3.
In other words,∀t′ ≤ t− 3, ct′

t = ct′

t−1.

Local Bundle Adjustment LBA of time t also estimates
the set of 3D points{si

t} which have at least one detected
projection in framest−2, t−1 andt. Letmi

t′ be the detec-
tion of pointsi

t in framet′ such thatt′ ∈ {t−9, t−8, · · · t}
(if any). Vectorsct′

t , si
t,m

i
t′ have dimensions 6,3 and 2, re-

spectively. Ifx andy are vectors, we define[xy] = [x|y] =
[xT yT ]T the vector which concatenatesx andy. We define

xt = [ct−2
t c

t−1
t ct

t| · · · s
i
t · · · ] (1)

yt = [· · ·mi
t′ · · · ] (2)

pt = [ct−9
t c

t−8
t · · · ct−3

t ] (3)

such that LBA is concisely written as

xt = ft(pt,yt) with (4)

ft(pt,yt) = argminx̃t
||yt − Ft(pt, x̃t)||

2. (5)

FunctionFt concatenates projections functions of 3D points
{si

t} onto 2D points{mi
t′} up to image noise. Different

notations are used here for minimizerxt and variable vector
x̃t of functionFt. Thus,ft minimizes[c̃t−2

t c̃
t−1
t c̃t

t|∀s̃
i
t] 7→

∑

∀i,9≤t−t′≤3

||mi
t′ − c

t′

t s̃
i
t||

2 +
∑

∀i,2≤t−t′≤0

||mi
t′ − c̃

t′

t s̃
i
t||

2 (6)

with ct′

t s̃i
t, c̃

t′

t s̃i
t projections of̃si

t by posesct′

t andc̃t′

t .

Other Notations Here we present our last definitions. A
sub-vector of vectorx is a vector obtained by removing one
or many coordinates ofx. A sub-matrix of a square matrixC
is a matrix obtained fromC by removing a line and a column
of the same index, and this operation may be repeated for
many indexes. We introducexc

t = [ct−2
t c

t−1
t ct

t] as a sub-
vector of xt. Notationz ∼ N (z̄, Cz) means thatz is a
Gaussian vector of mean̄z and covarianceCz. Letz 7→ g(z)
be aC1 continuous function with Jacobian∂g

∂z
. Up to the

first order, we have error propagation [8]

g(z) ∼ N (g(z̄), Cg) with Cg =
∂g

∂z
(z̄)Cz(

∂g

∂z
(z̄))T . (7)

Recurrence Relation Now, the LBA-based SfM method
may be written as a recurrence relation on camera poses.
We estimate[ptx

c
t ] from [pt−1x

c
t−1] as follows:

1. pt is a sub-vector of[pt−1x
c
t−1]



2. estimatext = ft(pt,yt) using LBA (Eq. 5)

3. xc
t is a sub-vector ofxt

Step 1 is obvious since[pt−1x
c
t−1] = [ct−10

t−1 · · · c
t−1
t−1] and

pt = [ct−9
t · · · ct−3

t ] = [ct−9
t−1 · · · c

t−3
t−1].

3. Original LBA and its Covariance

The goal of this Section is to link the covariance of
[ptx

c
t ] to the recurrence relation of Section 2: we as-

sume that[pt−1x
c
t−1] ∼ N ([p̄t−1x̄

c
t−1], C[pt−1x

c

t−1]
) with

a known covarianceC[pt−1x
c

t−1]
and we would like to esti-

mateC[ptx
c

t
] such that[ptx

c
t ] ∼ N ([p̄tx̄

c
t ], C[ptx

c

t
]).

We assume thatyt ∼ N (ȳt, σ
2
I) with noise scaleσ > 0

estimated by GBA during the SfM initialization [8].
At first glance, the covarianceCxt

of the parametersxt

estimated by LBA may be approximated by the inverse of
approximated Hessian of LBA cost function atxt [8]. How-
ever, this estimation does not propagate noise from the pre-
vious parameterspt to the new parametersxt; it only propa-
gatesyt noise toxt noise. The practical consequence is that
the uncertainty of camera poses will not grow with time, al-
though this is the expected result. Our propagation methods
do not have this problem, but they are more complicated.

3.1. Statistical Model of[ptyt]

CovarianceCpt
is a sub-matrix ofC[pt−1x

c

t−1] sincept

is a sub-vector of[pt−1x
c
t−1]. Furthermore, we haveyt ∼

N (ȳt, σ
2
I). We assume that Gaussian vectorspt andyt

are independent and obtain

[ptyt] ∼ N ([p̄tȳt], C[ptyt]), C[ptyt] =

(

Cpt
0

0 σ2
I

)

. (8)

3.2. First-Order Error Propagation

We approximateft by its linear Taylor expansion at point
[p̄tȳt] and obtain
(

p

f(p,y)

)

=

(

p̄

f(p̄, ȳ)

)

+

(

I 0
∂f
∂p

∂f
∂y

)(

p− p̄

y − ȳ

)

. (9)

Index t is omitted in this expression. We deduce that
[ptxt] ∼ N ([p̄tx̄t], C[ptxt]) with covariance

C[ptxt] =

(

I 0
∂ft

∂pt

∂ft

∂yt

)

C[ptyt]

(

I
∂ft

∂pt

T

0 ∂ft

∂yt

T

)

. (10)

Proposition 1 explains how to estimateft derivatives.

Proposition 1: If F is C2 continuous with full rank Jaco-
bian ∂F

∂x
andf(p,y) = argminx||y − F (p,x)||2, then

∂f

∂y
≈ (

∂F

∂x

T ∂F

∂x
)−1 ∂F

∂x

T

(11)

∂f

∂p
≈ −(

∂F

∂x

T ∂F

∂x
)−1 ∂F

∂x

T ∂F

∂p
(12)

with derivatives ofF taken at point(p, f(p,y)).

Proof is provided in Appendix A (indext is omitted).
Note that Eq. 12 is a generalization of the well known
Eq. 11. The target covariance matrixC[ptx

c

t
] is a top-left

sub-matrix ofC[ptxt].

3.3. Algorithm

The LBA recurrence relation is completed with covari-
ance. We estimate[ptx

c
t ] andC[ptx

c

t
] from [pt−1x

c
t−1] and

C[pt−1x
c

t−1]
as follows:

1. pt is a sub-vector of[pt−1x
c
t−1]

2. Cpt
is a sub-matrix ofC[pt−1x

c

t−1]

3. estimatext = ft(pt,yt) using LBA (Eq. 5)

4. estimateC[ptxt] using Eqs. 8, 10, 11, and 12

5. C[ptx
c

t
] is a top-left sub-matrix ofC[ptxt].

We only estimate blockC[ptx
c

t
] of C[ptxt] since the dimen-

sion of camera vector[ptx
c
t ] is quite smaller than that of

[ptxt] which also contains 3D points parameters.
Now, technical details are given for this estimation.

Combining Eq. 10 and 8 we obtain

C[ptxt] =

(

Cpt
Cpt

∂ft

∂pt

T

∂ft

∂pt

Cpt

∂ft

∂pt

Cpt

∂ft

∂pt

T
+ σ2 ∂ft

∂yt

∂ft

∂yt

T

)

(13)

The derivatives offt are given by Eq. 11 and 12. They
are estimated at(pt,xt) with approximation(pt,xt) ≈

(p̄t, x̄t). Let Ht = ∂Ft

∂xt

T ∂Ft

∂xt

be the Gauss-Newton approx-
imation of the Hessian of LBA cost function. ThenC[ptx

c

t
]

is the top-left sub-matrix ofC[ptxt] such that

C[ptx
c

t
] =

(

Cpt
A

T

A B

)

, B is a top-left sub-matrix

of σ2
H
−1
t + H

−1
t

∂Ft

∂xt

T ∂Ft

∂pt

Cpt

∂Ft

∂pt

T ∂Ft

∂xt

H
−1
t

andA is a top block of− H
−1
t

∂Ft

∂xt

T ∂Ft

∂pt

Cpt
.

We estimateA andB with block-wise inversion [11]

Ht =

(

U W

W
T

V

)

⇒ H
−1
t =

(

0 0
0 V

−1

)

+ Y
T
Z
−1

Y (14)

with Z = U− WV
−1

W
T andY =

(

I −WV−1
)

. (15)

MatricesB, U andZ have the same dimensions;V is a block
diagonal matrix with3×3 invertible blocks thanks to Eq. 6.

We successively estimateZ−1, D0 = ∂Ft

∂xt

T ∂Ft

∂pt

, andD1 =

H
−1
t D0 using

D1 =

(

0 0
0 V

−1

)

D0 + (YT (Z−1(YD0))). (16)



At this point, the estimation ofA andB is straightforward:
matrixA is a top block of−D1Cpt

andB−σ2
Z
−1 is a top-left

sub-matrix ofD1Cpt
D

T
1 .

4. New LBA and its Covariance

In Section 3, the covariance for original LBA [10] is es-
timated assuming thatpt andyt are independent. Section 4
introduces a new LBA functionfn

t which provides the max-
imum likelihood estimation (MLE ) of xt for this assump-
tion. Section 4 also describes a recurrence relation to es-
timate geometry and its covariance:[ptx

c
t ] andC[ptx

c

t
] are

estimated from[pt−1x
c
t−1] andC[pt−1x

c

t−1]
.

4.1. Maximum Likelihood Estimator

Indext is omitted forpt, p̃t,xt, x̃t,yt, Ft, ft in this part.
Assume thatp ∼ N (p̄, Cp) andy ∼ N (ȳ, σ2

I) are inde-
pendent with̄y = F (p̄, x̄). The unknown parameters of the
statistical model arēp andx̄ (we assume thatσ2 andCp are
given as true values). The probability density function of
Gaussian vector[py] is

d(p,y|p̄, x̄) = Ke
−1
2 ( 1

σ2 ||y−F (p̄,x̄)||2+(p−p̄)T
C
−1
p

(p−p̄)) (17)

with K a constant. Thus, the MLEfn
t (p,y) of [p̄x̄] is

argmin[p̃x̃]
1

σ2
||y − F (p̃, x̃)||2 + (p− p̃)T

C
−1
p

(p− p̃). (18)

Functionfn
t defines estimationspn

t andxn
t of p̄t and x̄t

(note thatft does not provide an estimation ofp̄t).

4.2. First-Order Error Propagation

Functionfn
t (pt,yt) in Eq. 18 may be rewritten as

fn
t (yn

t ) = argminx̃
n

t
||yn

t − Fn
t (x̃n

t )||2 (19)

with x̃
n
t = [p̃t|x̃t], y

n
t = [(Cpt

)−
1
2 pt|

1

σ
yt] (20)

andFn
t (x̃n

t ) = [(Cpt
)−

1
2 p̃t|

1

σ
Ft(p̃t, x̃t)]. (21)

Now we see that the Jacobian∂fn

t

∂y
n

t

of fn
t can be estimated

using Eq. 11 of Proposition 1:

∂fn
t

∂yn
t

= (
∂Fn

t

∂x̃n
t

T ∂Fn
t

∂x̃n
t

)−1 ∂Fn
t

∂x̃n
t

T

. (22)

Furthermore, Eq. 20 impliesyn
t ∼ N (ȳn

t , I). Eq. 22 and
the linear Taylor expansion offn

t at [p̄tȳt] provides

C[pn

t
x

n

t
] = Cfn

t
=

∂fn
t

∂yn
t

I
∂fn

t

∂yn
t

T

= (
∂Fn

t

∂x̃n
t

T ∂Fn
t

∂x̃n
t

)−1. (23)

4.3. Algorithm

We may estimate[ptx
c
t ] and C[ptx

c

t
] from [pt−1x

c
t−1]

andC[pt−1x
c

t−1] as follows:

1. pt is a sub-vector of[pt−1x
c
t−1]

2. Cpt
is a sub-matrix ofC[pt−1x

c

t−1]

3. estimate[pn
t xn

t ] = fn
t (pt,yt) using LBA (Eq. 18)

4. estimateC[pn

t
x

n

t
] using Eqs. 23 and 21

5. dopt ← pn
t , xt ← xn

t andC[ptxt] ← C[pn

t
x

n

t
]

6. C[ptx
c

t
] is a top-left sub-matrix ofC[ptxt].

The new LBA (Eq. 18) is more time consuming than the
original LBA (Eq. 5) since camera poses ofpn

t should be
estimated with those ofxn

t . So we replace step 3 byxt =
ft(pt,yt) and remove step 5. Step 4 is unchanged: Eqs. 23
and 21 are still used withpn

t = pt,x
n
t = xt, C[ptxt] =

C[pn

t
x

n

t
]. In other words, we approximate the result of the

new LBA by the result of the original LBA (both results are
exactly the same if there is no image noise). We only esti-
mate blockC[ptx

c

t
] of C[ptxt] since the dimension of camera

vector[ptx
c
t ] is quite smaller than that of[ptxt] which also

contains 3D points parameters.
Now, technical details are given for this estimation.

Eqs. 21 and 23 provide (t and˜ omitted)

∂Fn

∂xn
=

(

∂F n

∂p

∂F n

∂x

)

=

(

C
− 1

2
p 0

1
σ

∂F
∂p

1
σ

∂F
∂x

)

(24)

C[pn

t
x

n

t
] =

(

C
−1
p

+ 1
σ2

∂F
∂p

T ∂F
∂p

1
σ2

∂F
∂p

T ∂F
∂x

1
σ2

∂F
∂x

T ∂F
∂p

1
σ2

∂F
∂x

T ∂F
∂x

)−1

.(25)

We apply block-wise inversion Eqs. 14 and 15 toC[pn

t
x

n

t
]

with x =
(

xc xs
)

,

U =

(

C
−1
p

+ 1
σ2

∂F
∂p

T ∂F
∂p

1
σ2

∂F
∂p

T ∂F
∂xc

1
σ2

∂F
∂xc

T ∂F
∂p

1
σ2

∂F
∂xc

T ∂F
∂xc

)

(26)

W =
1

σ2

(

∂F
∂p

∂F
∂xc

)T ∂F

∂xs
, V =

1

σ2

∂F

∂xs

T ∂F

∂xs
(27)

and obtainC[ptx
c

t
] = (U− WV

−1
W

T )−1. Thank to Eq. 6,V is
a3× 3-block diagonal matrix and is easy to inverse.

5. Weak Hypothesis

Previous Sections 3 and 4 require thatpt ∼ N (p̄t, Cpt
)

andyt ∼ N (ȳt, σ
2
I) are independent. However, camera

posect−3
t = c

t−3
t−1 is a sub-vector of bothpt andxt−1 such

that xt−1 = ft−1(pt−1,yt−1). Sinceyt andyt−1 have
common 2D points in framest− 9, t− 8, · · · t− 1, we can
not assert thatpt andyt are independent.



In Section 5, recurrence relations are introduced to es-
timate covariances of original and new LBAs without this
hypothesis: [ytptx

c
t ] and C[ytptx

c

t
] are estimated from

[yt−1pt−1x
c
t−1] andC[yt−1pt−1x

c

t−1]
.

5.1. Statistical model of[ytpt]

New notations are needed here. Letyt ∩ yt−1 (respec-
tively, yt \ yt−1) be the sub-vector ofyt with 2D points
which are (respectively, which are not) inyt−1. Covariance
C[yt−1pt−1x

c

t−1]
is known, and covarianceC[yt∩yt−1|pt] is a

sub-matrix ofC[yt−1pt−1x
c

t−1]
sinceyt∩yt−1 is a sub-vector

of yt−1 andpt is a sub-vector of[pt−1x
c
t−1].

We assume thatyt \ yt−1 and[yt ∩ yt−1|pt] are inde-
pendent. Thus[ytpt] is Gaussian vector with covariance

C[ytpt] = C[yt\yt−1|yt∩yt−1|pt] =

(

σ2
I 0

0 C[yt∩yt−1|pt]

)

. (28)

5.2. First-Order Error Propagation (Original LBA)

We approximateft by its linear Taylor expansion at point
[ȳtp̄t] and obtain





y

p

f(p,y)



 =





ȳ

p̄

f(p̄, ȳ)



+





I 0
0 I

∂f
∂y

∂f
∂p





(

y − ȳ

p− p̄

)

. (29)

Index t is omitted in this expression. We deduce that
[ytptxt] ∼ N ([ȳtp̄tx̄t], C[ytptxt]) with covariance

C[ytptxt] =





I 0
0 I

∂ft

∂yt

∂ft

∂pt



 C[ytpt]

(

I 0 ∂ft

∂yt

T

0 I
∂ft

∂pt

T

)

. (30)

Derivatives offt are provided by Proposition 1.

5.3. Algorithm (Original LBA)

Sections 5.2 and 5.1 define the recurrence relation for
the original LBA. We estimate[ytptx

c
t ] andC[ytptx

c

t
] from

[yt−1pt−1x
c
t−1] andC[yt−1pt−1x

c

t−1]
as follows:

1. pt is a sub-vector of[yt−1pt−1x
c
t−1]

2. C[yt∩yt−1|pt] is a sub-matrix ofC[yt−1pt−1x
c

t−1]

3. estimatext = ft(pt,yt) using LBA (Eq. 5)

4. estimateC[ytptxt] using Eqs. 28, 30, 11 and 12

5. C[ytptx
c

t
] is a top-left sub-matrix ofC[ytptxt].

Now the full estimate of∂ft

∂yt

by Eq. 11 is required for the
top-left sub-matrixC[ytptx

c

t
] of C[ytptxt] and the method is

intractable for real-time.

5.4. Maximum Likelihood Estimator (New LBA)

Indext is omitted forpt, p̃t,xt, x̃t,yt, Ft, ft in this part.
Assume that[yp] ∼ N ([ȳp̄], C[yp]) with C[yp] defined by
Eq. 28 and̄y = F (p̄, x̄). The unknown parameters of the
statistical model arēp andx̄ (we assume thatC[yp] is given
as true value). The probability density function of the Gaus-
sian vector[py] is

d(p,y|p̄, x̄) = Ke
− 1

2 z̄
T
C
−1
[yp]

z̄
, z̄ =

(

y − F (p̄, x̄)
p− p̄

)

(31)

with K a constant. Thus, the MLEfn
t (p,y) of [p̄x̄] is

argmin[p̃x̃]z̃
T
C
−1
[yp]z̃ with z̃ =

(

y − F (p̃, x̃)
p− p̃

)

. (32)

Functionfn
t defines estimationspn

t andxn
t of p̄t and x̄t

(note that Eq. 18 is a special case of Eq. 32).

5.5. First-Order Error Propagation (New LBA)

Functionfn
t (pt,yt) in Eq. 32 may be rewritten as

fn
t (yn

t ) = argminx̃
n

t
||yn

t − Fn
t (x̃n

t )||2 (33)

with x̃n
t = [p̃t|x̃t], yn

t = C
− 1

2

[ytpt]

(

yT
t pT

t

)T
(34)

andFn
t (x̃n

t ) = C
− 1

2

[ytpt]

(

Ft(p̃t, x̃t)
T p̃T

t

)T
. (35)

CovarianceC[ytp
n

t
x

n

t
] is needed for recurrence. Eq. 34

impliesyn
t ∼ N (ȳn

t , I), yt = Kyn
t andȳt = Kȳn

t with K a

top block ofC
1
2

[ytpt]
. We approximatefn

t by its linear Taylor
expansion at point̄yn

t and obtain
(

yt

fn
t (yn

t )

)

=

(

ȳt

fn
t (ȳn

t )

)

+

(

K

∂fn

t

∂y
n

t

)

(yn
t − ȳn

t ). (36)

Thus vector[ytf
n
t (yn

t )] is Gaussian with covariance

C[ytp
n

t
x

n

t
] = C[ytf

n

t
(yn

t
)] =

(

K

∂fn

t

∂y
n

t

)(

K

∂fn

t

∂y
n

t

)T

. (37)

and ∂fn

t

∂y
n

t

is estimated with Eqs. 11 and 35.

5.6. Algorithm (New LBA)

Sections 5.4 and 5.5 define the recurrence relation for
the new LBA (Eq. 32). We estimate[ytptx

c
t ] andC[ytptx

c

t
]

from [yt−1pt−1x
c
t−1] andC[yt−1pt−1x

c

t−1] as follows:

1. pt is a sub-vector of[yt−1pt−1x
c
t−1]

2. C[yt∩yt−1|pt] is a sub-matrix ofC[yt−1pt−1x
c

t−1]

3. estimateC[ytpt] using Eq. 28

4. estimate[pn
t xn

t ] = fn
t (pt,yt) using LBA (Eq. 32)

5. estimateC[ytp
n

t
x

n

t
] using Eqs. 37, 11 and 35

6. dopt ← pn
t , xt ← xn

t andC[ytptxt] ← C[ytp
n

t
x

n

t
]

7. C[ytptx
c

t
] is a top-left sub-matrix ofC[ytptxt].



6. Experiments

6.1. Integrating Covariance to LBA-based SfM

Our real-time SfM system [10] has two steps: initializa-
tion and incremental reconstruction. The former estimates
the camera poses and 3D points of the sequence beginning
using standard GBA. The latter incrementally reconstructs
the sequence (poses and points) using original LBA (Eq. 5).

Then we integrate our covariance methods in the incre-
mental step. These methods also require covariance for the
camera poses at the sequence beginning. This covariance
is estimated by the standard method derived from GBA [8]:
the inverse of approximated Hessian of the minimized cost
function, multiplied by image noiseσ2.

A simple gauge is chosen to estimate the covariance of
poses at the beginning: we fix the first frame pose(R0, t0)
with rotationR0 = I and locationt0 = 0 and the largest
coordinate of thet0-th frame locationtt0 with tz

t0
= 1 (t0 =

9). This information should be given since it is known that
the shape of uncertainty ellipsoids derived from covariance
highly depends on the gauge choice [11]. Then we remove
the columns and rows corresponding to these 7 parameters
in the approximated Hessian before inversion.

6.2. How to Check LBA-based Covariance ?

LBA-based SfM method produces geometry estimations
which are similar to those of GBA-based SfM [10]. So we
expect to obtain the same result for geometry covariance:
LBA-based covariance (our methods) should be similar to
GBA-based covariance (standard method). We will com-
pare both.

The last step of “GBA-based” SfM is GBA for the com-
plete sequence: the vectorx of all 3D parameters mini-
mizes the cost functionx 7→ ||y − F (x)||2, wherey is the
vector of all tracked 2D points along the whole sequence
andF concatenates the corresponding projection functions.
If y ∼ N (ȳ, σ2

I), we have the GBA-based covariance

Cx = σ2(∂F
∂x

T ∂F
∂x

)−1 [8]. This is the inverse of the approx-
imated Hessian with the same gauge choice as the GBA for
sequence beginning (Section 6.1). The value ofσ is also
the same. The complete calculation of Hessian inverse is
not necessary: we only calculate the diagonal blocks we
need thanks to Eqs. 14 and 15 (U andV are the sub-hessians
of camera poses and 3D points [8, 11], respectively).

6.3. Results

Figure 1 shows three images of the sequence taken
in urban area. The camera is calibrated, is mounted on
a car and is pointing forward. The trajectory length is
about 400m and the sequence has 2731512 × 384 im-
ages. 384 key-frames are selected from the video. 16365
points are reconstructed by original LBA from 74236 Har-

Figure 1. Three images of the sequence.

ris points [7] matched using SURF descriptor [1] in key-
frames (we slightly modify the original SURF method and
re-implement it on GPU using CUDA for real-time perfor-
mance). The means of points in a frame and track lengths
are 193 and 4.5, respectively.

Figure 2 shows quantitative comparisons of GBA-based
covariance with LBA-based covariance described in Sec-
tion 5.3 (original LBA with weak independence hypothe-
sis). The same comparison is made in Figure 3 for the
LBA-based covariance described in Section 4 (new LBA
with strong independence hypothesis). In both cases, we
study the major axis of the uncertainty ellipsoid of the loca-
tion of cameract−2

t with probability 90% (the t-2th camera
is updated at times t-2,t-1,t due to our sliding windows size
of LBA, and we choose the uncertainty at the last update).
The x-axis is the key-frame number; the sequence begin-
ning optimized by GBA is not considered in these figures.

The tops of Figures 2 and 3 show the ratio of major axis
lengths between LBA and GBA. We see that the ratio is ac-
ceptable (close to1.1) for the original LBA. Unfortunately,
this method is not real-time. Furthermore, the ratio of new
LBA is small (close to0.6) due to the strong independence
hypothesis betweenpt andyt. The bottoms of Figures 2
and 3 show the angle between LBA and GBA major axes.
The angles are acceptable (small) for both LBAs.

We have also experimented the original LBA-based co-
variance with strong hypothesis (Section 3). In this case, the
ratio of major axis lengths diverges. Therefore the strong
hypothesis should not be used with the original LBA.

At this point, the covariance of new LBA with strong
hypothesis is the only choice in our real-time context (al-
though its scale is too small). Letē andσe be the mean and
standard deviation of ratios of major axis lengths between
original LBA (weak hypothesis) and new LBA (strong hy-
pothesis) for all key-frames of the sequence. We estimate
ē = 1.82 andσe = 0.13. Sinceσe/ē is low, we decide
to improve new LBA covariances by multiplying them with
ē2. Now, the main axis lengths of new LBA ellipsoids are
roughly the same as those of original LBA. Figure 4 shows
a top view of the reconstructed sequence with uncertainty
ellipsoids of camera locations of our amended covariances.
We see that

1. ellipsoids shapes are similar for new LBA and GBA

2. the major axis length increases progressively with time



Figure 2. Top: ratio of major axis lengths between original LBA
(weak hypothesis) and GBA ellipsoids. Bottom: angle between
major axes of original LBA and GBA ellipsoids.

These are expected results.
Only 6.4 ms are needed by the new LBA-based covari-

ance method for each key-frame, so our method is real-time.
The total time of new LBA covariance is 2.4 s, which is (ob-
viously) smaller than that of GBA covariance (145 s) for all
camera poses.

Our experiments also includes Monte-Carlo simulations
(to check our implementation of LBA covariances) and co-
variance estimations with other real sequences (similar re-
sults are obtained with similar values ofē andσe).

7. Conclusion

This paper has introduced four covariance estimation
methods for Structure-from-Motion (SfM) based on local
bundle adjustment (LBA). They are derived from two noise
hypotheses (“weak” and “strong”) and two LBAs: our new
LBA which provides Maximum Likelihood Estimation for
these hypotheses, and the original LBA which does not. All
methods propagate uncertainty along the sequence. Only
two of them are real-time thanks to the strong hypothesis.

We must find a pair (statistical model, estimator) such
that the estimated covariance is both physically plausible
and real-time. On one side, realistic statistical models

Figure 3. Top: ratio of major axis lengths between new LBA
(strong hypothesis) and GBA ellipsoids. Bottom: angle between
major axes of new LBA and GBA ellipsoids.

may require too much calculation to obtain real-time per-
formance. On the other side, unrealistic statistical models
may produces real-time but unrealistic uncertainty estima-
tion. We have experimented our covariance methods on real
sequences reconstructed by LBA-based SfM and have com-
pared the results with standard covariance of global bundle
adjustment. The original LBA with weak hypothesis pro-
vides acceptable covariance. This hypothesis is realisticbut
it does not allow real-time performance. Furthermore, the
original LBA can not be used with the strong hypothesis.
The new LBA with strong hypothesis provides acceptable
covariance if empirical coefficient is introduced. This last
method is the only choice in our real-time context.

Future work includes error propagation from key-frames
to non key-frames, integration of calibration uncertaintyin
error propagation, experiments for many gauge choices, and
fusion of our vision results with GPS or odometer data.

Appendix A

Proposition 1 (Section 3.2) is a particular case of Propo-
sition 6.1 in [5], which also asserts that functionf locally
exists and isC1 continuous. In this appendix, the time index
t is omitted. Furthermore,Fk, xi andpj are thek-th, i-th
andj-th coordinates of vectorsF , x andp, respectively.



We dropy for Eq. 12 proof sincey acts a constant em-
bedded inF . Second order partial derivatives of function

g(x,p) =
1

2
||F (p,x)||2 (38)

are

∂2g

∂xi∂pj

=
∑

k

{
∂Fk

∂xi

∂Fk

∂pj

+
∂2Fk

∂xi∂pj

Fk}. (39)

Gauss-Newton approximation of Eq. 39 is

∂2g

∂xi∂pj

≈
∑

k

∂Fk

∂xi

∂Fk

∂pj

= (
∂F

∂x

T ∂F

∂p
)i,j . (40)

A similar equation is

∂2g

∂xi∂xj

≈ (
∂F

∂x

T ∂F

∂x
)i,j . (41)

Sincef(p) is minimizer ofx→ g(x,p), we have

∀i,
∂g

∂xi

(f(p),p) = 0 (42)

Thank to Eq. 42, 40 and 41, we deduce∀i, j

0 =
∂

∂pj

(p→
∂g

∂xi

(f(p),p)) (43)

=
∂2g

∂xi∂pj

+
∑

k

(
∂2g

∂xi∂xk

)
∂fk

∂pj

(44)

≈ (
∂F

∂x

T ∂F

∂p
)i,j +

∑

k

(
∂F

∂x

T ∂F

∂x
)i,k(

∂f

∂p
)k,j .(45)

Last, Eq. 45 is equivalent to

(
∂F

∂x

T ∂F

∂x
)
∂f

∂p
≈ −

∂F

∂x

T ∂F

∂p
. (46)

We obtain Eq. 12 since∂F
∂x

has full rank. Eq. 11 is obtained
here in the special caseF (p,x) = F (x) − p by swapping
notationsy andp.

Vector pt fixes the gauge (coordinate frame and scale)
for LBA since pt concatenates at least two camera
poses [10]. In this context,∂F

∂x
has full rank for general

configurations of 3D points [8].
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Figure 4. Top view of the reconstructed sequence by the LBA-
based SfM. Camera locations and 3D reconstructed points are
black dots. The 90% uncertainty ellipsoids of camera locations
are also drawn for key-frames whose numbers are multiple of 5
(continuous line for standard GBA and dotted line for our new
LBA with strong independence hypothesis).
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