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Abstract

Background modeling plays an important role in video
surveillance, yet in complex scenes it is still a challenging
problem. Among many difficulties, problems caused by illu-
mination variations and dynamic backgrounds are the key
aspects. In this work, we develop an efficient background
subtraction framework to tackle these problems. First, we
propose a scale invariant local ternary pattern operator,
and show that it is effective for handling illumination varia-
tions, especially for moving soft shadows. Second, we pro-
pose a pattern kernel density estimation technique to effec-
tively model the probability distribution of local patterns in
the pixel process, which utilizes only one single LBP-like
pattern instead of histogram as feature. Third, we develop
multimodal background models with the above techniques
and a multiscale fusion scheme for handling complex dy-
namic backgrounds. Exhaustive experimental evaluations
on complex scenes show that the proposed method is fast
and effective, achieving more than 10% improvement in ac-
curacy compared over existing state-of-the-art algorithms.

1. Introduction

Background subtraction is often the first task in station-
ary video processing applications. Output of the back-
ground subtraction is usually an input to a higher level pro-
cess, such as object categorization, tracking or action recog-
nition. Therefore, its performance can have a huge effect on
the performance of higher level tasks.

Background subtraction is a challenging task, especially
in complex dynamic scenes that can contain moving vege-
tation, rippling water, etc. Many approaches have been pre-
sented in the literature to deal with such multimodal scenes
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[1, 2, 4, 8, 10]. The popular idea is to model temporal
samples in multimodal distributions, in either parametric or
nonparametric way, so that the learned background model
is able to tolerate the variations of the background scene.
Another major challenge in background subtraction is il-
lumination variation. A number of existing works handle
illumination variation such as moving shadows in special
color spaces [1, 7], but the learned parameters are not adapt-
able. In [10], a global illumination change detection was
proposed, and a better background model could be selected
accordingly. However, there still exists the problem of hav-
ing suitable and up-to-date models for all cases. A survey
on moving shadow detection methods is presented in [7].

In this work, we propose an efficient background sub-
traction framework that deals with illumination variations
on the feature level, in which neither global illumination
change detection nor local shadow detection is used. Our
work is motivated by that of Heikkilä et al.’s [3], who used
Local Binary Pattern (LBP) histograms for background
modeling. LBP features are tolerable against illumination
variations. However, they found that moving shadows could
not be handled very well. In this work, we propose to extend
LBP to a scale invariant local ternary pattern (SILTP)1 op-
erator, and show its effectiveness for handling illumination
variations. Furthermore, we aim at accurate segmentation
of moving objects and improve Heikkilä et al.’s region his-
togram based work by modeling pixel process with a single
local pattern instead. However, local patterns are not ordi-
nal numerical values, thus can not be modeled directly into
traditional density functions. Therefore we propose a Pat-
tern Kernel Density Estimation (PKDE) technique to effec-
tively model probability distributions of such patterns. In
addition, we develop multimodal background models with
the above techniques for handling complex dynamic back-
grounds, and we also develop a multiscale fusion scheme to
consider the spatial scale information.

1The term “scale” here means gray scale pixel value, not spacial scale.
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Figure 1. Comparison of LBP, LTP, and SILTP operators. First row: original encodings. Second row: encodings with noises. Third row: encodings with scale transform (all

pixel values are doubled). The circled red pixels are changed with noises or by scale transform, and the circled red encodings are affected by those changes correspondingly.

2. Scale Invariant Local Ternary Pattern
Local Binary Pattern (LBP) is proved to be a powerful

local image descriptor [6]. The encoding is shown in the
top-left of Fig.1, which is monotonically invariant to gray
scale transforms. However, the LBP operator is not robust
to local image noises when neighboring pixels are similar,
as illustrated in the second row of Fig.1 for an example.
To deal with local noises, Tan and Triggs proposed a Local
Ternary Pattern (LTP) operator [9] for face recognition. As
can be seen from the second row of Fig.1, LTP is more ro-
bust by introducing a small tolerative range. However, the
descriptor is extended from LBP by simply adding a small
offset value for comparison, which is not invariant under
scale transform of intensity values by a multiplying con-
stant. An example is shown in the last row of Fig.1, where
the LTP descriptor can not keep its invariance against scale
transform when all local pixel values are multiplied by 2.

The intensity scale invariant property of a local compar-
ison operator is very important, because illumination varia-
tions, either global or local, often cause sudden changes of
gray scale intensities of neighboring pixels simultaneously,
which would approximately be a scale transform with a con-
stant factor. Therefore, in this work we propose a Scale In-
variant Local Ternary Pattern (SILTP) operator, of which
the concept is shown in the last column of Fig.1. Given any
pixel location (xc, yc), SILTP encodes it as

SILTP τ
N,R(xc, yc) =

N−1⊕
k=0

sτ (Ic, Ik), (1)

where Ic is the gray intensity value of the center pixel, Ik

are that of its N neighborhood pixels equally spaced on a
circle of radius R,

⊕
denotes concatenation operator of bi-

nary strings, τ is a scale factor indicating the comparing
range, and sτ is a piecewise function defined as

sτ (Ic, Ik) =


01, if Ik > (1 + τ)Ic,

10, if Ik < (1− τ)Ic,

00, otherwise.

(2)

Since each comparison can result in one of three values,

SILTP encodes it with two bits (with “11” undefined). The
scale invariance of SILTP operator can be easily verified.

The advantage of SILTP operator lies in three folds.
First, it is computationally efficient, which causes only one
more comparison than LBP for each neighbor. Second, by
introducing a tolerative range like LTP, the SILTP operator
is robust to local image noises within a range. Especially in
the shadowed area, the region is darker and contains more
noises, in which SILTP is tolerable while local comparison
results of LBP would be affected more (cf. Fig.2). Finally,
the scale invariance property makes SILTP robust to illumi-
nation changes. The SILTP feature is invariant if the illumi-
nation is suddenly changed from darker to brighter or vice
versa. Besides, SILTP is robust when a soft shadow covers
a background region, because the soft cast shadow reserves
the background texture information but tends to be darker
than the local background region with a scale factor.

Fig.2 shows an example of comparing the three operators
on two real video frames for foreground/background seg-
mentation. As can be seen from the histograms, for back-
ground with and without shadows, the SILTP operator per-
forms perfectly, with only two patterns being different be-
tween the two black blocks, while both LBP and LTP show
larger difference. Meanwhile, for the white blocks it can
also be seen that SILTP has a better power to distinguish
the foreground block from that of the background.

Figure 2. Comparison of LBP4,1, LTP5
4,1, and SILTP0.1

4,1 operators on real frames.

First column: two frames from the ShoppingMall dataset [4], with two 10×10 blocks

drawn. Black blocks contain backgrounds with and without shadows. White one is

background on the top, and foreground on the bottom. Other columns: histograms

of the three local patterns corresponding to black blocks (top row) and white ones

(bottom row), and to top frame (solid red) and bottom one (dotted blue).



3. Kernel Density Estimation of Local Patterns
To segment the foreground/background precisely, we

consider to model the texture background in a pixelwise
manner. Given a monocular grayscale video sequence, the
pixel process [8] with the local pattern observations over
time 1, 2, . . . , t at a pixel location (x0, y0) is defined as

{p1, p2, . . . , pt} = {F (x0, y0, i) : 1 ≤ i ≤ t}, (3)

where F is the texture image sequence. Fig.3 shows an ex-
ample of six pixel processes with LBP, LTP, and SILTP de-
scriptors at two locations respectively. It can be seen that
all background patterns within a pixel process, either uni-
tary or dynamic, are distributed at just several possible bins.
Especially for SILTP at the entrance, the pattern is invariant
(20 or 00010100) among all the 500 frames counted. There-
fore, it is promising to model the complex unitary/dynamic
background pixelwisely with local texture descriptors.

Figure 3. Histograms of six pixel processes with LBP8,1, LTP5
4,1, and SILTP0.1

4,1

operators at two locations respectively. Red point is dynamic background on a mov-

ing escalator, and blue one is unitary background at the entrance, with solid red line

and blue dotted one showing the corresponding histograms (500 frames counted).

To model the background we need to estimate the proba-
bility distribution of the pixel process with local texture de-
scriptors. It is never been done before because local texture
patterns are not numerical values that have partial ordering
relationships. As a result, traditional numerical value based
methods, either parametric one like Gaussian mixture mod-
els [8], or nonparametric one like kernel density estimation
(KDE) [1], can not be used directly for modeling local pat-
terns into background. Instead most existing researches cal-
culate region histograms of local patterns as numerical fea-
tures. The background subtraction using block-based LBP
histograms is of this kind [3], which loses some localization
information, and generates a huge feature set.

In this work, we develop a pattern kernel density estima-
tion (PKDE) technique with a particular local pattern ker-
nel that is suitable for descriptors like LBP, LTP, and SILTP.
First we define a distance function d(p, q) as the number of
different bits between two local patterns p and q, which can
be computed fast via XOR operation. For SILTP defined
in Equ.(1), such a distance is also well defined, because
for each comparison there are 2-bits differences between
01 and 10 encodings, and both of them have 1-bit differ-
ence with 00. Then we derive our local pattern kernel as
Φ(p, q) = g(d(p, q)), where g is a weighting function that
can typically be a Gaussian. Afterwards, given a pixel pro-
cess of local patterns (see Equ.(3)), the probability density

function can be estimated smoothly as

f̂(q) =
t∑

i=1

ciΦ(pi, q), (4)

where ci are weighting coefficients. For example, in Fig.3
the distribution of LTP pixel process with unitary back-
ground is: 20(00010100)/432 hits, 21(00010101)/4 hits,
84(01010100)/6 hits, and 148(10010100)/58 hits. If no ker-
nel technique is used, the patterns 21 and 84 might be re-
garded as foregrounds and the pattern 148 might be con-
sidered to be another modal. But in our pattern kernel, the
latter three patterns are all neighbors of the first one, thus
they all will be considered in the same distribution.

For background subtraction in real applications, online
adaptation is important. So we also develop an online ver-
sion of PKDE for adaptation. Given an estimated density
function at time t-1 and a new coming background pattern
pt, we update the new density function as

f̂t(q) = (1− α)f̂t−1(q) + αΦ(pt, q), (5)

where α is a learning rate. Note that the online PKDE needs
no storage for the recent pattern frames.

4. Modeling Background with Local Patterns
A popular technique dealing with dynamic background

is multimodal background modeling [3, 8]. Fig.3 also
shows multimodality of local pattern based representation.
For example, in LBP pixel process on the moving escalator,
the patterns 0(00000000)/137 hits, 193(11000001)/176 hits,
and 255(11111111)/30 hits constitute three main dynamic
background modalities. To handle such case, we estimate
K density functions for each pixel process via PKDE tech-
nique, with wk,t, k = 1, 2, ..,K being the corresponding
weights and normalized to 1. The K pdfs are sorted with the
corresponding weights in descending order. Then in current
state first we determine the number of backgrounds as

M = argmin
r

(
r∑

k=1

wk,t−1 > Tb

)
, (6)

where Tb is a threshold indicating how many data should
be considered as background. Afterwards, we estimate the
probability of a new pattern pt being background as

P̂ (pt) =
1∑M

k=1 wk,t−1

M∑
k=1

wk,t−1f̂k,t−1(pt). (7)

Therefore, foreground/background decision can be made by
thresholding P̂ (pt) with a predefined parameter Ts.

In the update procedure, the new pattern pt is matched
to the sorted pdfs in turn, and a match is found when



fk,t−1(pt) > Tm, where Tm is a threshold parameter con-
trolling the matching. Once a match is found, the matched
pdf is updated as Equ.(5), while other pdfs remain the
same. In addition, the K weights are updated as wk,t =
(1 − α)wk,t−1 + αxk,t, where xk,t is an indicator variable
being 1 for the matched model and 0 otherwise. If none
of the K distributions matches the current pattern, the one
with the lowest weight is replaced with a new distribution
of f(q) = Φ(pt, q), and a low initial weight.

Furthermore, we propose to fuse multiscale spatial in-
formation to achieve better performance. Inspired by [5],
in this work we further develop a Multiscale Block-based
SILTP (MB-SILTP) operator to consider the spatial scale.
MB-SILTP encodes in a way similar with Equ.(1), where
Ic and Ik are replaced with mean values of corresponding
blocks, of which the size ω × ω indicates the scale. Note
that MB-SILTP with ω = 1 is actually the SILTP operator.

To implement the MB-SILTP based background subtrac-
tion efficiently, first the original video frame is downsam-
pled by ω, with mean values in non-overlapping ω × ω
blocks being new pixels. Afterwards, MB-SILTP can be
calculated, and the proposed background model can be ap-
plied on the reduced space. Finally, the resulted proba-
bilities are upsampled bilinearly to the original space, and
thresholded by Ts to generate the foreground/background
segmentation result. In this way the speed is much faster
with larger scale, whereas the precision is generally lower.

The background probabilities at each scale can be
fused on the original space, so that complementary in-
formation at each scale can be explored. We simply
adopt the geometric average of probabilities at each scale
as the fusion score, which are defined as G(pt) =
n

√
P̂ω0(pt)P̂ω1(pt) · · · P̂ωn−1(pt), and the threshold Ts can

be applied on this new score for the final decision.

5. Experimental Results

We ran exhaustive experiments on nine datasets con-
taining complex backgrounds, which are publicly available
made by [4]. The test databases are difficult videos includ-
ing busy human flows, moving cast shadows, etc. Most of
the datasets contain several thousand video frames, with 20
frames manually labeled for each dataset as the groundtruth.

The proposed approach was compared with existing
state-of-the-art online background subtraction algorithms,
including mixture of Gaussian (“MoG”) [8], “ACMMM03”
for complex scene [4], blockwise LBP histogram based ap-
proach (“LBP-B”) [3], and pixelwise LBP histogram based
one (“LBP-P”) [2]. The same PKDE based background
subtraction framework with LTP (PKDEltp) and SILTP
(PKDEsiltp) operators were both tested. For MB-SILTP we
ran other two scales (ω = 2, 3) on each dataset, denoted
by “PKDEω=2

mb−siltp” and “PKDEω=3
mb−siltp” respectively. We

also applied the proposed multiscale fusion technique in the
experiments using the three scales of MB-SILTP, named af-
ter “PKDEω=1+2+3

mb−siltp ”.
For all algorithms, no morphological operation was ap-

plied, instead a standard OpenCV postprocessing was used
which eliminates small pieces less than 15 pixels. We
ran both MoG and ACMMM03 algorithms implemented in
OpenCV2.0 with default parameters. Parameters for LBP-
B and LBP-P were: 9 × 9 block size, LBP6,2 operator,
K = 3, αb = αw = 0.01, TD = 0.65, and TB = 0.6,
which were suggested by the authors in their experiments
[2]. For the proposed method we used a set of consistent
parameters for all experiments: LTP5

4,1/SILTP0.05
4,1 opera-

tor, K = 3, Tb = 0.7, Ts = 0.01, Tm = 0.01, and
α = 0.005. The weighting function was simply defined
as g(x) = aI[x=0] + bI[x=1], with which the kernel function
affected first-order neighboring patterns. We set a = 0.36,
and b = 0.08, which worked quite well in the experiments.

We summarize background scenes of all the nine datasets
with four categories: indoor busy scenes with moving
cast shadows (AirportHall, Bootstrap, and ShoppingMall),
with light switching (Lobby), and with dynamic back-
ground (Curtain and Escalator); and outdoor scenes with
dynamic background (Fountain, Trees, and WaterSurface).
With these four categories we want to evaluate the perfor-
mances of all compared algorithms on two aspects: illumi-
nation variation and dynamic background. Due to the pa-
per length, we select four typical datasets among them to
analyze the results, which are shown in Fig.4. The fore-
ground/background segmentation results of the compared
algorithms (except LBP-B and PKDEω=2

mb−siltp) are demon-
strated with one frame for each dataset, of which the classi-
fied backgrounds are masked with green color.

For the indoor busy scene “AirportHall”, one can see that
both MoG and LBP-P fail to suppress the moving shad-
ows. Besides, due to region histogram based method, the
detected objects of LBP-P are not accurate in boundary. Be-
sides, ACMMM03 successfully removes the shadows, but
many small objects are missed in the detection results. On
the other hand, the PKDE framework with local ternary
patterns perform much better, where most moving shad-
ows are removed, and the segmentation results are more
accurate thanks to the pixel process modeling. Note that
the proposed method only uses the grayscale information
on the feature level to remove the soft cast shadows from
foreground objects, in contrast many shadow removal al-
gorithms design particular shadow detection techniques on
color space [7]. Also notice that some small body parts are
not detected with both PKDEltp and PKDEsiltp, and it is
fixed by larger scale of MB-SILTP descriptor, since it can
capture larger image structures. And so the fusion of three
scales in PKDEω=1+2+3

mb−siltp takes complementary information
between them and gets more accurate segmentation result.
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Figure 4. Segmentation results on four datasets.

Next, a frame of “Lobby” dataset is shown in Fig.4 when
the indoor light is suddenly turned off and the illumination
is much lower. As illustrated, ACMMM03 performs unsat-
isfactorily in this case, where no object is detected except
false foregrounds. In contrast, other methods adapt quickly
with the illumination change. Yet some foreground parts
are still not detected by MoG, LBP-P, and PKDEltp, while
algorithms with SILTP based operators in this case give the
most accurate segmentation results.

The indoor dynamic background scenario “Curtain”
shown in Fig.4 contains a set of strongly waving curtains
due to the wind. As can be seen, the MoG result con-
tains false detections caused by the reflection of the white
board. LBP-P detects some waving curtains wrongly as
foreground. ACMMM03 successfully learns the dynamic
background, but it also falsely suppresses many foreground
pixels as background. In contrast, the proposed algorithms
all model the dynamic background perfectly and generate
accurate results compared to the groundtruth, except that
PKDEltp loses some human body parts.

As for the case of outdoor dynamic scene, the last col-
umn of Fig.4 shows a dataset containing a large area of
water rippling and a camera jitter. As demonstrated, all
algorithms output good segmentation results, except that
MoG suddenly segments the blue sky as foreground, and
PKDEltp absorbs the main human body parts as back-
grounds. The reason why PKDEltp performs worse in this
case is that the intensities of the foreground object are much
lower, and the constant offset value of LTP can not adapt to
fit all cases. In contrast, SILTP is scale invariant and can be
applied on the full range of grayscale intensities.

A quantitative evaluation is also done on all of the nine
datasets, as shown in Tab.1 with the F-score and running
framerate in average for all compared algorithms. The F-
score measures the segmentation accuracy by considering
both the recall and the precision, which is defined as

F =
2 · recall · precision

recall + precision
=

2TP

2TP + FN + FP
, (8)

where TP , FP , and FN are true positives (true fore-
ground pixels), false positives, and false negatives (false
background pixels) respectively, computed in pixels of all
20 labeled frames for each dataset. The total F-score is cal-
culated with the TP , FP , and FN summing over all the
sequences for an average measure.

From the table it can be inferred that the proposed meth-
ods outperforms all of the compared state-of-the-art algo-
rithms on all sequences except the Trees dataset. Further-
more, in average the improvements made by PKDE with
SILTP based operators are more than 10% which is impres-
sive. One can also see that the proposed scale invariant LTP
operator performs better than LTP, particularly for the Air-
portHall, Curtain, and the WaterSurface dataset. In general,
PKDE with smaller scale MB-SILTP operator is slightly
more accurate than that of larger scale, especially for mov-
ing shadows and other illumination changes. But in the
scenes containing large background motion or large objects,
the larger scale is more robust (Note that PKDEω=3

mb−siltp

performs the best on the Watersurface dataset compared to
all other algorithms). Finally, by fusing several scales of
MB-SILTP, the result is more accurate in average.

All tested algorithms were implemented in c++ and ran
on a standard PC with 2.40GHz CPU, 2.0G memory, and
Windows XP operation system. The running framerate was
tested on the ShoppingMall dataset, with the frame size of
320× 256. From the results recorded one can infer that the
proposed method can run in real time with a scale larger
than one. Balancing between speed and accuracy, we select
PKDEω=3

mb−siltp as the best algorithm among all, which is
about two times faster than MoG, and outperforms existing
algorithms by more than 10% in accuracy. Also notice that
PKDE with a single pattern in pixel process runs faster than
LBP-P which needs comparing region-based histograms.



Sequences MoG ACMMM03 LBP-B LBP-P PKDEltp PKDEsiltp PKDEω=2
mb−siltp PKDEω=3

mb−siltp PKDEω=1+2+3
mb−siltp

AirportHall 57.86 50.18 47.73 50.29 62.13 68.14 65.87 63.60 68.02
Bootstrap 54.07 60.46 52.81 52.00 73.86 75.35 69.45 64.87 72.90
Curtain 50.53 56.08 66.08 71.42 74.19 91.16 89.37 87.97 92.40

Escalator 36.64 32.95 59.08 53.93 67.71 63.90 64.37 60.18 68.66
Fountain 77.85 56.49 70.52 75.33 81.05 83.45 81.17 77.60 85.04

ShoppingMall 66.95 67.84 54.67 62.92 73.91 79.62 77.75 74.49 79.65
Lobby 68.42 20.35 50.29 52.34 77.85 78.80 73.82 67.16 79.21
Trees 55.37 75.40 62.85 60.57 42.98 42.54 51.88 61.53 67.83

WaterSurface 63.52 63.66 76.80 82.21 41.46 74.30 81.08 83.51 83.15
Total 60.14 59.21 58.69 63.46 67.59 75.35 75.24 73.59 78.69

Framerate 33.5 23.3 10.5 1.5 8.9 8.7 31.8 63.9 6.3

Table 1. Performance of F-score (%) on the nine complex video sequences and the running framerate (fps) in average.

6. Conclusion
In this paper we have demonstrated a novel pixelwise

background subtraction algorithm with local patterns on
monocular grayscale video sequences. We have proposed
an improved local image descriptor called SILTP, and have
demonstrated its power for background subtraction. We
have also proposed a multiscale block-based SILTP opera-
tor for considering the spatial scale information. For model-
ing the pixel process with local texture descriptors, we have
proposed a Pattern Kernel Density Estimation technique
and based on it we have developed a multimodal back-
ground modeling framework. We have run extensive exper-
iments on complex scenes to prove that one single local tex-
ture pattern instead of region histogram is really enough for
the background subtraction task. We have achieved more
than 10% improvement in accuracy compared to existing
algorithms, with a speed of about two times faster than the
standard mixture of Gaussian approach.

Future works will be investigating color information into
the proposed background subtraction framework. Further-
more, we believe that the proposed SILTP operator and the
PKDE technique for estimating the distribution of local pat-
terns are not limited to the field of background modeling. It
is expected that they will also be effective on other research
areas such as object detection and object recognition.
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gray-scale and rotation invariant texture classification with
local binary patterns”. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 24(7):971–987, 2002.

[7] A. Prati, I. Mikic, M. M. Trivedi, and R. Cucchiara. “De-
tecting moving shadows: Algorithms and evaluation”. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
25(7):918–923, 2003.

[8] C. Stauffer and W. Grimson. “Adaptive background mix-
ture models for real-time tracking”. In Proceedings of IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition, 1999.

[9] X. Tan and B. Triggs. “Enhanced local texture feature sets
for face recognition under difficult lighting conditions”. In
Proceedings of the IEEE International Workshop on Analysis
and Modeling of Faces and Gestures, 2007.

[10] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers.
“Wallflower: principles and practice of background main-
tenance”. In Proceedings of IEEE International Conference
on Computer Vision, volume 1, pages 255–261, 1999.


