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Abstract

Enlarging or reducing the template size by adding new

parts, or removing parts of the template, according to their

suitability for tracking, requires the ability to deal with the

variation of the template size. For instance, real-time tem-

plate tracking using linear predictors, although fast and re-

liable, requires using templates of fixed size and does not

allow on-line modification of the predictor. To solve this

problem we propose the Adaptive Linear Predictors (ALPs)

which enable fast online modifications of pre-learned lin-

ear predictors. Instead of applying a full matrix inversion

for every modification of the template shape as standard ap-

proaches to learning linear predictors do, we just perform a

fast update of this inverse. This allows us to learn the ALPs

in a much shorter time than standard learning approaches

while performing equally well.

We performed exhaustive evaluation of our approach

and compared it to standard linear predictors and other

state of the art approaches.

1. Introduction

Template tracking has been extensively studied and used

in many computer vision applications such as vision-based

control, human-computer interfaces, surveillance, medical

imaging and visual reconstruction.

While there are many template tracking approaches

based on the analytical derivation of the Jacobian [14, 19,

9, 5, 6, 1, 2, 15, 3, 4], learning-based methods [12, 13, 8, 18,

16, 17, 20] have proved to allow faster tracking and are gen-

erally more robust with respect to large perspective changes.

A very successful learning based template tracker was

proposed by Jurie and Dhome [12]. It is based on learning

linear predictors to efficiently compute template parameter

updates. The costly off-line learning phase, however, pro-

hibits this method from computing templates of varying size

online.

Figure 1. An initial small template is enlarged according to a track-

ing quality measure. The template is tracked over time and re-

duced if parts of it go out of the image. The removed parts are

reinserted as soon as they become visible.

Yet, the ability to dynamically change the template size

is necessary in applications such as indoor SLAM. The fact

that the 3D geometry of the scene is a priori unknown makes

it necessary to initially rely on planar structures. In this

case it is preferable to start from small-sized templates, in

order to reduce the risk of loosing track due to non-planar

structures, and to grow or shrink them online. Thus, the

learning of large templates can be distributed over multiple

frames while keeping the failure rate low. In combination

with a planarity check this strategy enables online segmen-

tation of planar structures and the reliable maintenance of

large templates. As a result, the set of initially tracked tem-

plates evolves towards a relatively small number of compa-

rably large, optimally shaped templates, yielding increased

robustness.

Current learning based tracking approaches, like [12],

use templates of fixed size, because the computation of the

linear predictors requires the costly inversion of a large,

template specific matrix. Since this is the computation-

ally most expensive part of the learning process, the ef-
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fort for changing the template size is nearly equivalent

to that of learning a new template from scratch. There-

fore, to overcome the limitations of fixed size template ap-

proaches, while maintaining their robustness to large per-

spective changes, we propose an extension to linear predic-

tors which allows efficient online modification of the tem-

plate size. Instead of computing the inversion of the whole

matrix every time the template shape changes, we introduce

a way to update the inverse computationally efficient which

dramatically reduces the time needed for learning. We start

with a small initial template and grow it by small extension

templates as defined in Fig. 3 according to their suitabil-

ity for tracking. As long as the object to track is planar,

our approach can grow the template in any direction which

can result in an arbitrarily shaped template, as shown in

Fig. 1. This breaks the standard, rectangular shape assump-

tion widely used in current template tracking approaches

and can be seen as a first step towards a dense SLAM sys-

tem.

We perform extensive quantitative testing and com-

pare our approach to the standard approach of Jurie and

Dhome [12] under different transformations and noise lev-

els, and to other state-of-the-art approaches in template

tracking. We demonstrate that our approach performs

equally well while requiring much shorter learning time.

In the remainder of the paper we will discuss related work

on template tracking, give a detailed description of our ap-

proach, present our results and show examples on real world

sequences.

2. Related Work

A lot of effort has been made in the field of template

tracking and image alignment since the work of Lucas and

Kanade [14]. Most of the presented approaches can be put

into one of the two categories: template tracking based on

the analytical derivation of the Jacobian [14, 19, 9, 5, 6, 1,

2, 15, 3, 4] or based on learning [12, 13, 8, 18, 16, 17, 20].

While the analytical approaches generally are more flexible

with respect to the template shape modification at run-time,

learning approaches enable higher tracking speed and are

more robust with respect to large perspective changes.

Since the seminal work of Lucas and Kanade [14] a

large variety of analytical tracking approaches has been pre-

sented. Amongst others, these variations include different

update rules of the warp [14, 9, 5, 19, 6, 1], different or-

ders of approximations of the error function [15, 3, 4], oc-

clusion and illumination change handling [9]. Basically,

there are four different types of update rules, the additive

approach [14], the compositional approach [19], the inverse

additive approach [9, 5], and the inverse compositional ap-

proach [6, 1]. In the latter two, the roles of the reference

and current image are switched, which makes it possible

to move some of the computations into an initialization

phase, that makes the tracking computationally very effi-

cient. Faster convergence rate for a larger convergence area

can be additionally obtained by using a second-order in-

stead of a first order approximation of the error function

[15, 3, 4]. Furthermore, Hager and Belhumeur [9] show

how illumination changes and occlusions can be efficiently

handled. For a more detailed overview over analytical track-

ing methods refer to Baker and Matthews [2].

In contrast to analytical tracking methods, Jurie and

Dhome [12] propose an approach that learns linear predic-

tors using randomly warped samples of the initial template.

The linear predictors are then used to predict the parameter

updates during tracking. This allows a very fast tracking,

since the ”Jacobians” are initially computed once and for

all and the update parameters can be obtained by simple ma-

trix vector multiplications. In [13] the authors also extend

the approach in order to handle occlusion. Gräßl et al. [7]

additionally shows how the robustness of the linear predic-

tor based approach can be further increased with regard to

illumination changes. They [8] also present an intelligent

way how to select the points for sampling the image data,

such that the accuracy of the tracking is increased. Another

linear predictor approach [20] describes a template using

many small templates and tracks these small templates in-

dependently. Based on the local movements of these small

templates they estimate the movement of the large template.

Instead of using linear predictors, Mayol and Murray [17]

present an approach that fits the sampling region to pre-

trained samples using general regression.

All the proposed learning approaches, however, do not

deal with templates of variable size. To overcome this lim-

itation we developed a method that extends the approach of

Jurie and Dhome [12] to allow online template size adapta-

tion.

3. Background and Terminology

In this section we introduce notation and, for the sake

of completeness, review the original template tracking ap-

proach proposed by Jurie and Dhome [12].

3.1. Template and Parameter Description

A template consists of a set of np sample points, which

are distributed within the template region and are used to

sample image data. The template parameters µ describe

the current deformation of the template within an image.

Within this paper we use a homography to represent the cur-

rent perspective distortion of a planar template and parame-

terize it using four points as shown in Fig. 2. Note that our

approach can also be easily adapted to any other parameter-

izable template deformation.

The sample points are arranged in a regular grid and

grouped together into subsets of four points as shown in



(p0, p1) (p2, p3)

(p4, p5)(p6, p7)

template
subset

sample point

Figure 2. A template is represented by a set of regularly placed

sample points, which are grouped into subsets of four points. The

pose of a template is parameterized using four corner points.

Fig. 2. The usefulness of this grouping will be justified

later in Section 4.1, when we describe our approach for

template extension. However, neither the approach of Ju-

rie and Dhome [12] nor our approach are restricted to this

special kind of sample point arrangement. The image val-

ues obtained from the sample points, warped according to

the current template parameters µ, are arranged in a vector

i =
(

i1, i2, . . . , inp

)T
.

3.2. Template Tracking based on Linear Predictors

The goal of template tracking is to follow a reference

template, defined by a vector iR of reference image values

and an initial parameter vector µR, over a sequence of im-

ages. The basic approach for this is to compute a vector

δi = iC − iR of image differences, where the vector iC
stores the image values extracted from the current image.

This vector is then used to estimate a vector of parameter

differences δµ used to update the current template parame-

ters µ such that the position of the template within the cur-

rent image is optimized.

Instead of explicitly minimizing an error function, e.g.

by iteratively solving a first- or second-order approxima-

tion of it, Jurie and Dhome [12] use a learned matrix A to

compute δµ based on the vector δi as:

δµ = Aδi. (1)

Here, the matrix A can be seen as a linear predictor. In order

to learn A we apply a set of nt random transformations to

the initial template. This is done by applying small distur-

bances δµi, i = 1, . . . , nt, to the reference parameter vector

µR. Then, each of these transformations is used to warp the

sample points in order to obtain the corresponding vectors ii
of image values. The image value vector iR, obtained using

the reference parameters µR, is used to compute the image

difference vectors δii = ii−iR for each of the random trans-

formations. These vectors of parameters and image differ-

ences are combined in the matrices Y =
(

δµ1, . . . , δµnt

)

and H = (δi1, . . . , δint
). In general, nt is chosen such that

extension area

initial template

extension

templates

AI

AE
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tes
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Figure 3. (a) The initial template together with possible extension

templates defined by the corresponding extension area. (b) Differ-

ent template areas and their corresponding linear predictors. The

red border defines the initial template with its predictor AI , the

light green border defines an extension template with its predictor

AE and the blue border defines the new extended template with its

predictor AN .

it is much bigger than np. Using these matrices Equ. 1 can

be written as Y = AH. Finally, the matrix A is learned

using

A = YHT
(

HHT
)

−1
. (2)

In practice, we normalize the extracted image data with zero

mean and unit standard deviation, which increases the ro-

bustness against illumination changes. In order to prevent

HHT from being rank deficient we add random noise to

the obtained image value difference vectors. Additionally,

we apply a multi-predictor approach, where multiple linear

predictors A1, . . . ,Anl
are learned for one template, with

nl being the number of predictors per template. Thereby,

the first linear predictor A1 is learned for large motions δµi

and the following predictors are learned for subsequently

smaller motions. During tracking we iteratively apply the

linear predictors. Additionally, every predictor is used mul-

tiple times. Within this paper we use five different predic-

tors per template and three iterations for each of the predic-

tors.

4. Template Adaption

In this section we describe our approach for adapting the

template by extending or reducing its size. This enables

to start tracking with a small-sized template and grow or

shrink it over time, automatically adapting its size and cor-

responding linear predictor according to the tracked scene.

4.1. Template Extension

In the following we denote the linear predictor of an ini-

tial template with AI , and the linear predictor of an exten-

sion template with AE as depicted in Fig. 3. Using the stan-

dard approach of Sec. 3.2, the separate predictors would be



learned as:

AI = YHT
I

(

HIHT
I

)

−1
and (3)

AE = YHT
E

(

HEHT
E

)

−1
, (4)

where Y stores the same random transformations for both

linear predictors. The standard approach for learning a com-

bined predictor AN for the entire template leads to:

AN = YHT
N

(

HNHT
N

)

−1
(5)

= Y

[

HI

HE

]T
(

[

HI

HE

] [

HI

HE

]T
)

−1

(6)

= Y

[

HI

HE

]T ([

HIHT
I HIHT

E

HEHT
I HEHT

E

])

−1

.(7)

Now, instead of directly updating the old linear predictor

AI we will update the matrix SI =
(

HIHT
I

)

−1
using the

formulas presented by Henderson and Searle [10], such that

we obtain the matrix SN =
(

HNHT
N

)

−1
. Let S11, S12, S21

and S22 be the four sub-matrices of SN :

SN =

[

S11 S12

S21 S22

]

=

([

HIHT
I HIHT

E

HEHT
I HEHT

E

])

−1

.

(8)

Then, we can update SI to SN using

S11 = (HIHT
I )

−1

+ (HIHT
I )

−1HIHT
ES22HEHT

I (HIHT
I )

−T (9)

S12 = −(HIHT
I )

−1HIHT
ES22, (10)

S21 = ST
12, (11)

S22 =
(

HEHT
E − HEHT

I (HIHT
I )

−1HIHT
E

)

−1
,(12)

where (HIHI)
−1 is known from the learning of the initial

predictor. Therefore, the only inversion that has to be ap-

plied is for the computation of S22. However, this inversion

is not a problem since the extension templates are always of

smaller size than the entire extended template and therefore

S22 is small, as well.

The approach as presented up to now is limited by the

number of random transformations nt, used for learning.

Since nt has to be the same for all extension templates as

well as for the initial template, and since the number of ran-

dom transformations has to be greater or at least equal to

the number of used sample points, nt ≥ np, the maximum

number of random transformations has to be known a pri-

ori. In order to remove this restriction we use the approach

presented by Hinterstoisser et al. [11], which allows to up-

date the matrix SI in a way such that we can increase the

number of random transformations nt without the necessity

to recompute the updated ŜI from scratch. This is done by

using the Sherman-Morrison formula:

ŜI =
(

S−1

I + δint+1δiTnt+1

)

−1

(13)

= SI −
SIδint+1δiTnt+1SI

1 + δiTnt+1SIδint+1

, (14)

where δint+1 is a vector of image value differences obtained

from a new random transformation applied to the sample

points. In practice, the number of random transformations

is increased each time before a new extension template is

added.

4.2. Template Reduction

In case that already learned templates have to be reduced,

e.g. due to the presence of non-planarity or shortcoming for

tracking, the corresponding linear predictors can be com-

puted by updating the linear predictor of the larger template.

For this, we denote the linear predictor of the large template

with AL, the predictor of the new reduction template with

AR and the predictor of the reduced template with AN .

In order to reduce the matrix SL, it has to be rearranged

first, such that the data corresponding to the reduction tem-

plate is positioned in the last rows and columns of SL. After

the rearrangement, the reduction template can be removed

using the following approach. First, let us consider the sub-

matrices of the matrix SL:

SL =

[

S11 S12

S21 S22

]

=

([

HNHT
N HNHT

R

HRHT
N HRHT

R

])

−1

,

(15)

where all the sub-matrices S11, S12, S21, S22, HNHT
N ,

HNHT
R, HRHT

N and HRHT
R are available from the large

template. The goal is to compute

AN = YHT
N

(

HNHT
N

)

−1
(16)

without the need of inverting HNHT
N , since this is a large

matrix in general. Similar to the Equations 9-12 Henderson

and Searle [10] also presents the formula

S11 =
(

HNHT
N − HNHT

R(HRHT
R)

−1HRHT
N

)

−1
, (17)

which can be reformulated as

HNHT
N = S−1

11 + HNHT
R(HRHT

R)
−1HRHT

N . (18)

Taking the inverse leads to the desired result:

(HNHT
N )−1 =

(

S−1
11 + HNHT

R(HRHT
R)

−1HRHT
N

)

−1
.

(19)

Since we, however, have to invert a big matrix in this case,

namely S11, this is not suitable for online computation.

Therefore, we use the following formula presented in [10]:

(X + UYUT )−1 = X−1 − X−1UZUT X−1, (20)

Z =
(

Y−1 + UT X−1U
)

−1
. (21)



By setting X = S−1
11 , Y = (HRHT

R)
−1 and U = HNHT

R we

obtain our desired result:

(HNHT
N )−1 = S11 − S11HNHT

RDHRHT
NS11, (22)

D =
(

HRHT
R + HRHT

NS11HNHT
R

)

−1
.(23)

Now, the necessary inversion is no longer a problem since

the reduction template is chosen to be of small size and

computing D is not expensive.

4.3. Practical Issues

In this section we discuss practical issues. These are the

normalization of the image data and the estimation of the

subset quality, which is used for the selection of the next

extension template.

4.3.1 Normalization

As mentioned before, the image values are normalized to

zero mean and unit standard deviation. However, instead of

doing this globally by considering all image values of the

template we apply a local normalization, where each subset

is normalized by considering only its image values and the

image values of its direct local neighboring subsets. This

normalization is applied to the reference data, the learning

data and the current image data during tracking. The local

normalization is superior to the global normalization since

in case of the global normalization the mean and standard

deviation of the whole image data change if new parts are

added to the template or some parts are removed.

4.3.2 Suitability Criterion for Subset Selection

In order to decide which subset should be chosen for extend-

ing the current template we compute a quality measure for

each of the potential extension templates in the local neigh-

borhood of the current template. This is done by learning

a local predictor AS = YSHT
S (HSHT

S )
−1 for this subset at

first, where the image data HS is collected using the set of

random transformations represented by Y. Then, using this

predictor together with the collected image data we com-

pute a prediction ŶS of Y as

ŶS = ASHS. (24)

Finally, we compute a similarity measurement, which de-

fines the quality qS of the corresponding subset as

qs =
1

nt

nt
∑

i=1

ŷsiy
T
i

|ŷsi||yi|
, (25)

where yi and ŷsi are the i-th column vector of Y respectively

ŶS. The current template will then be extended using the

subset with the highest quality measure.
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Figure 4. Comparison of the computation time necessary for learn-

ing a linear predictor using Jurie-Dhome approach (green) and us-

ing ALPs (red and blue). (a) For the later case we distinguish

between learning the predictor from scratch (red) and adding only

one extension subset (blue) at a time. Learning from scratch means

that we consider the whole time necessary to build up the template

of the specified size. (b) Computation times for template extension

and reduction, when one extension subset is added at a time.

5. Experimental Results

In this section we perform extensive comparison of our

approach with several state of the art approaches on tem-

plate tracking. This includes comparisons with the standard

learning approach of Jurie and Dhome [12], the analytical

approach of Benhimane and Malis [4] and a recent approach

called NoSLLip of Zimmermann et al. [20]. The compar-

isons are done in terms of tracking precision and compu-

tational efficiency. In the end we show several qualitative

results from real video sequences showing tracking results

with one and several templates. All experiments are per-

formed on a 2.66 GHz Intel(R) Core(TM)2 Quad CPU with

8 GB of RAM, where only one core is used for the compu-

tations.

In all experiments the maximum random perturbation

applied for learning the linear predictors is set to 21 pixels

except for the comparison with NoSLLip, where we slightly

increased the perturbation by 10% to make the tracking

more robust against large motions.

5.1. Comparison with Jurie­Dhome Approach

Computational Complexity of Learning In Fig. 4 we

show computation times for learning the linear predictors

with respect to different template sizes. We compare our

ALPs method, shown in red and blue, with the standard ap-

proach of Jurie and Dhome [12], depicted as green curve

in Fig. 4(a). For our approach we distinguish between two

cases. In the first case, shown as a red curve, the computa-

tion of the linear predictor is done iteratively from scratch.

In that case we start with a small initial template, whose size

is equal to the size of an extension template of Fig. 3. Such

a small template is then grown until the specified size is

reached. The obtained results reveal clearly that the adap-

tive learning of the linear predictor, which starts with the

small sized template, is much more efficient than learning

a linear predictor for the fixed size template. This proves



that our approach can also be used to efficiently learn linear

predictors for templates of fixed size, starting from small

templates and adapting their linear predictors until the de-

sired template size is reached. In the second case, shown

as a blue curve, we show the time necessary to add one ex-

tension template. This is a typical case during online track-

ing, where the template is grown step by step. As to be

expected, adding the extension template does not signifi-

cantly increase computation time, when changing the tem-

plate size. In Fig. 4 (b) we show computation times for ex-

tension and reduction of templates. Note that the necessary

time to grow or reduce the template by an extension tem-

plate consisting of four sample points is around 0.05s for

initial templates of sizes around 600 sample points, whereas

the computation from scratch would need over 1s using

ALPs and more than 6s when using the approach of Jurie

and Dhome [12].

Robustness To evaluate the robustness of our approach

we compare the tracking success rate of our approach

with that of the standard approach proposed by Jurie and

Dhome [12] for different template sizes and with respect to

changes in translation (Fig. 7 (a)), in-plane rotation (Fig. 7

(b)), viewing angle (Fig. 7 (c)), and scale (Fig. 7 (d)). In ad-

dition we compare ALPs to Jurie and Dhome in respect to

noise and different number of random transformations used

for learning. The results are shown in Fig. 6.

For all experiments, we use synthetic images, corrupted

by noise and warped according to the specific experiments.

Noise is added according to In(x) = I(x) + ǫ, with ǫ ∈
[−αIrange/100, αIrange/100], and α = 5 for all experiments.

An exception is the noise experiment, where different lev-

els of noise were applied. Irange specifies the possible range

of image values, e.g. Irange = 255 holds for image values

between 0 and 255. In all experiments we also add a ran-

dom displacement in the range of [−5, 5] pixels, with the

exception of the displacement experiments, and a random

change in the view-point angle ranging between [−5, 5] de-

gree, again with the exception of the view-point angle ex-

periments.

The results show that both approaches, the standard

Jurie-Dhome approach as well as ALPs, yield similar suc-

cess rates. The only exception is the sensitivity to noise,

where the Jurie-Dhome approach performs better than

ALPs. This performance difference, however, can be re-

duced by increasing the number of random warpings used

for learning the linear predictors, as demonstrated in Fig. 6

(b).

5.2. Comparison with ESM

To demonstrate the usefulness of learning-based ap-

proaches we compare our approach with the analytical

method of Benhimane and Malis [4]. For this, we have
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Figure 5. Comparison of success rates with respect to different

displacements and template sizes. (a) Performance of ESM vs.

ALPs. (b) Performance of ESM for further displacements.
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Figure 6. Comparison of success rates of ALPs and linear pre-

dictors of Jurie and Dhome(JD) with respect to different levels of

noise and different template sizes. (a) Success rates of ALPs using

1000 random warpings and (b) using 2000 random warpings.

chosen ESM, a state of the art approach that minimizes the

energy function using a second order approximation. In

Fig. 5 we compare the success rate of the ESM tracking

to that of ALPs regarding different magnitudes of displace-

ments and different template sizes. Our learning-based ap-

proach clearly outperforms ESM, especially for larger tem-

plate sizes.

5.3. Comparison with NoSLLiP

We also compare ALPs to the approach of Zimmermann

et al. [20] using the phone sequence provided by the au-

thors1. Example images of the tracking are shown in Fig. 8.

The comparison between the tracking results of [20] and

those obtained using ALPs are shown in Table 1. Although

the number of provided images is larger than the number of

images used by Zimmermann et al. [20], we still obtain a

better loss-of-locks count. The given error values are rela-

1Zimmermann et al. [20] provide three different video sequences. One

of them, however, includes occlusion, which can not yet be handled by our

approach, and for another one the supplied ground truth data is erroneous.

Therefore, we compare only to one of the provided sequences.
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Figure 7. Comparison of success rate of ALPs and JD linear predictors with respect to changes in translation (a), in-plane rotation (b),

viewing angle (c), and scale (d). In all four cases the results of both approaches are approximately equal. The lower row shows more

detailed results of ALPs.

Method Frame-rate Loss-of-locks Error

[fps] [-/-] [%]

NoSLLiP 16.8 20/1799 1.8

ALPs 96.7 10/2299 1.2

Table 1. Comparison between the tracking results of NoSLLiP

(Matlab implementation) given in [20] and results obtained using

ALPs (C++ implementation).

tive to the upper edge of the template. A frame is counted

as loss-of-lock if one of the template corners has an error

larger than 25%. Note that the template is reduced when it

partially goes out of sight and enlarged again as it becomes

visible again (see Fig. 8).

5.4. Usefulness of larger templates

As shown in Figures 5, 6 and 7, the success rates in-

crease with increasing template sizes. The only exception

are changes in the in-plane rotation angle, where the suc-

cess rate reaches a maximum for templates with a size of

approximately 100 to 200 sample points.

5.5. Qualitative Evaluation

In Fig. 1, 8 and 9 we show different image sequences,

which demonstrate the processing of the proposed ap-

proach. In Fig. 1 and 9 we start with templates of size 10
by 10 sample points and iteratively grow them by adding

the neighboring extension template with the highest quality.

In Fig. 9 we demonstrate the use of multiple templates. In

Figures 1 and 8 we track the templates, reduce them if they

partially go out of sight and grow them back to the original

size when their hidden parts become visible again.

6. Conclusion and Future Work

We introduced an efficient method for adapting linear

predictors used in real-time template tracking to dynami-

cally change the template shape. Our method allows both,

enlargement and reduction of the template size. We demon-

strated that our ALPs approach can also be used to effi-

ciently learn linear predictors for templates of fixed size.

In that case we start from small templates and adapt their

linear predictors until the desired template size is reached.

This resulted in much shorter learning time compared to the

standard approach of Jurie and Dhome [12]. The efficiency

of the presented approach derives from the special compu-

tation of the matrix inverse. In the standard approach the in-

verse has to be recomputed from scratch after each change

of the template size. In contrast, our approach updates the

matrix according to the change in the template shape.

We demonstrated that our ALPs yield tracking results

comparable to those of the standard approaches, while

learning is much faster. The current approach, however,

lacks robustness against occlusion. Therefore, the next step

will be to provide some means of occlusion handling for

large templates.
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