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Abstract

It has been shown that the 3D shape of a deformable
surface in an image can be recovered by establishing cor-
respondences between that image and a reference one in
which the shape is known. These matches can then be used
to set-up a convex optimization problem in terms of the
shape parameters, which is easily solved. However, in many
cases, the correspondences are hard to establish reliably.

In this paper, we show that we can solve simultaneously
for both 3D shape and correspondences, thereby using 3D
shape constraints to guide the image matching and increas-
ing robustness, for example when the textures are repetitive.

This involves solving a mixed integer quadratic problem.
While optimizing this problem is NP-hard in general, we
show that its solution can nevertheless be approximated ef-
fectively by a branch-and-bound algorithm.

1. Introduction

A number of techniques have recently been proposed to
recover the shape of a deformable 3D surface from a single
image when point correspondences can be established with
a reference image in which the shape is known [18, 30, 21].
Although these algorithms tolerate some mismatches, they
will fail if there are too many of them, as happens in the
presence of repetitive patterns or when the texture quality is
too poor to guarantee reliable correspondences.

In the case of rigid objects, such difficulties can be over-
come by taking into account the constraints imposed by the
epipolar geometry. However, for deformable surfaces, the
constraints are much weaker and most existing algorithms
establish correspondences based solely on local appearance
without considering the spatial layout of features and the
constraints it imposes. In other words, available informa-
tion is not fully exploited when computing the correspon-
dences and it is left to robust estimators to deal with mis-
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Figure 1. 3D reconstruction of textured deformable surfaces from
single view.

takes when attempting to recover deforming 3D shapes.
Recent work [2, 13, 28, 11] has addressed the problem

of non-rigid feature matching by seeking correspondences
such that the 2D arrangements of the matching features in
the two images are consistent. These 2D constraints, how-
ever, do not take into account 3D perspective distortion ef-
fects and may therefore not accurately reflect 3D geometry.
By contrast, in this paper, we show that we can simultane-
ously establish correspondences and impose projective con-
straints, which yields much higher quality matches in diffi-
cult situations that are plagued by ambiguities.

Our algorithm solves simultaneously for 2D correspon-
dences and 3D shape by optimizing a single objective func-
tion over both the set of all possible correspondences and
the set of all possible shapes. This amounts to solving
a mixed integer quadratic problem, which is NP-hard in
general. We propose a branch-and-bound solver for this
problem and show that, in practice, this method yields ex-
cellent approximate solutions. In challenging situations
such as the one depicted in Fig. 1, our approach outper-
forms reconstruction methods relying on correspondences
pre-computed by matching appearance descriptors.

Our main contribution therefore is a novel branch-and-



bound formulation of the 3D reconstruction problem. By
simultaneously establishing 3D correspondences and recov-
ering 3D shape, we obtain good results in challenging situ-
ations, such as when repetitive patterns are present, where
traditional methods such as [18, 30, 20] requiring corre-
spondence as input are destined to fail. To the best of our
knowledge, we are the first to show that this can be done
without a prior model and using only a single input image.

2. Related Work
In this section we briefly review the existing literature on

both monocular reconstruction of deformable surfaces and
feature point matching between two views.

Reconstruction of Deformable 3D Surfaces: Monocu-
lar reconstruction of deformable surfaces is inherently un-
derconstrained as many different 3D shapes can produce
the same image projection. To overcome these ambigui-
ties numerous approaches have been proposed. The earliest
ones relied on physically inspired models and attempted to
capture intrinsic physical properties of the deforming ob-
jects [24]. Modal analysis [17] has been often used in con-
junction with such models to reduce the degrees of freedom
in the problem.

To overcome the limitations of the physically inspired
models, statistical learning methods have been applied to
build linear and non-linear surface deformation models
from 3D training data [9, 5]. These models can be both
accurate and easy to learn but can only represent surfaces
behaving in the same way as those of the training examples.
Furthermore, in practice availability of 3D training data is
scarce and expensive to acquire.

A number of methods have been proposed for model-
free 3D reconstruction from 2D tracking data. Non-rigid
structure from motion algorithms [7, 6, 27] constrain the re-
construction by assuming that the 3D shapes lie in or near a
linear subspace, which is estimated from the given 2D mo-
tion. Other approaches [20, 30] have employed temporal
consistency instead of shape smoothness to recover 3D sur-
faces from tracking data.

Recently, several authors [20, 18] have proposed algo-
rithms that can estimate a 3D surface from individual im-
ages by exploiting inextensibility constraints. Although
these methods remove the need of tracking over whole se-
quences, they still require correspondences between two
views as input. For template-based methods, such as [20],
these correspondences are established between a reference
view in which the 3D shape is known and a query frame
where the surface deformation is to be recovered. Simi-
larly, template-free methods [29] require correspondences
between individual frames in a video sequence.

Matching: Feature-based deformable surface recon-
struction methods require establishing wide-baseline corre-
spondences between two views of the deforming surface.

To this end, most techniques [20, 21] use SIFT [15] cor-
respondences. In some of the earlier studies fast match-
ing methods such as randomized trees [14] are also used
for detecting 2D deformations in real-time [19]. In addi-
tion, for 2D surface tracking applications, cross-correlation
based matching methods are employed to track 2D fea-
tures throughout the whole sequence [20]. Common to all
these methods, the outlier matches are explicitly detected in
the reconstruction phase using robust estimation methods.
Thus, their performance highly depends on the quality of
the inlier matches that are provided by the matching algo-
rithm.

Most prior methods for non-rigid feature correspondence
have proposed matching appearance descriptors under a
smooth, or piece-wise smooth, parametric transformation
describing the 2D geometric mapping relating the feature
sets in the two views [25, 1]. However, these simple para-
metric 2D transformations are not suitable for highly de-
formable objects, such as clothing.

Recently, several authors [2, 13, 28, 11] have proposed
to cast non-rigid feature correspondence as a graph match-
ing problem. The feature sets extracted from the two im-
ages are viewed as two separate graphs, where the nodes
represent features and the edges encode the spatial arrange-
ment between pairs of features. The matching process then
aims at establishing correspondences that match points hav-
ing similar appearance, while preserving as much as possi-
ble the spatial relationships between the features. However,
in these models, edge similarity is defined in terms of sim-
ple 2D geometric consistency measures, which cannot ac-
curately model 3D effects such as perspective projection or
deformations orthogonal to the camera plane.

By contrast in our work, we propose a graph matching
objective directly expressed in terms of non-rigid 3D shape
parameters and similarity between feature descriptors. The
optimization of this objective leads to simultaneous outlier
rejection, point matching, and 3D surface reconstruction.
This joint scheme is well studied for the camera pose esti-
mation using rigid objects [8, 23] but it has not been studied
for the deformable surface reconstruction problem. Our ap-
proach is similar in spirit to methods for direct non-rigid
3D modeling from video [6, 26] which directly optimize
shape over raw image data, without pre-computed corre-
spondences. Our methods extends these approaches to ad-
dress the problem of surface reconstruction from individual
image pairs.

3. Formulation

In [21] it is shown that, given enough 2D point corre-
spondences between an input image and a reference image
in which the shape of a deformable surface is represented
by a known 3–D mesh, the shape in the input image can be



recovered1. Shape recovery is accomplished by minimizing
a convex objective function, provided that the correspon-
dences are acquired beforehand and not too many of them
are erroneous.

In this section, we first briefly summarize the formula-
tion of [21] and then recast the problem as one of simulta-
neously solving for shape and correspondence. We intro-
duce the corresponding optimization procedure in the next
section and show in the results section that it allows us to
overcome the limitations of the earlier approach.

3.1. Shape Recovery as Convex Optimization

We represent a surface as a triangulated mesh made of
Nv vertices vi = [xi, yi, zi]T , 1 ≤ i ≤ Nv connected by a
set Emesh of Ne edges. We stack the vertices into a vector
V = [vT1 , · · · ,vTNv

]T ∈ R3Nv . Without loss of generality,
we describe the vertices in the camera reference frame. We
assume that the camera is calibrated, with known intrinsic
and extrinsic parameters.

Let P′ = {p′1, . . . , p′n′} and P = {p1, . . . , pn} be the
two feature sets extracted from the reference image and the
target image, respectively. Let us start by assuming that we
are given the set of correspondences C ⊆ {1, . . . , n′} ×
{1, . . . , n} between these two sets: (r, t) ∈ C indicates
that feature p′r ∈ P′ in the reference image matches point
pt ∈ P in the target image. Since the 3D surface for the
reference image is known, for each feature point p′r ∈ P′

we can compute its mesh point p′r ∈ R3 . Each 3D point p′r
can be expressed as a weighted sum of the vertices of the
mesh facet it belongs to. The weights are the barycentric
coordinates of p′r and do not change as the surface deforms.
Thus, for each (r, t) ∈ C, we can compactly write that p′r
must project to feature point pt in the target image as:

M(r,t)V = 0 , (1)

where M(r,t) ∈ R2×3Nv is the projection matrix, which can
be computed in terms of the image coordinates pt and the
barycentric coordinates of point p′r [20]. Stacking these
matrices for all |C| correspondences yields a 2|C| × 3Nv
matrix M and jointly minimizing the reprojection error for
all correspondences amounts to minimizing

Ereproj(V) = ‖MV‖22 =
∑

(r,t)∈C

‖M(r,t)V‖22 . (2)

The matrix M, however, is very poorly conditioned. As a
result, since the correspondences are always slightly noisy,
simply solving the system in the least-squares sense does
not return satisfactory solutions. Instead, it was found nec-
essary to add several constraints [22].

1Note that this problem differs from traditional stereo since the shapes
in the input and reference image may be different.

Since most materials do not perceptibly shrink or extend
while deforming, the deformations must be such that the
distances between vertices are preserved, which means,

||vk − vj ||2 ≤ lj,k, ∀(j, k) ∈ Emesh ,

where lj,k represents the geodesic distance between vertices
j and k. Note that the constraint is formulated as an in-
equality because we use a discrete representation of a con-
tinuous surface. As a result, when the surface folds, the Eu-
clidean distance between two vertices can decrease without
any change in the geodesic one.

While the inequalities introduced above prevent the
mesh from expanding, they still allow it to shrink to a sin-
gle point. This could be remedied by maximizing the mesh
area under our constraints. However, this would yield a
non-convex problem. Instead, the approach in [21] exploits
the fact that, in the perspective camera model, the lines-of-
sight are not parallel. Thus the largest distance between two
points is reached when the surface is furthest away from the
camera. Therefore, for each correspondence (r, t) ∈ C a
reconstruction for pt can be obtained by maximizing the
depth dt along its line-of-sight st. This term can be com-
puted as

dt = pTt st = VT BTr st , (3)

where Br is the 3 × 3Nv matrix containing the barycentric
coordinates of point p′r placed to correctly match the ver-
tices of the facet to which the point belongs. In order to
enforce this for all vertices, the following linear term was
added to the one of Eq. (2)

Edepth(V) = −
∑

(r,t)∈C

sTt BrV , (4)

To further stabilize the system, the approach of [21] in-
cluded a quadratic regularization term Edeform(V) that pe-
nalizes any local deformation that deviates from a deforma-
tion model trained on inextensible meshes.

Bringing all these terms together, the 3D shape is recov-
ered by solving the convex optimization problem

min
V

Ereproj(V) + w1Edepth(V) + w2Edeform(V)

subject to ||vk − vj ||2 ≤ lj,k, ∀(j, k) ∈ Emesh , (5)

where w1 and w2 are weights that control the relative im-
portance of the distance and smoothness terms with respect
to the reprojection error one.

3.2. Solving for both Correspondences and Shape

To remove the requirement that the correspondences be
known a priori, let us again consider the feature-point sets
P′ in the reference image and P in the input image, which
were introduced at the beginning of Section 3.1. Let A =



{1, . . . , n′}×{1, . . . , n} be the set of all possible correspon-
dences between these two sets. Let us use a binary variable
x(r,t) ∈ {0, 1} to indicate whether p′r matches pt, with
value 1 indicating an active correspondence. We collect all
these binary variables into a vector x ∈ {0, 1}A describing
the set of correspondences for a specific matching configu-
ration. Since any point can match at most one point in the
other image, the set of feasible correspondences reduces to

M = {x ∈ {0, 1}A|
∑n
t=1 x(r,t) ≤ 1 ∀r ∈ {1, ..., n′},∑n′

r=1 x(r,t) ≤ 1 ∀t ∈ {1, ..., n}} .(6)

We now rewrite the objective in Eq. (5) as a function of
the active correspondences specified by x ∈M:

E(x, V) = Ereproj(x, V)+w1Edepth(x, V)+w2Edeform(V)
(7)

Ereproj(x, V) =
∑

(r,t)∈A

x(r,t)‖M(r,t)V‖1 (8)

Edepth(x, V) =
∑

(r,t)∈A

x(r,t)sTt BrV. (9)

Since we observed that the scheme described by Eq. (5)
fails when many outliers are present, we replaced the L2
norm in Eq. (2) by the L1 norm, which is known to be more
robust [12]. An added benefit is to reduce the number of
quadratic terms in the objective, thus making optimization
simpler.

However, minimizing this objective would not yield the
desired answer since it would result in the trivial solution in
which no correspondence is activated. We therefore intro-
duce two additional terms:

• We penalize unmatched features by means of an occlu-
sion term which decreases as more points are matched:

Eocc(x) = 1− 1
min(n′, n)

∑
(r,t)∈A

x(r,t) . (10)

• We encourage correspondences between similar fea-
ture points by defining

Ematch(x) =
∑

(r,t)∈A

x(r,t)c
match
(r,t) , (11)

where cmatch
(r,t) is a measure of appearance difference be-

tween the two features. In practice, we set this measure
proportional to the inverse of the dot product between
SIFT descriptors computed at the feature points.

Adding all terms together yields the optimization prob-

lem of mixed integer quadratic form

min
x,V

Ereproj(x, V) + w1Edepth(x, V)︸ ︷︷ ︸
mixed integer term

+

w2(Ematch(x) + Eocc(x)︸ ︷︷ ︸
binary terms

) + w3Edeform(V)︸ ︷︷ ︸
linear term

subject to ‖vk − vj‖2 ≤ lj,k, ∀(j, k) ∈ Emesh

x ∈M
(12)

Unfortunately, this formulation, unlike that of Eq. (5), is not
convex due to the integer constraints. In addition, mixed in-
teger programs are NP-hard in general [4]. However, we
show in the following section that this particular problem
has a specific structure, which can be exploited by a branch-
and-bound algorithm to effectively approximate the solu-
tion.

4. Method

To compute an approximate solution of Eq. (12), we
pursue a branch-and-bound strategy. It involves iteratively
partitioning the solution space into mutually exclusive sub-
domains. At each iteration, we reduce the original problem
into a set of ‘easier’ or relaxed problems that are approx-
imate versions of the original one. As we will see, when
the problem is as well structured as ours, it is possible to
prune away sub-domains from the search tree effectively,
thereby avoiding complete enumeration of an exponentially
large solution space. Fig. 2 shows an example of our esti-
mated reconstruction, which improves as the optimization
progresses.

In our case, the relaxed problems are easy-to-solve linear
programs that are tight enough to approximate the original
problem well and therefore to give good bounds on the po-
tential solutions. In the remainder of this section, we first
show how we reduce our quadratic terms into linear ones
by introducing auxiliary variables, and then introduce our
branch-and-bound scheme.

Relaxations: To obtain a linear objective, we move
the quadratic terms to the constraint set by bounding them
from above with auxiliary variables α(r,t), β(r,t), γ(r,t) [4].
Let M

(1)
(r,t) and M

(2)
(r,t) be the first and the second row

of M(r,t), respectively. Then, each reprojection error
term x(r,t)‖M(r,t)V‖1 can be bounded by rewriting it as(
x(r,t)|M

(1)
(r,t)V|+ x(r,t)|M

(2)
(r,t)V|

)
and by constraining each

of these two terms independently2. This gives rise to the

2In order to obtain linear constraints we rewrite any bound of the form
|a| ≤ b as the pair of linear constrains a ≤ b, and −a ≤ b.



Figure 2. Several Iterations of our optimization procedure. Top : frontal view of mesh along with ground truth configuration, Bottom : Side view rendering
of 3D mesh estimate (green) along with ground truth configuration (red).The leftmost images depict the surface estimate after the first iteration, which was
obtained by solving the relaxed problem for a large domain. As we reduce the domain, the quality of the estimates increases. The final one is depicted by
the rightmost images

following equivalent reformulation of Eq. (12):

min
x,V,α,β,γ

∑
(r,t)∈A

(
α(r,t) + β(r,t) + w1γ(r,t)

)
+

w2(Ematch(x) + Eocc(x)) + w3Edeform(V)

subject to



α(r,t) ≥ x(r,t)M
(1)
(r,t)V,

α(r,t) ≥ −x(r,t)M
(1)
(r,t)V

β(r,t) ≥ x(r,t)M
(2)
(r,t)V,

β(r,t) ≥ −x(r,t)M
(2)
(r,t)V

γ(r,t) ≥ x(r,t)(sTt Br)V
‖vk − vj‖2 ≤ lj,k, ∀(j, k) ∈ Emesh

x ∈M

(13)

In our sub-problems, we relax the integrability require-
ment of the assignment variable x(r,t) by its continuous
counterpart x̃(r,t) ∈ [0, 1]. Finally, we define bounds on
each variable:

VLi ≤ Vi ≤ VUi , ∀i = 1, . . . , 3Nv (14)

x̃L(r,t) ≤ x̃(r,t) ≤ x̃U(r,t), ∀(r, t) ∈ A (15)

These bounds define rectangular domains which will be up-
dated by the branch and bound procedure.

Note that each quadratic term bounded by α(r,t), β(r,t)

or γ(r,t) can be written in the general form x(r,t)

∑3Nv

i=1 aiVi
for ai ∈ R appropriately defined in terms of the entries of
M(r,t), st and Br. Thus, we express each of these quadratic
terms in linear form by replacing it with a new variable y
subject to the following constraints

vLx(r,t) ≤ y ≤ vUx(r,t)
3Nv∑
i=1

Vi − vL(1− x(r,t)) ≤ y ≤
3Nv∑
i=1

Vi − vU (1− x(r,t)),

where

vL =
3Nv∑
i=1

aiV
L
i , vU =

3Nv∑
i=1

aiV
U
i .

Inextensibility constraints given by ‖vk − vj‖2 ≤ lj,k
are instances of second order cone constraints. It has

been shown in [3] that SOCP can be linearized by outer-
approximating it by a set of N ≥ 0 linear constraints. The
outer-approximation gap shrinks as we increase the num-
ber of linear constraints. For our problem, we observe that
N = 2 suffices to achieve good convergence. The relaxed
set of constraints can thus be represented as:

|vk| ≤ ξ0, |vj | ≤ η0,
ξ1 = cos(π4 )ξ0 + sin(π4 )η0,
η1 ≥ |− sin(π4 )ξ0 + cos(π4 )η0|,

ξ2 ≤ lj,k, η2 = tan( π
2N+1 )ξ2.

During an iteration, the relaxed linear program needs not
necessarily satisfy all the constraints for the original prob-
lem. However, we can use this information to strengthen
the formulation by adding additional constraint (known as
cutting planes) to the LP formulation. These constraints are
easy to generate and constitute simple linear inequalities,
which help in restricting the search space for future iter-
ations. Specifically, for the mixed terms which appear in
constraints of Eq. (13) cutting plane constraints are easily
given by McCormick under-estimators [16]:

for λ > 0

λx̃(r,t)Vj ≤ λx̃L(r,t)Vj + λVLj x̃(r,t) − λx̃L(r,t)V
L
j ,

λx̃(r,t)Vj ≤ λx̃U(r,t)Vj + λVUj x̃(r,t) − λx̃U(r,t)V
U
j .

for λ < 0

λx̃(r,t)Vj ≤ λx̃U(r,t)Vj + λVLj x̃(r,t) − λx̃U(r,t)V
L
j ,

λx̃(r,t)Vj ≤ λx̃L(r,t)Vj + λVUj x̃(r,t) − λx̃L(r,t)V
U
j .

Furthermore, it is often possible to check if there is no
feasible solution for a given domain by considering only
the values of the constraint functions at the extrema of the
given domain. For quadratic constraint functions these fea-
sibility checks can be performed efficiently using interval-
arithmetic based methods similar to [10].

Branching Procedure: After every iteration, we round
the binary terms to the nearest 0-1 values and check if it is
possible to update the global lower and upper bounds of the
energy function [4]. If there are violated constraints at the
end of the above mentioned procedure, we branch on a vari-
able that participates in one or more of violated constraints,



with preference for variables participating in non-convex
constraints. When there are multiple candidate variables for
the branching operation, we pick the variable with the high-
est pseudo-cost, an approximate measure of the objective
function gain obtained per unit change when this variable is
chosen for branching [3].

5. Results
We now present results obtained on both synthetic and

real images and then compare against the method of [21].
Our implementation relies on the SCIP mixed integer pro-
gramming solver [3] whose plug-in nature makes it well-
adapted for our purposes.

In all our experiments we use the following optimization
weights: the mode weights are set to be 100, the appearance
weights to be 0.6, and the depth term to 2/3.

Synthetic Data: To produce the synthetic images we
used a Vicontm optical motion capture system to represent
a real deforming piece of paper as a set of 3D meshes, which
we then texture-mapped using the repetitive pattern of Fig. 3
(a). We use an image of a flat version of the mesh as our ref-
erence and all others as input meshes in turn. Note that we
perform the computations for each frame independently and
never exploit temporal consistency.

Our results are summarized by Figs. 3 and 4. We use
the points detected by SIFT [15] as feature points, and their
corresponding descriptors to measure appearance similarity
between points. Although our approach does not need them,
we compute correspondences using the SIFT criterion so
that we can also run the method of [21], which requires pre-
computed correspondences as input. In Fig. 3 we plot, for
each frame and for each method, the final 3D reconstruction
error, the percentage of erroneous correspondences retained
at the end of the optimization, and the percentage of facets
not covered.

As the texture is highly repetitive, SIFT matching often
returns bad correspondences, which cause the method of
[21] to fail when there are more than about 30% of them.
By contrast, our results remain consistently good through-
out the sequence. As shown in the third row of Fig. 4 the
approach of [28] yields better correspondences than [15]
but still not as good as ours.

In this dataset,the average reconstruction time of each
frame is 15 min 32 sec on a 2.00 GHz Core(2) Duo Pen-
tium machine with 2GB of memory, and maximum and
minimum reconstruction time for a frame being 34 min 29
sec and 9 min 11 sec respectively. The average reconstruc-
tion time for Salzmann et.al [21] is 1 min 10 sec per frame.
Please note that, even though our method is computation-
ally more expensive, this expense is warranted by the fact
that our results are of much higher quality.

Real Data: As shown in Fig. 6 and Fig. 7, we also ap-
plied our approach to the real deforming piece of paper and

a deforming cushion. Due to the repeating nature of the
texture of the paper, the reconstruction method which relies
on pre-computed SIFT correspondences [21] does not per-
form as well as the proposed method. The resultant inlier
correspondences and the 3D reconstructions are depicted in
Fig. 5.

6. Conclusion
We have shown that the shape of a deformable 3D sur-

face can be effectively recovered from one single image
given that it is known in another, even when correspon-
dences between the two images cannot be easily estab-
lished a priori. This is accomplished by solving simulta-
neously for shape and for correspondences. We formulate
it as a mixed integer quadratic problem, which we solve
using a branch-and-bound approach. We demonstrated per-
formance superior to that of state-of-the-art techniques on
repetitive textures, which make point matching difficult and
unreliable.
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Figure 3. Repetitive texture map and performance evaluation

Figure 4. Synthetic Results. First Row Correspondences established by our algorithm. Second Row Inlier SIFT correspondences accord-
ing to [21]. Third Row Inlier correspondences returned by the method of [28]. Fourth Row 3D surface reconstructions. The green mesh
is the output of our algorithm, the blue one the output of [21] using SIFT correspondences and the red one the ground-truth mesh.
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Figure 5. Comparison with [21]. Top Row The established correspondences between the reference and the target image, reconstructed
3D mesh reprojected into the target image, and the same mesh seen from a different viewpoint, respectively. Bottom Row Similar outputs
for the method of [21].

Figure 6. Paper Sequence. Top row Reconstructed 3D meshes reprojected into successive images. Bottom row The same meshes seen
from a different viewpoint.

Figure 7. Cushion Sequence. Top row Reconstructed 3D meshes reprojected into successive images. Bottom row The same meshes seen
from a different viewpoint.


