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Abstract global bundle adjustmenGBA) if x contains all parame-
ters of the sequence.

Local bundle adjustment (LBA) has recently been intro- ~ The time complexity of one GBA iteration $3(c* + cp)
duced to estimate the geometry of image sequences taken byith ¢ andp the numbers of camera poses and 2D points,
a calibrated camera. Its advantage over standard (global) respectively. Although this complexity benefits the sparse
bundle adjustment is a great reduction of computational structure of the problem and the assumptiorc p, real-
complexity, which allows real-time performances with a time GBA is impossible for long sequences.
similar accuracy. However, no confidence measure on the
LBA result such as uncertainty or covariance has yet beenError Propagation Error propagation provides confi-
introduced. This paper introduces statistical models asid e dence measures for bundle adjustment result [8]. Assume
timation methods for uncertainty with two desirable prop- that the image vectoy follows a known Gaussian noise.
erties: (1) uncertainty propagation along the sequence and Then, the function which mapsto minimizerx is approx-

(2) real-time calculation. We also explain why this problem imated by its linear Taylor expansion. Now, the Gaussian
is more complicated than it may appear at first glance, and Noisey is propagated to Gaussian noisesuch that thex

we provide results on video sequences. covariance matrix can be estimated. Thanks to this matrix,
uncertainty ellipsoids for a given probability can be dedine
for the bundle adjustment result.

The time complexity to estimate covariances of all cam-

1. Introduction era poses and 3D points is at least that of one GBA iteration.

The robust_and automa_tlc estimation of camera motion Extended Kalman Filter Bundle adjustment is based on
and scene points from an image sequence (Structure-froms;

Motion or SfM) is still today an active field of research. A EZZ;e\gedr;b\;aer?S-il\élsrg: ?r:gtg:fgf'\gse]\;vg?ﬁa;ﬁg dl mp())rﬂvte;]de
real-time method based on local bundle adjustmeB#() P '

was introduced [10] for this problem three years ago. How- other hand, the Extended Kalman Filter (EKF) may be
ever, no confidence measuF;e on the resglt suchgaé uncer\-/iewecj as an incremental version of the Gauss-Newton
) . . Method [3] and has been applied for real-time SfM [4].
tainty or covariance was introduced before. A such measure : :
: o T EKF is known to provide less accurate results than bundle
would be useful to give a quality information if ground truth

is not available, or even to merge the reconstruction with adjustment, but it is faster. It has is own covariance man-
) ' agement for the estimated geomet eometry and its co-
data provided by other sensors such as GPS or odometer g g v (9 "y

This Section summarizes previous works and our contribu-\./ariamce are jointly updated over time). EKF requires prior
. . . P knowledge on the covariance of all estimated parameters.
tion on this topic.

A recent improvement [2] cancels this drawback, but it still

depends on linearization of constraints between frames.
Bundle Adjustment Bundle adjustment is a well known

iterative method [11] designed to solve non-linear least Local Bundle Adjustment We recently introduced LBA
square problems for SfM. It estimates a vectavhich min- for real-time SfM [10]. The incremental SfM method is
imizes a cost functiox — ||y — F(x)||*. Vectorx usu- summarized as follows. Camera poses and a sparse cloud
ally concatenates 6 parameters for each camera pose and &f 3D points are reconstructed for video frames before time
parameters for each 3D point. Vectgrconcatenates de- ¢, and a new video frame should be added to the reconstruc-
tected features in images, concatenates projection func- tion at timet. Interest points [7, 9] of frame are detected
tions, and||.|| is the Euclidean norm. We call this method and matched with those of time— 1. Since many points



of framet — 1 are reconstructed, there are 2D-3D corre- SfM method has two steps:

qundences f(_)r point_s in _fr_ar_maand the new pose can be .3, - ( such thae) ¢}, Ciﬁ are estimated by GBA.
estimated. This pose is initialized by a robust method (such v o 1 timated by LBA f

as RANSAC [6]), and LBA is applied to refine the geometry ~, 76 = [to:Ct “,¢ ~, ¢, are estimated by rom

t—3
(camera poses and 3D points) of thenost recent frames ~ ¢t-12€t-1>" " €1
t—n+1,---,t—1,t by maintaining Consistency with pre- The first Step is initialization and fixes the coordinate feam
vious frameg—N+1,--- ,t—n (n < N). LBAis abundle of the whole reconstruction. The second step is incremental

adjustment such that (% concatenates all 3D parameters and does not modify the pose of frantes9, ¢ —8, - - - —3.
of then most recent frames and (2)contains detected fea- In otherwordsyt’ <t —3,¢; =cj_;.
tures in theN last frames.

The time complexity of one LBA iteration i®(n3 +
np) with p the numbers of 2D points in th¥ last images.
Thanks to fixed and small values afand N (e.g. n =
3, N = 10), the GBA complexity is greatly reduced.

Local Bundle Adjustment LBA of time ¢ also estimates
the set of 3D pointgs:} which have at least one detected
projection in frames$ — 2, ¢ — 1 andt. Letm!, be the detec-
tion of points! in framet’ such that’ € {t —9,¢t—8,---t}

(if any). Vectorsc! , s, m!, have dimensions 6,3 and 2, re-

Our Contribution ~ We introduce statistical models and SPEClively. It andy are vectors, we definery] = [x[y] =
covariance estimation methods for the SfM parameters esti-* ¥ ] the vector which concatenatesaindy. We define

mated by LBA. x, = ict—2ct—1ct St i (1)
Section 3 describes a first method derived from the orig- ! L k

inal LBA definition using a strong independence hypothesis ye = [-mp--] 2)

(between the poses of previous framtesN + 1, --- .t —n pi = [cj %% e 3)

and the detected features in thelast frames). However, ) _ _
the original LBA is not a Maximum Likelihood Estima- such that LBA is concisely written as

tor (MLE) for this hypothesis. Then Section 4 describes x; = fi(pe,ye) with (4)
a second method derived from a new LBA which is MLE. _ RN
These two methods satisfy both desirable properties (1) un- fepe,ye) = argming[ly: — Fi(pe, %o)[I". (5)

certainty propagation along the sequence and (2) real-imegncionF;, concatenates projections functions of 3D points
performance. {si} onto 2D points{m/,} up to image noise. Different

Section 5 introduces covariance methods for both origi- nntations are used here for minimizerand variable vector
nal and new LBAs using a weak independence hypotheS|s,>~<t of function F,. Thus, f, minimizes[e!~2&! &t |v&i]

. . . Cy "C ¢
but the real-time performance is lost. Last, we provide co-
variance results on video sequences and compare them with i t=i(|2 i <t ~i)2
q P > lmj, —c/ 8P+ > [lmy —¢; s¢]|° (6)

the covariance derived from GBA (Section 6). Vi9eri<s Viocioi<o

. L with ¢!'s¢, é!'s! projections of? by poses!” andét’.
2. Notations and Definitions €t St» €1 5. PrO) ¢ DY POSes; andc,
Other Notations Here we present our last definitions. A

Time and Frame Index The integert is both a time in- b-vector of vectog is a vector obtained by removingd on
dex and a frame index. The LBA-based SfM method distin- SUP-VECtor of VECIOR IS a vector obtained by removing one
or many coordinates of. A sub-matrix of a square matrix

guishes key-frames and non key-frames of the given video. . . . .
sequence to ensure a stable estimation of 3D. Since LBA'S @ matrix ob_tamed frorg by remowr_]gallne and a column
is only applied on key-frames, we ignore non key-frame in of the same index, and this operation may be repeated for

; ; o t—2 t—1 ¢t _
this paper and useas a key-frame number and time. many indexes. We introduce; = [c; “c; " ci] as a sub

vector of x;. Notationz ~ N(z,C,) means that is a

Camera Poses As mentioned above, LBA is bundle ad- Gaussian vector of meanand covariance,. Letz — g(z)
justment such that estimated parameterare all 3D pa-  P€ aC' continuous function with J_acobm%&. Up to the
rameters of the: most recent frames and dagacontains ISt order, we have error propagation [8]

detected points in th&/ most recent frames. We assume _ g g

thatn = 3 and N = 10 to simplify notations without loss g(z) ~ N(g(z),C,4) withCy = E(Z)CZ(E(Z))T' (7)
of generality. Notice that the camera pose of a frame is esti-

mated many times by many LBAs since the sliding window Recurrence Relation Now, the LBA-based SfM method

sizen is greater than one. For this reason, a double index ismay be written as a recurrence relation on camera poses
used for camera poses. After the LBA of timyehe poses of We estimatép,x¢] from [p;_1x¢_,] as follows:
b5t —18¢—1 .

frames0, 1, - - - t are defined by vectokd, c}, - - - ¢t respec-
tively. Vectorc! does not existif < ¢’. The LBA-based 1. p: is a sub-vector ofp;—1x{_]



2. estimatex; = f;(p¢, y:) using LBA (Eq. 5)
3. x{ is a sub-vector ok,

Step 1 is obvious sincp,_1x¢ ;] = [¢!710... ¢!~} and
pe= e e = [e2Y el

3. Original LBA and its Covariance

The goal of this Section is to link the covariance of
[p:xy] to the recurrence relation of Section 2: we as-
sume thafp;—1x7_;] ~ N([Pt-1%{_1],Clp,_,xc_,]) With
a known covarianc€,, ,x: j and we would like to esti-
mateCyp, x¢] such thafp:x;] ~ N ([p+X{], Cip,xs))-

We assume that, ~ A (¥;,0I) with noise scaler > 0
estimated by GBA during the SfM initialization [8].

At first glance, the covarianag, of the parameters;
estimated by LBA may be approximated by the inverse of
approximated Hessian of LBA cost functionat[8]. How-

with derivatives ofF’ taken at pointp, f(p,y))-

Proof is provided in Appendix A (index is omitted).
Note that Eg. 12 is a generalization of the well known
Eg. 11. The target covariance matdx,, <] is a top-left

sub-matrix ofC,, «, -

3.3. Algorithm

The LBA recurrence relation is completed with covari-
ance. We estimatgp;x{] andCpp, ¢ from [p;_1x{_;] and
C[pt_lngl] as follows:

1. p; is a sub-vector ofp;_1x¢_,]

2. Cp, is asub-matrix of,,  xe

3. estimatex; = fi(p:, y:) using LBA (Eq. 5)
4. estimateg,, ) using Egs. 8, 10, 11, and 12

ever, this estimation does not propagate noise from the pre- g Cip.xc] IS @ top-left sub-matrix o€,
) t Xy tXt)"

vious parameters; to the new parametess; it only propa-
gatesy, noise tox; noise. The practical consequence is that

We only estimate blocK,, ) of C,,,«,) since the dimen-

the uncertainty of camera poses will not grow with time, al- Sion of camera vectojp;x;] is quite smaller than that of
though this is the expected result. Our propagation methoddP+X¢] which also contains 3D points parameters.

do not have this problem, but they are more complicated.

3.1. Statistical Model of[p;y:]

CovarianceCp, is a sub-matrix ofC|,, ,xc | sincep,
is a sub-vector ofp;_1xy_,]. Furthermore, we have; ~
N (¥¢,0%1). We assume that Gaussian vectpgsandy;
are independent and obtain
CPt

[Peye] ~ N([Pe¥t), Ciprya))s Clpeye) = ( 0

3.2. First-Order Error Propagation

We approximatg; by its linear Taylor expansion at point
[p+y:] and obtain

() = G (gi ;) (278 o

of
Index ¢t is omitted in this expression. We deduce that
[pex¢] ~ N([PiX¢], Clp,x,]) With covariance

0 1 LT
C[Ptxt] = < %) C[Pth] 0 arf):T . (10)
Yt o,

Iyt
Proposition 1 explains how to estimatederivatives.

Proposition 1: If F is C? continuous with full rank Jaco-
bian‘g—i andf(p,y) = argminy|ly — F(p,x)||?, then

I
Ofe
Oopt

) OFTor _ oFT

O (QEOF) 108 (11)
Jdy ox 0x ox

d oFToFr _ oFToF

o ORI IT O )
Jp ox 0x 0ox OJp

Now, technical details are given for this estimation.
Combining Eqg. 10 and 8 we obtain

Cp P gft ’

— t t Pt

Cpxd =\ oo ong 0T | jeoronT (13)
ope Pt Op¢ Pt Opy Oyt Oyt

The derivatives off; are given by Eq. 11 and 12. They
are estimated atp;, x;) with approximation(p;, x;)

(Ps, ;). LetH, = oF T OF; pg the Gauss-Newton approx-

Ox; Oxy

Ox¢
imation of the Hessian of LBA cost function. Thep,, ¢,

is the top-left sub-matrix of,,,) such that

c
Clpixs] = < 5

~
~

AT
> , Bis a top-left sub-matrix

B
_,0F, T oF, 8FtT8FtH_1
H—l%T%

i Ox; Op: e

We estimatel andB with block-wise inversion [11]

U W _ 0 0 _
Ht:<wT V):>Ht1=<0 V_1)+YTZ ly (14)

(15)

of o’H; ' +H

andA is a top block of —

withz =U—wv 'w" andy = (I —wv~1).

MatricesB, U andZ have the same dimensionsis a block
diagonal matrix witt8 x 3 invertible blocks thanks to Eq. 6.

We successively estimag!, Dy = g—QTg—Q, andD; =
H; 'Dy using
0 0 T o1
Di=(, y-1)Do+ (¥ (z " (¥Do))): (16)



At this point, the estimation of andB is straightforward:
matrix A is a top block of-D; Cp,, andB—o22~! is a top-left
sub-matrix ofd; Cp,, DY

4. New LBA and its Covariance

In Section 3, the covariance for original LBA [10] is es-
timated assuming that; andy, are independent. Section 4
introduces a new LBA functiofi* which provides the max-
imum likelihood estimationNILE ) of x; for this assump-

tion. Section 4 also describes a recurrence relation to es-

timate geometry and its covariancgi;x;| andCjp, ) are
estimated fromp;—1x7_;] andCp, _,xc -
4.1. Maximum Likelihood Estimator

Indext is omitted forp, ps, X¢, X¢, y+, Ft, f¢ in this part.
Assume thap ~ N (p,Cp) andy ~ N (y,c%I) are inde-
pendentwithy = F'(p,x). The unknown parameters of the
statistical model arg andx (we assume that® andc,, are
given as true values). The probability density function of
Gaussian vectdpy] is

d(p,y|p, %) = Kez (G=lly=F®.%)|*+(@-p)7c," (p-p) (17)

with K a constant. Thus, the MLE"(p,y) of [pX] is

argminsz =y — F(p, )| -p)fcst(p—p). (18
gmm[px]UQHy ®.3)["+ (P -p) Co (p—p). (18)

Function f;* defines estimationp} andxj; of p; andx;
(note thatf; does not provide an estimation pf).

4.2. First-Order Error Propagation

Functionf*(p:, y:) in Eq. 18 may be rewritten as

f1(yy) = argmingg|lyy — Fr&OIP (29)
it SN ~ 1 n -1 1
with %" = [p¢[%:], y; = [(Cp,) 2Pt|;yt] (20)
- E U B
andF(x7') = [(Cp,) 2 Pel —Fi(Be, %e)]. (21)

Now we see that the Jacobi%é% of f;* can be estimated
using Eq. 11 of Proposition 1:

OFr T oF!
Xy Oxy

nT
_,OF,
ox

aoft
oyt

= ( )

(22)

Furthermore, Eq. 20 implieg;” ~ N (y?,I). Eq. 22 and
the linear Taylor expansion ¢f* at[p;y:] provides

off ofr"
dyi " Oy}

OFrT OF

< <
oxy  0Xx]

= ( )~ (23)

Clppxp) = Cpp =

4.3. Algorithm

We may estimatép;x;] and Cj,, ¢ from [p;—1x{ ;]
andCp,, ,xc ] as follows:

1. p; is a sub-vector ofp;—1x§_]
2. Cp, is asub-matrix of,, e

estimatép?x}] = f*(p+, y+) using LBA (Eq. 18)

estimatec(,»,») using Egs. 23 and 21

o > w

. dop; < p§, x¢ < X andCpp,x,) < Clprxy]
6. Clp,xs) is a top-left sub-matrix o€, -

The new LBA (Eg. 18) is more time consuming than the
original LBA (Eq. 5) since camera posespf should be
estimated with those af’. So we replace step 3 by, =
f+(pt, y+) and remove step 5. Step 4 is unchanged: Egs. 23
and 21 are still used witlp} = py, X7 = x¢,Cpp,x,] =
Clprxpy- In other words, we approximate the result of the
new LBA by the result of the original LBA (both results are
exactly the same if there is no image noise). We only esti-
mate blockC,,, <) Of Cfp,, «,) since the dimension of camera
vector[p;x¢] is quite smaller than that ¢p,x;] which also
contains 3D points parameters.

Now, technical details are given for this estimation.
Egs. 21 and 23 provide and~ omitted)

_1

oF" _ ar™  arm\ _ [ Cp? 0 (24)
axr ~ \op ox )= |1or 10r
ocdp o O0x

c-1y 1oETor 1 grTor\ !

- _ P o2 9p Op o2 Op 0Ox

Clopx] LorTor © orTor | (@9
0?2 Ox P o2 Ox X

We apply block-wise inversion Egs. 14 and 15Cgxx»)
with x = (xC xs),

5+ BT AT
— P o o X<
U= L@FT%_F i LalgT{)F (26)
o2 Ox¢ Op o2 Ox°¢ Ox°
1 T 9F 1 oF T oF
w:_(a_F gFL) v =2 (27)
o2 \9p 0% 0xs 02 0x® 0Ox*®
and obtairCp,,«.; = (U—Wv—'w")~!. Thankto Eq. 6V is

a3 x 3-block diagonal matrix and is easy to inverse.

5. Weak Hypothesis

Previous Sections 3 and 4 require tipat~ N (p;, Cp,)
andy; ~ N(y:,0%I) are independent. However, camera
posect® = c!=% is a sub-vector of botp; andx;_; such
thatx;—1 = fi—1(pt—1,y+-1). Sincey; andy;_; have
common 2D points in frames— 9,¢t — 8,-- -t — 1, we can

not assert thap, andy; are independent.



In Section 5, recurrence relations are introduced to es-5.4. Maximum Likelihood Estimator (New LBA)
timate covariances of original and new LBAs without this
hypothesis: [y:p:x;] and Cjy,p,xc] are estimated from
[yt 1Pt— 1Xf 1] andCYf 1Pt—1X§_4]"

Indext is omitted forpy, ps, x¢, X¢, y+, Ft, f¢ in this part.
Assume thafyp] ~ N([yp],Clyp)) With Cyp defined by
Eq. 28 andy = F(p,x). The unknown parameters of the
statistical model arg andx (we assume thaty, is given
as true value). The probability density function of the Gaus

New notations are needed here. lygtny,_; (respec-  Sian vectorpy] is
tively, y: \ y:—1) be the sub-vector of; with 2D points N . v — F(p, %)
which are (respectively, which are not)yp_;. Covariance  d(p,y|p,X) = Ke™ ** "wei® 7 = < p— ’ ) (31)
Clyi_1p:_1xc_,] IS known, and covariana@y,ny, _,|p,] IS &
sub-matrix oy, ,p, ,xc | SinCey;Ny;_1 isasub-vector ~ With K a constant. Thus, the MLE? (p, y) of

of y;—; andp; is a sub-vector ofp;_1x{_,]. o (y F( f, ) ) (32)

5.1. Statistical model offy;p;]

. ST A1 _
We assume that; \ y;_; and[y; Ny, 1|p] are inde- argmingpxz- Cppz With z =

endent. Thu is Gaussian vector with covariance . . . .
P il Function f{* defines estimationp} andx; of p; andx;

021 0 (note that Eq. 18 is a special case of Eq. 32).
Clyipe] = Cly\yi—1lyiNyi—1lpe] = 0 (28)

Clyinye-ilpd 5.5. First-Order Error Propagation (New LBA)
5.2. First-Order Error Propagation (Original LBA) Functionf*(p¢,y:) in Eq. 32 may be rewritten as
We approximatd; by its linear Taylor expansion at point Ii(yt) = argmings ||y} — FMEMI? (33)

v:P:] and obtain o m e 1~ n _1 T
7P with X = [Be[%e), vy =C2,, (F pf) (34

o T msn -3 sog ~m\T
g - g o (I) (y y) 29) andFy (x7) = ¢ 7 | (Fi(pe,%)" DY) . (35)
fpy) £(3,7) 55 l pP—p CovarianceCyy,prx»] is needed for recurrence. Eq. 34

impliesy ~ N(y?, I),y: = Ky andy; = Ky} withK a
Index ¢ is omitted in this expression. We deduce that top block ofc2 .p,- We approximatg;” by its linear Taylor

[yipexi] ~ N([y:PeXt], Cly,p,x,)) With covariance expansion at pofr&t and obtain
I 0 af, T ( Yy ) o ( Yt ) < K ) n —n
I 0 5t n (<N - nion =+ ﬂ (Yt — Y ) (36)
Cly:pex:] = i i Cly.pi] (0 . %7) . (30) fiyi) ) dyp
Oyt opt opt

Thus vectolly; f*(y7)] is Gaussian with covariance
Derivatives off; are provided by Proposition 1.

K K\
: - Clyippxp] = Ciyisrvp = (a2 | \ase ] - (B7)
5.3. Algorithm (Original LBA) dyy ayy

Sections 5.2 and 5.1 define the recurrence relation forandy ff is estimated with Egs. 11 and 35.
the original LBA. We estimatéy; p;x{] andCiy,p,x¢ from _
[Vi-1Pt—1%{_;] andCpy, ,p, ,xc ] as follows: 5.6. Algorithm (New LBA)

Sections 5.4 and 5.5 define the recurrence relation for
the new LBA (Eq. 32). We estimafg;p:x{] andCyy, p,x¢|

2. Ciy,ny,_1|p,] IS @sub-matrix o€y, p, xc from [y;—1p:—1xi_;] andCry, _p,_,x; ) as follows:

1. p: is a sub-vector ofy;—1p:—1xy_,]

1. p; is a sub-vector ofy;_1p;—1x5_,]

3. estimatex; = f;(p¢, y:) using LBA (Eq. 5) ) i
Clyinye_i|pe] IS @sub-matrix oy, 5, ,xe
4. estimate&|,,,,x,) Using Egs. 28, 30, 11 and 12 estimategyy, ,,| using Eq. 28
5. Cly.puxs] IS @ top-left sub-matrix oy, , - estimatdp; x}'] = fi*(p:, y:) using LBA (Eq. 32)

estimatec(y, ,».») Using Egs. 37, 11 and 35
Now the full estimate oi% by Eg. 11 is required for the
top-left sub-matrixC(y, ,,x¢ 0f C and the method is
intractable for real-time.

dop: < py', Xt < xi andCpy,,x,] < Cly,prxr]

yepexd] Cly,px) IS a top-left sub-matrix o€y, x, -

No o~ wDN



6. Experiments
6.1. Integrating Covariance to LBA-based SfM

Our real-time SfM system [10] has two steps: initializa-
tion and incremental reconstruction. The former estimates
the camera poses and 3D points of the sequence beginning
using standard GBA. The latter incrementally reconstructs
the sequence (poses and points) using original LBA (Eq. 5).

Then we integrate our covariance methods in the incre- g points [7] matched using SURF descriptor [1] in key-
mental step. These methods also require covariance for th@gmes (we slightly modify the original SURF method and
camera poses at the sequence beginning. This covariancgs-jmplement it on GPU using CUDA for real-time perfor-
is estimated by the standard method derived from GBA [8]: mance). The means of points in a frame and track lengths
the inverse of approximated Hessian of the minimized cost 5re 193 and 4.5, respectively.
function, multiplied by image noise”. Figure 2 shows quantitative comparisons of GBA-based

A simple gauge is chosen to estimate the covariance ofcovariance with LBA-based covariance described in Sec-
poses at the beginning: we fix the first frame pé&g to) tion 5.3 (original LBA with weak independence hypothe-
with rotationR, = I and locationt, = 0 and the largest  sjs). The same comparison is made in Figure 3 for the
coordinate of they-th frame locatiort,, with t7 = 1 (fo = LBA-based covariance described in Section 4 (new LBA
9) This information should be given since it is known that with Strong independence hypothesis)_ In both cases, we
the shape of uncertainty ellipsoids derived from covamanc  study the major axis of the uncertainty ellipsoid of the loca
highly depends on the gauge choice [11]. Then we removetion of camerac:~2 with probability 90% (the 2" camera
the columns and rows corresponding to these 7 parameterss ypdated at times t-2,t-1,t due to our sliding windows size

Figure 1. Three images of the sequence.

in the approximated Hessian before inversion. of LBA, and we choose the uncertainty at the last update).
) The x-axis is the key-frame number; the sequence begin-
6.2. How to Check LBA-based Covariance ? ning optimized by GBA is not considered in these figures.

LBA-based SfM method produces geometry estimations | N tops of Figures 2 and 3 show the ratio of major axis
which are similar to those of GBA-based SfM [10]. So we lengths between LBA and GBA..We see that the ratio is ac-
expect to obtain the same result for geometry covariance:c€Ptable (close t@.1) for the original LBA. Unfortunately,

LBA-based covariance (our methods) should be similar to this method is not real-time. Furthermore, t_he ratio of new
GBA-based covariance (standard method). We will com- LBA s small (close td).6) due to the strong mdependence
pare both. hypothesis betweep,; andy;. The bottoms of Figures 2

The last step of “GBA-based” SfM is GBA for the com- and 3 show the angle between LBA and GBA major axes.

plete sequence: the vectarof all 3D parameters mini- Th\e;vanr?les arle acceptgble (srga::) for.bpthILLEéA';\s.b d
mizes the cost functior — ||y — F(x)||?, wherey is the e have also experimented the original LBA-based co-

vector of all tracked 2D points along the whole sequence var'iance Wi,th strqng hypothesis (Section 3). In this cdee, t
andF' concatenates the corresponding projection functions. fatio of major axis lengths d|verges. The_re_fore the strong
If y ~ N(3,02I), we have the GBA-based covariance hypothesis should not be used with the original LBA.

. . At this point, the covariance of new LBA with stron
Cx = 02(2E7 9F\~11[8]. This is the inverse of the approx- b g

) d Hax L ox hth hoi he GBA f hypothesis is the only choice in our real-time context (al-
Imate ess'a'." W.'t the same gauge choice ast. € orthough its scale is too small). Letando, be the mean and
sequence beginning (Section 6.1). The valuera$ also

. S . standard deviation of ratios of major axis lengths between
the same. Th? complete calculation of Hessian inverse ISoriginal LBA (weak hypothesis) and new LBA (strong hy-
not necessary: we only calculate the diagonal bloc_ks Wepothesis) for all key-frames of the sequence. We estimate
need thanks to Egs. 14 and_lBe(ndv are the sub_—hessans ¢ — 1.82 ando, — 0.13. Sinceo, /e is low, we decide
of camera poses and 3D points [8, 11], respectively). to improve new LBA covariances by multiplying them with
2. Now, the main axis lengths of new LBA ellipsoids are
6.3. Results roughly the same as those of original LBA. Figure 4 shows
Figure 1 shows three images of the sequence taken? top view of the reconstructed sequence with uncertainty
in urban area. The camera is calibrated, is mounted one€llipsoids of camera locations of our amended covariances.
a car and is pointing forward. The trajectory length is We see that
about 400m and the sequence has 2382 x 384 im-
ages. 384 key-frames are selected from the video. 16365
points are reconstructed by original LBA from 74236 Har- 2. the major axis length increases progressively with time

1. ellipsoids shapes are similar for new LBA and GBA
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Figure 2. Top: ratio of major axis lengths between originBIAL Figure 3. Top: ratio of major axis lengths between new LBA
(weak hypothesis) and GBA ellipsoids. Bottom: angle betwee (strong hypothesis) and GBA ellipsoids. Bottom: angle lestmw
major axes of original LBA and GBA ellipsoids. major axes of new LBA and GBA ellipsoids.

These are expected results. may require too much calculation to obtain real-time per-

Only 6.4 ms are needed by the new LBA-based covari- formance. On the other side, unrealistic statistical medel
ance method for each key-frame, so our method is real-time.may produces real-time but unrealistic uncertainty estima
The total time of new LBA covariance is 2.4 s, which is (ob- tion. We have experimented our covariance methods on real
viously) smaller than that of GBA covariance (145 s) for all Sequences reconstructed by LBA-based SfM and have com-
camera poses. pared the results with standard covariance of global bundle

Our experiments also includes Monte-Carlo simulations adjustment. The original LBA with weak hypothesis pro-
(to check our implementation of LBA covariances) and co- Vides acceptable covariance. This hypothesis is reabstic
variance estimations with other real sequences (simitar re it 40€s not allow real-time performance. Furthermore, the

sults are obtained with similar valueso&nda,). original LBA can not be used with t.he strqng hypothesis.
The new LBA with strong hypothesis provides acceptable

. covariance if empirical coefficient is introduced. Thistlas
7. Conclusion method is the only choice in our real-time context.

This paper has introduced four covariance estimation ~ Future workincludes error propagation from key-frames
methods for Structure-from-Motion (SfM) based on local © Non key-frames, integration of calibration uncertaimty
bundle adjustment (LBA). They are derived from two noise €Or Propagation, experiments for many gauge choices, and
hypotheses (“weak” and “strong”) and two LBAS: our new fusion of our vision results with GPS or odometer data.

LBA which provides Maximum Likelihood Estimation for
these hypotheses, and the original LBA which does not. All
methods propagate uncertainty along the sequence. Only Proposition 1 (Section 3.2) is a particular case of Propo-
two of them are real-time thanks to the strong hypothesis. sition 6.1 in [5], which also asserts that functigriocally

We must find a pair (statistical model, estimator) such exists and i€! continuous. In this appendix, the time index
that the estimated covariance is both physically plausiblet is omitted. Furthermorel},, x; andp; are thek-th, i-th
and real-time. On one side, realistic statistical models andj-th coordinates of vectorE, x andp, respectively.

Appendix A



We dropy for Eq. 12 proof sincey acts a constant em-
bedded inF. Second order partial derivatives of function

1
9(x.p) = 3||F(p. )| (38)
are
8Fk 8Fk 0%F,
—F}.
8x 8pj Z dx; Op; 8xi8pj e} (39)
Gauss-Newton approximation of Eq. 39 is
OF, OF), aFTaF
8x18pj Z ox; Op; 8x 8p) g (40)
A similar equation is
d%g OFTOF
8X7;8Xj (5 E)Lj (41)
Sincef(p) is minimizer ofx — g(x, p), we have
. Jdg B
Thank to Eq. 42, 40 and 41, we dedutie;
0 dg
0 = 7p; (p— O (f(p);p)) (43)
> g g |\ Ofx
o 8x7;8pj Ek: (9X1'8Xk 8—I)J (44)
OFTOF OFToF  Of
(8_)( %)Z:J—’—Z(ax 8X)7f k(a ) ;](45)
Last, Eq. 45 is equivalent to
OFToF of OFTOF
4
(8x 8X)8p COx 8p (46)

We obtain Eq. 12 sinc%% has full rank. Eq. 11 is obtained
here in the special cadé(p, x) = F(x) — p by swapping
notationsy andp.

Vector p; fixes the gauge (coordinate frame and scale)

for LBA since p; concatenates at least two camera
poses [10]. In this contexl‘g—i has full rank for general
configurations of 3D points [8].
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Figure 4. Top view of the reconstructed sequence by the LBA-
based SfM. Camera locations and 3D reconstructed points are
black dots. The 90% uncertainty ellipsoids of camera |oceti

are also drawn for key-frames whose numbers are multiple of 5
(continuous line for standard GBA and dotted line for our new
LBA with strong independence hypothesis).
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