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Abstract

Graph matching is a classical problem in pattern recog-
nition with many applications, particularly when the graphs
are embedded in Euclidean spaces, as is often the case for
computer vision. There are several variants of the matching
problem, concerned with isometries, isomorphisms, homeo-
morphisms, and node attributes; different approaches exist
for each variant. We show how structured estimation meth-
ods from machine learning can be used to combine such
variants into a single version of graph matching. In this
paradigm, the extent to which our datasets reveal isome-
tries, isomorphisms, homeomorphisms, and other proper-
ties is automatically accounted for in the learning process
so that any such specific qualification of graph matching
loses meaning. We present experiments with real computer
vision data showing the leverage of this unified formulation.

1. Introduction

Graphs are typically used as high-level models for im-
ages, meaning that identifying a correspondence between
their nodes (popularly called a ‘matching’) is a fundamen-
tal problem in computer vision. Applications range from
object and character recognition [1,2], to 3-D scene recon-
struction [3]. In this paper we are strictly concerned with
graphs embedded in Euclidean spaces, i.e., graphs whose
nodes encode point coordinates.

Many types of graphs have been considered in the graph
matching literature, depending on how one models a given
matching problem. Perhaps the simplest setting arises when
the graphs are represented as sets of nodes and edges and the
goal is to find an isomorphism between them [4] (or more
generally, a subgraph isomorphism, to allow for outlying
nodes). Also of interest is the homeomorphism problem,
which allows for edges to be ‘split’ by additional nodes, so
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Figure 1. Examples of the transformations typically observed in
computer vision scenarios. Isometric: b C a, b C c. Isomorphic:
bcd,cCa,dcb Homeomorphic: b Ca,bCd,cCa,dcCa,
d C b. The notation x C y allows for ‘outliers’ in y.

long as the topology is preserved [5]. For graphs embed-
ded in Euclidean spaces, one is additionally interested in
the notion of isometry: two graphs are isometric if the cor-
responding distances between nodes are preserved [6]. Fig-
ure 1 illustrates the aspects of isometry, isomorphism and
homeomorphism. In addition to these notions, the concept
of attributed nodes and edges gives rise to the notion of at-
tributed graph matching, i.e., one is interested in comparing
specific abstract features encoded by nodes and/or edges of
the graph (e.g. nodes can encode colors of image regions,
edges can encode adjacency of objects, etc.).

In the literature, these different types of formulations for
graph matching usually come with different types of models
and algorithms. The purpose of the present paper is to com-
bine these hard notions of different types of graph matching
problem into a single concept. Specifically, we focus on
combining the properties of isometry, isomorphism, home-
omorphism and node attributes into a single model which
can not only be solved efficiently and exactly for graphs em-
bedded in Euclidean spaces but is also provably optimal in
the absence of noise. We further compare our unified model
with recently proposed ones, which make specific assump-
tions about the type of matching problem at hand, and we
find that ours is able to better leverage the fact that real data
does not come exactly as isometries, homeomorphisms or
isomorphisms: it is simply real data.

1.1. Related Work

We shall be interested in comparing the results of our
model with some well-known models that make specific as-



sumptions about the type of graph matching problem being
solved. The first are methods based exclusively on node
attributes. These methods do not consider the relational
aspects between nodes; such approaches typically consist
of minimizing a first-order objective function, i.e., points
in the template should be mapped to similar points in the
target, but relationships between points are not considered.
Examples include ‘shape-context’ matching [2], ‘inner dis-
tance’ matching [7], and the ‘longest common subsequence’
algorithm [8].

Other approaches consider the distances between nodes
in the graphs, in order to solve the problem of isometric
matching [6].

Finally, by expressing the matching problem using a
quadratic assignment objective, it is trivial to model topo-
logical constraints, though the resulting optimization prob-
lem is in general NP-complete. As such, a great body
of work has been focused on producing efficient and ac-
curate approximations. Examples include ‘spectral meth-
ods’ [9, 10], ‘probabilistic approaches’ [11,12], and ‘gradu-
ated assignment’ [13].

2. The Model
2.1. Isometry

Suppose we have a ‘template’ graph G with nodes and
edges (V, E), which we wish to identify in a ‘target’ graph
G = (V',E’) (we allow that |V’| > |V|, so that there may
be outliers in G’). The isometric matching problem con-
sists of finding a mapping g : V — V’ which preserves the
distances between pairs of nodes in G, i.e.,

g =argmin > |d(p1, pa) = d(f(p1), f(p2))], (D)

VoV
TV=Y o e

where d(-, ) is our distance metric.! Note that the ‘topolo-
gies’ of our graphs, defined by E and E’, are ignored by this
objective function.

It is shown in [14, 15] that in the case of exact isometric
matching, one need not consider all edges in V2, but only a
subset of edges that constitute a ‘globally rigid’ graph: by
definition, preserving the distances of the edges in such a
subgraph implies that the distances between all edges in the
complete graph will be preserved. Thus, for a globally rigid
subgraph R = (V, E®) of G, we need to solve

g =argmin " |d(p1, p2) = d(F(p0), fP))| (2)
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If the graph R has small maximal cliques, (eq. 2) can be
modelled as inference in a tractable graphical model (whose

IFor the case of exact matching, we could use the indicator function
1 = Laep, ,p(d(f(p1), f(p2))); we instead use the difference to allow for
some ‘noise’ in the point coordinates.

nodes and assignments correspond to points in V and V’
respectively); [14] reports running times and memory re-
quirements of O(|V|[V’|"™*!), where #n is the number of di-
mensions. We use a similar topology which replaces the
‘ring” structure from [14] with a ‘junction-tree’, which has
the advantage that only a single iteration is required for ex-
act inference [15]. The topology of this graph is shown in
Figure 2 (for n = 2), and it is rigid by Theorem 2.1.

Theorem 2.1. The graph in Figure 2 is globally rigid when
embedded in R?.

Proof. The claim is trivially true for k < 3 since all
edges are included. For k > 3, assume that the positions
of Vi ...V, are determined. If the distances from V;_; and
Vi to Vi41 are known, then Vi, ; may occupy precisely two
positions. The two positions result in an opposite sign for

Vict = Vi
det[ Vi = Vi
nates, so that this is a 2 X 2 matrix). If the correct sign is
determined by the variable M, then the position of Vi, is
uniquely determined. The proof follows by induction. O

Theorem 2.1 generalizes to R” by increasing the clique
size of the graph ton + 1.

} (note that the points V; are 2-D coordi-

2.2. Isomorphism/Homeomorphism

To model isomorphisms and homeomorphisms, the opti-
mization problem we would like to solve becomes

g =argmin " |d(p1, p2) - d(f(p1). f(p))|+

fv=v (p1.p2)€ER
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Note that in the second term, the function A(-, -) is used. If
we want to solve the subgraph isomorphism problem, h sim-
ply indicates the presence or absence of an edge in E or E’
@.e., h(f(p1), f(p2)) = 1g:(f(p1), f(p2)))). Alternately, in
the case of the subgraph homeomorphism problem, h is just
the distance d in G, but becomes the shortest-path distance
between f(p;) and f(p;) in G’. We observe a value of zero
in (eq. 3) exactly when the mapping is isometric (by Theo-
rem 2.1), and isomorphic/homeomorphic (as every topolog-
ical constraint has been included).

This problem can also be solved using a tractable graph-
ical model, so long as E is a subset of ER. To this end, we
make the straightforward observation that we can augment
R by ‘copying’ some of its nodes, as in Figure 3 (produc-
ing G* = (Vn,ERj)). The resulting graph remains globally
rigid, and obtains the correct solution due to the following
Theorem:

Theorem 2.2. If additional replicates of some nodes are
added to the model, each of the replicates will map to
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Figure 2. (a) The graphical model used in our experiments (top),
and (b) its clique-graph. M is a boolean variable indicating
whether or not the template pattern appears reflected in the tar-
get. Although the graph has maximal cliques of size four, the run-
ning time is cubic in |V’| (for the case of 2-D isometric matching),
since the node M is boolean. The model in (a) handles isometric
transformations, however we could obtain scale invariance (for ex-
ample) by inserting an additional constraint, as shown in (c); the
size of the maximal cliques grows with the number of parameters
in the transformation we wish to handle.

the same solution (assuming that an isometric isomor-
phism/homeomorphism exists).

Proof. Assume the image of V;...V, corresponds to
an isometric isomorphism/homeomorphism under the map-
ping f (and thus we can determine M). This mapping will
have zero cost according to our potential function. Sup-
pose Vi1 is a copy of a previous node V;. Given the val-
ues of Vi_;, Vi, and M, we know from Theorem 2.1 that
there is at most one value for f(Vi.1) which incurs zero
cost. Since f(Vis1) = f(V;) incurs zero cost, the mini-
mum cost solution for the model M, V; ... V;,; must have
fVie1) = f(V;). Again, the proof follows by induction (the
‘base case’ is trivial, since there are no replicates). O

In order to add all of the edges in E, we will increase the
size of V¥ to O(|V| + |E|).2 At this point we simply solve

g =argmin " |d(p1, p2) - d(f(p1), F(p2))|+

f:V-v <
(p1,p2)EE
|h(p1. p2) = (F(p1). f(P2))]. ()

2Finding the most efficient construction of this graph is a difficult prob-
lem, however finding a construction no larger than |V| + 2|E] is trivial.
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Figure 3. The topology of this graph (top) is not captured by the
graphical model from Figure 2. By repeating some of the nodes in
the graphical model (highlighted in red), we can include all of the
topological constraints; the augmented model will still recover the
correct solution (the variable M is suppressed for readability).

which can be done in O((|V| + |E])|V’"*!) time and space.
Assuming the topology E is sparse, this will typically be no
worse than O(|V||V’|"*!) in practice.

It is worth briefly mentioning that this model can be ap-
plied under transformations besides isometries, for instance
to the problem of subgraph isomorphism/homeomorphism
under perspective projection or affine transformation; this
idea is demonstrated in Figure 2. Following the analysis
of [16], the number of free parameters in the transformation
determines the maximal clique size required in our model.
Our experiments are concerned with isometries in 2-D im-
ages, which require maximal cliques of size three, result-
ing in an asymptotic complexity of O((|V| + |E DIV'P). Es-
sentially, we are making a trade-off between the problem
classes we wish to handle exactly, versus the computational
complexity we can afford. Our third-order model is ‘opti-
mal’ in the case of isometric transformations, and we shall
show in Section 4 that it provides accurate results even as
our model assumptions become violated (e.g. under affine
transformations and high noise). The low tree-width of our
model allows inference to be done more quickly than exist-
ing quadratic-assignment solvers, a result that could not be
obtained with a more complex model.

3. Parametrization and Structured Learning

We have shown that in the case of exact matching, it is
sufficient to attribute only the edges, using the two ‘features’
in (eq. 4). Of course, in the case of near-exact matching,
we may achieve much better performance if we incorporate
first-order features such as Shape-Context or SIFT [2, 17].
Since our graphical model contains 3-cliques, we can also
include third-order features, ensuring (for example) preser-
vation of angles and similarity of triangles.

In the most general setting, we can parametrize G* as



follows:

g= argminZ @' (p1, f(p1)), 9n°des> +
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Z (1, p2. F(P1): f(P2)) Gedges> +
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edge features
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(p1,p2,p3)€GH triangle features

In order to apply Structured Learning [18], we have two
requirements: the model must be parametrized linearly
(which is satisfied by ® = (9“°des; Qedges;em)), and the so-
called ‘column-generation’ procedure must be tractable. To
satisfy the latter requirement, we specify a loss function
A(2, g) (the cost of choosing the mapping ¢ when the cor-
rect mapping is g), which decomposes over the nodes in our
model; the simplest example is the (normalized) Hamming
loss: .

M@ =15 D Tsrn@(p)) (©6)
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In the majority of our experiments, nodes are attributed
using shape-context features. Edges are attributed using dis-
tances (the left-hand-side of (eq. 4)), and topological fea-
tures (the right-hand-side (eq. 4)); we use both the indica-
tor (for isomorphisms) and the shortest-path distance (for
homeomorphisms) — thus our model is in effect learning
the extent to which the mapping is isomorphic or homeo-
morphic. 3-cliques are parametrized by preservation of an-
gles, triangle similarity, and an ‘occlusion’ feature indicat-
ing whether two or more nodes in a clique map to the same
point.

The goal of structured learning is merely to find the pa-
rameter vector ® which minimizes our regularized risk:

N
R 1 N A
O = argmin I Z A@G',g)+ 5 el Q)
(©] i=1 N——
" L, regularizer
empirical risk

where g!...g" is our training set, and A is a regulariza-
tion constant. The ‘Bundle Methods for Risk Minimization’
(BMRM) solver of [19] is used to minimize (a convex upper
bound on) this risk. See [18] for more details.

4. Experiments

We replicate several existing graph-matching experi-
ments [20] and [6] for which topological information was
provided, and add new experiments on real and synthetic
point sets. The techniques that we shall compare can be
summarized as follows:

Linear Assignment (from [20]) can be optimized exactly,
but only includes node attributes (i.e., no topological
information can be included).

Quadratic Assignment (from [20]) can include topologi-
cal information, but optimization can only be done ap-
proximately (due to NP-completeness).

Isometric Matching (from [6]) can include some topo-
logical information, and can be optimized exactly;’
is provably optimal for the isometric point-pattern
matching problem.

Unified Matching (the proposed approach) can include all
topological information, and can be optimized ex-
actly; is provably optimal for the isometric isomor-
phism/homeomorphism problem (thus unifying the
above approaches).

4.1. Proof of Concept

For our first experiment, we created a simple point-
pattern which includes topological constraints (shown in
Figure 5(a), center). In the target scene, several copies
of this pattern were randomly (isometrically) transformed,
and noise was applied to their topologies (while ensuring
that exactly one isomorphic instance existed in the target
scene).* This represents a problem that cannot be solved
by first-order approaches, as there would be many spuri-
ous copies of the template shape if the topological informa-
tion were ignored. Finally, uniform noise was applied to the
point coordinates in the target scene.

Note that in this experiment, we use only those features
described in Section 2.2 (i.e., there are no node features).
Thus we confirm our claim that the problem can be solved
using only these features.

In Figure 5(a), we compare our model to quadratic as-
signment. Although both methods solve the problem close
to exactly when there is only a single copy of the template
scene in the target (‘no outliers’), we found that quadratic
assignment was no better than random as soon as outliers
were introduced (i.e., A = 1; each outlying graph con-
tributes 19 nodes to the scene). Alternately, the proposed
method is able to identify the correct instance even in the
case of several outliers, and is able to deal with very large
graphs due to its modest computational complexity. Note
that our model is provably optimal only in the case of zero
noise, though it appears to perform quite accurately under
reasonable noise levels.

3Rather, it is shown in [14] to converge to the optimal solution. If the
algorithm is not run until convergence, the results may be suboptimal.

4This was done only to simplify the experiment — it is of course possible
for our method to find every isomorphic instance if more than one exists.
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Figure 4. The weight vectors (®) learned from some of our experiments. Note that in the ‘house’ experiment the weight for the ‘homeo-
morphic’ feature is very high, whereas the weight for the ‘isomorphic’ feature is very low; the opposite effect is observed for the ‘hotel’
experiment. In effect, our algorithm has learned whether isomorphisms or homeomorphisms better capture these datasets.

4.2. Synthetic Data

In [20], the performance of linear and quadratic assign-
ment (with learning) is reported on a series of silhouette
images from [21]. The point sets in question are subject
to increasing amounts of various distortions (shear, rota-
tion, noise). In Figure 6(a) we report the performance from
[20] against our method on the ‘shear’ dataset; the ‘noise’
dataset is not shown, as it is similar to our own synthetic
dataset from the previous experiment. The ‘rotation’ dataset
is also not shown, as our method will provably achieve zero
error on the entire dataset (due to its rotational invariance).
The topological structure of the graph was simply deter-
mined using the outline of the silhouette (see Figure 6(a)).

The ‘balanced graph-matching’ algorithm of [10] (which
to the best of our knowledge is the state-of-the-art non-
learning approach) is also reported for comparison, for
those experiments where results were available from [20].

For each of our experiments involving learning, we split
our data into training, validiation, and test sets, each of
which contains one third of the data. Learning is performed
on the training set for different values of the hyperparame-
ter 4 € {0.001,0.01,0.1, 1, 10}. We always report the per-
formance on the fest set, for the value of A that gave the best
performance on the validation set.

Our learning approach is fully-supervised, i.e., we as-
sume that the correspondences are fully labeled. We find
that even a small number of such correspondences can

be enough to obtain a substantial improvement over non-
learning. Alternately, in cases where fully supervised data
cannot be obtained, we note that unsupervised instances of
this problem are likely to require the fully supervised ver-
sion as a component [22].

4.3. 3-D Models from Different Viewpoints

In this experiment, our sequences represent different
views of 3-D models. We consider several sequences: the
CMU ‘house’ and ‘hotel” sequences (used in [6,20]), as well
as two new sequences from [24], which are advantageous in
that their changes in rotation/azimuth are known.

Weight vectors from three of our experiments are shown
in Figure 4. Unlike the previous experiments, the ‘topology’
of each point-pattern was automatically generated for each
image: by forming a spanning tree (so that the graph is con-
nected), and by connecting K-nearest-neighbors (examples
are shown in Figure 6). Consequently, there is substantial
noise in the topological features. Nevertheless, we observe
high weights for the isomorphic and homeomorphic fea-
tures in these datasets, indicating that these features are use-
ful. Consequently, the unified model achieves better perfor-
mance when the separation between frames is large. Note
that in cases where the transformations are non-isometric,
the model simply learns not to use the isometric features.

For the CMU ‘house’ sequence, we also present a timing
plot (Figure 5(b), right). To improve the running time of our



model, we used the same approach as [6], where for each
node we only consider the P matches with the lowest lin-
ear cost, thus reducing the running time to O((|V| + |E|)P3).
This parameter trades off accuracy against running time,
though we found that even for small values of P, the im-
pact on accuracy was minor; in this experiment we used
P = 15, where |V’| = 30. The running time of balanced
graph-matching [10] is also shown, though this is based on
a Matlab implementation, while the others were written in
C++. Our implementation is available online [25].

4.4. Video Sequence

In this experiment, we used the Harris-Hessian detec-
tor of [23] to identify keypoints in the ‘claire’ video se-
quence from [25], and extracted SIFT features for each key-
point [17]. Next, we selected 15 of these keypoints in each
frame corresponding to important points-of-interest (such
as the eyes/ears). Our goal is exactly the same as in the
previous experiments, though we are now dealing with a
very large number of outliers (typically, several hundred
keypoints were identified), as well as occlusions in both the
template and the target scenes (since the keypoint detector
may not capture some points-of-interest). Performance on
this dataset is shown in Figure 5(c); note that we do not use
the Hamming loss in this experiment, but rather the end-
point loss (i.e., the average distance from the ‘correct’ key-
point) — this is a more sensible choice in the presence of
many outliers. Quadratic assignment was not used, as it
was prohibitively expensive on graphs of this size.

5. Conclusion

In this paper, we have presented a unified formulation
for graph matching in Euclidean spaces, which accounts
for isometries, isomorphisms, homeomorphisms, and node
attributes. By means of structured estimation, the model
is able to automatically learn the extent to which each of
these properties are present in the training data instead of
relying on a priori assumptions about the specific ‘type’ of
graph matching problem under consideration. Inference in
this model is efficient and exact since it comprises a junc-
tion tree of small tree-width. This method is provably op-
timal when there is no noise in the point coordinates and
attributes, while we have shown that it remains highly accu-
rate under reasonable noise levels.
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(a) Performance on the ‘proof of concept’ dataset. The template graph is shown at center, while the target graph is shown at right;
the correct match (which was identified by our method) is highlighted in red.
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Silhouette data (200 frames)
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(a) Performance on the silhouette dataset from [20,21].
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Pose data (house, 70 frames)
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(c) Performance on the pose-estimation dataset (‘house’).
Pose data (volvo, 42 frames)
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(d) Performance on the pose-estimation dataset (‘volvo’).
Figure 6. Additional results (see Figure 5). Template graphs are shown at center with their topologies. Target graphs are shown at right,
comparing accuracy with and without topological features. The color of each node indicates whether the correct match was identified by
both methods (yellow), neither method (gray), only without topological features (red), or only with topological features (blue).



