
Parallel and Distributed Graph Cuts by Dual Decomposition

Petter Strandmark Fredrik Kahl
Centre for Mathematical Sciences, Lund University, Sweden

{petter,fredrik}@maths.lth.se

Abstract

Graph cuts methods are at the core of many state-of-the-
art algorithms in computer vision due to their efficiency
in computing globally optimal solutions. In this paper, we
solve the maximum flow/minimum cut problem in parallel
by splitting the graph into multiple parts and hence, further
increase the computational efficacy of graph cuts. Optimality
of the solution is guaranteed by dual decomposition, or more
specifically, the solutions to the subproblems are constrained
to be equal on the overlap with dual variables.

We demonstrate that our approach both allows (i) faster
processing on multi-core computers and (ii) the capability
to handle larger problems by splitting the graph across mul-
tiple computers on a distributed network. Even though our
approach does not give a theoretical guarantee of speed-
up, an extensive empirical evaluation on several applica-
tions with many different data sets consistently shows good
performance. An open source implementation of the dual
decomposition method is also made publicly available.

1. Introduction
Maximum flow algorithms are the foundations for many

algorithms in computer vision. Examples include segmen-
tation, image restoration, dense stereo estimation and shape
matching, see [3, 4, 12, 20]. The approach is also useful for
inferring the maximum a posteriori solution of a discrete
MRF [4, 8].

Our work builds on the following two trends: the ubiq-
uity of maximum flow computations in computer vision and
the tendency of modern microprocessor manufacturers to in-
crease the number of cores in mass-market processors. This
implies that an efficient way of parallelizing maximum flow
algorithms would be of great use to the community. Due
to a result from Goldschlager et al. [7], there is little hope
in finding a general algorithm for parallel maximum flow
with guaranteed performance gains. However, the graphs
encountered in computer vision problems are often sparse
with much fewer edges than the maximum n2−n in a graph
with n vertices. The susceptibility to parallelization depends
on the structure and costs of the graph.

1.1. Related work

There are essentially three types of approaches used in
computer vision for solving the maximum flow/minimum
cut problem:

(i) Augmenting paths. The most popular method due to
its computational efficiency for 2D problems and moder-
ately sized 3D problems with low connectivity (i.e., sparse
graphs) is the augmenting path method by Boykov and Kol-
mogorov (BK) introduced in [3]. However, as augmenting
path algorithms use nonlocal operations, they have not been
considered as a viable candidate for parallelization. One
way of making multiple threads cooperate is to divide the
graph into disjoint parts. This is the approach taken by Liu
et al. [15], in which the graph is split, solved and then split
differently in an iterative fashion until no augmenting paths
can be found. The key observation is that the search trees of
the subgraphs can merged relatively fast. The more recent
work [14] splits the graph into many pieces which multiple
threads then solve and merge until only one remains and all
augmenting paths have been found. In this paper the graph
is also split into multiple pieces, but our approach differs
in that we do not require a shared-memory model, which
makes distributed computation possible.

(ii) Push-relabel. Successful attempts to parallelize max-
imum flow computations have focused on the push-relabel
algorithm. The implementation in [5] is shown to perform
well for huge 3D grids, where the entire graph could not fit
within the physical memory of the computer. For 3D grids
with high connectivity, push-relabel generally outperforms
methods based on augmenting paths. [3] Another implemen-
tation that combines push-relabel with GPU processing is
[22]. However, our tests produced incorrect results unless
the amount of regularization was low using the authors’ own
implementation of [22].

(iii) Convex optimization. Another approach to parallel
graph cuts is to formulate the problem as a linear program.
Under the assumption that all edges are bidirectional, the



problem can then be reformulated as an `1 minimization
problem. The work in [2] attempts to solve this problem
with Newton iterations using the conjugate gradient method
with a suitable preconditioner. Matrix-vector multiplications
can be highly parallelized, but this approach has not proven
to be significantly faster than the single-threaded algorithm
in [3] for any type of graph, even though [2] used a GPU in
their implementation. Convex optimization based on a GPU
has also been used to solve continuous versions of graph cuts,
e.g. [9]. However, the primary advantage of continuous cuts
has been to reduce metrication errors due to discretization.

Graph cuts is also a popular method for multi-label prob-
lems using, e.g., iterated α-expansion moves. Such local
optimization methods can naturally be parallelized by per-
forming two different moves in parallel and then trying to
fuse the solutions, as done in [13]. Therefore, in this paper,
we will not consider multi-label problems.

1.2. Contributions

The main contribution of this paper is a parallel imple-
mentation of graph cuts based on the BK-method. The par-
allelization is obtained via dual decomposition [6]. The
approach has a number of advantages compared to other
parallelization methods:

1. The BK-method has shown to have superior perfor-
mance compared to competing methods on a number
of application problems [3], most notably sparse 2D
graphs and moderately sized 3D graphs.

2. It is possible to reuse the search trees in the BK-method
[10] which makes the dual decomposition approach
attractive. Further, we show that the dual function can
be optimized in integer arithmetic. This makes the dual
optimization problem easier to solve.

3. Perhaps most importantly, we demonstrate good empir-
ical performance with significant speed-ups compared
to single-threaded computations, both on multi-core
platforms and multi-computer networks.

Naturally, there are also some disadvantages:

1. There is no theoretical guarantee that the parallelization
will be faster for every problem instance. Such bounds
can be obtained with the push-relabel algorithm [5].

2. Our approach is only effective for graphs for which the
BK-method is effective. For example, the push-relabel
method is faster for problem instances with huge 3D
graphs or highly connected 2D graphs [3].

2. Dual decomposition
Our approach to parallel graph cuts is based on splitting

a large graph into two or more subgraphs. Each subgraph is

assigned to its own computational thread or computer. The
subgraphs partially overlap and they are forced to agree in
the overlap by dual variables. Several iterations are needed
to find the global solution, but the reuse of search trees in the
augmenting path algorithm ensures efficiency. The technique
of decomposing problems with dual variables was introduced
by Everett [6] and it has been used in many different contexts,
e.g., in control [19]. The application within computer vision
that bears the most resemblance to this paper is the work of
Komodakis et al. [11] where dual decomposition is used for
computing approximate solutions to general MRF problems.

The basic idea is to convert a convex minimization prob-
lem of the form

minimize
x1,x2,y

f1(x1,y) + f2(x2,y) (1)

into an equivalent formulation

minimize
x1,x2,y1,y2

f1(x1,y1) + f2(x2,y2)

subject to y1 = y2.
(2)

This alternative formulation is then solved in dual form. The
Lagrange dual function is [1]:

g(λ) = min
x1,y1
x2,y2

(
f1(x1,y1) + f2(x2,y2) + λT(y1 − y2)

)
= min
x1,y1

(
f1(x1,y1) + λTy1

)
+ min
x2,y2

(
f2(x2,y2)− λ

Ty2

)
.

(3)

The dual function is concave and evaluating the dual function
amounts to solving two independent minimization problems.
If x1 and x2 are high-dimensional and the dimension of y
is low, the two smaller problems will hopefully be solved
much easier (and faster) than the original problem. Since
they are independent of each other, they can be solved in
parallel.

In order for g to be maximized, it needs to be evaluated
several times. Kohli and Torr [10] have shown that the mini-
mum cut problem is highly suitable for repeated evaluations
when a small number of edge costs change. Next, we will
see in detail how this helps us.

3. Graph cut as a linear program
Finding the maximum flow, or, by duality, the minimum

cut in a graph can be formulated as a linear program. Let
G = (V, c) be a graph where V = {s, t}∪{1, 2, . . . , n} are
the source, sink and vertices, respectively, and c the edge
costs. A cut is a partition S, T of V such that s ∈ S and
t ∈ T . The minimum cut problem is finding the partition
where the sum of all costs of edges between the two sets is



ONMLHIJK5 oo 1 //
OO
2

��

ONMLHIJK−2

OO
1

��ONMLHIJK−1 oo 1 //ONMLHIJK0

⇐⇒

/.-,()*+s
5����������772

wwnnnnn�������� gg 1
''PPPPP

1 ((

��������''
1ggPPPPP

2vv
�������� ww 1 77nnnnn

/.-,()*+t
(a) Convention for this figure. Numbers inside the
nodes indicate s/t connections, positive for s, nega-
tive for t.

ONMLHIJK1 oo 1 //
OO
2

��

ONMLHIJK−1 oo 1 //
OO
1

��

ONMLHIJK2 oo 1 //
OO
2

��

__
1

��????????
ONMLHIJK−3 oo 1 //

OO
1

��

ONMLHIJK−1

OO
1

��ONMLHIJK2 oo 1 //
OO
1

��

__
2

��????????
ONMLHIJK−1 oo 1 //

OO
1

��

ONMLHIJK1 oo 1 //
OO
1

��

ONMLHIJK−1 oo 1 //
OO
2

��

ONMLHIJK0

OO
1

��ONMLHIJK2 oo 1 //
OO
1

��

ONMLHIJK1 oo 1 //
OO
1

��

ONMLHIJK3 oo 2 //
OO
3

��

ONMLHIJK0 oo 1 //
OO
1

��

ONMLHIJK2

OO
1

��ONMLHIJK1 oo 1 //ONMLHIJK0 oo 1 //ONMLHIJK1 oo 3 //ONMLHIJK0 oo 2 //ONMLHIJK1

(b) Original graph.

ONMLHIJK1 oo 1 //
OO
2

��

ONMLHIJK−1 oo 1 //
OO
1

��

ONMLHIJK1+λ1

OO
1

��ONMLHIJK2 oo 1 //
OO
1

��

__
2

��????????
ONMLHIJK−1 oo 1 //

OO
1

��

ONMLHIJK1
2+λ2

OO
1
2

��ONMLHIJK2 oo 1 //
OO
1

��

ONMLHIJK1 oo 1 //
OO
1

��

ONMLHIJK3
2+λ3

OO
3
2

��ONMLHIJK1 oo 1 //ONMLHIJK0 oo 1 //ONMLHIJK1
2+λ4

ONMLHIJK1−λ1 oo 1 //
OO
1

��

__
1

��????????
ONMLHIJK−3 oo 1 //

OO
1

��

ONMLHIJK−1

OO
1

��ONMLHIJK1
2−λ2 oo 1 //

OO
1
2

��

ONMLHIJK−1 oo 1 //
OO
2

��

ONMLHIJK0

OO
1

��ONMLHIJK3
2−λ3 oo 2 //

OO
3
2

��

ONMLHIJK0 oo 1 //
OO
1

��

ONMLHIJK2

OO
1

��ONMLHIJK1
2−λ4 oo 3 //ONMLHIJK0 oo 2 //ONMLHIJK1

(c) Subproblems with vertices in M and N , respectively.

Figure 1: The graph decomposition into sets M and N . The
pairwise energies in M ∩N are part of both EM and EN and has
to be weighted by 1

2
. Four dual variables λ1 . . .λ4 are introduced

as s/t connections.

minimal. It can be formulated as, cf. [23],

minimize
x

∑
i,j∈V

ci,jxi,j

subject to xi,j + xi − xj ≥ 0, i, j ∈ V
xs = 0
xt = 1
x ≥ 0.

(4)

The variable xi indicates whether vertex i is part of S or T
(xi = 0 or 1, respectively) and xi,j indicates whether the
edge (i, j) is cut or not. The variables are not constrained to
be 0 or 1, but there always exists one such solution, according
to the duality between maximum flow and minimum cut, cf.
[18, p. 119]. We write DV for the convex set defined by the
constraints in (4).

3.1. Splitting the graph

Now pick two sets M and N such that M ∪N = V and
{s, t} ⊂ M ∩ N . We assume that when i ∈ M \ N and
j ∈ N \M , ci,j = cj,i = 0. That is, every edge is either
within M or N , or within both. See Fig. 1.

We now observe that the objective function in (4) can be
rewritten as:∑

i,j∈V
ci,jxi,j =

∑
i,j∈M

ci,jxi,j +
∑
i,j∈N

ci,jxi,j −
∑

i,j∈M∩N
ci,jxi,j . (5)

Define

EM (x) =
∑
i,j∈M

ci,jxi,j −
1
2

∑
i,j∈M∩N

ci,jxi,j

EN (y) =
∑
i,j∈N

ci,jyi,j −
1
2

∑
i,j∈M∩N

ci,jyi,j .

(6)

This leads to the following equivalent linear program analo-
gous to (2):

minimize
x∈DM
y∈DN

EM (x) + EN (y)

subject to xi = yi, i ∈M ∩N.
(7)

Here x is the variable belonging to the set M (left in Fig. 1c)
and y belongs to N . The two variables x and y are con-
strained to be equal in the overlap. The Lagrange dual func-
tion of this optimization problem is:

g(λ) =

min
x∈DM
y∈DN

(
EM (x) + EN (y) +

∑
i∈M∩N

λi(xi − yi)

)
=

min
x∈DM

(
EM (x) +

∑
i∈M∩N

λixi

)
+

min
y∈DN

(
EN (y)−

∑
i∈M∩N

λiyi

)
.

(8)

We now see that evaluating the dual function g amounts
to solving two independent minimum cut problems. The



extra unary terms λixi are shown in Fig. 1c. Let x∗,y∗

be the solution to (7) and let λ∗ maximize the dual func-
tion g. Because strong duality holds, we have g(λ∗) =
EM (x∗) + EN (y∗). [1] The solution to the subproblems
may in general have multiple solutions, so to obtain a unique
solution from these we always set our optimal x∗ and y∗

equal to 1, wherever possible.

3.2. Algorithm

For an optimal choice of dual variables, the constraints in
(7) will be satisfied. Solving the original problem (7) then
amounts to finding the maximum value of the dual function.
Since the dual function is concave, it can be maximized with
an ascent method. However, it is not differentiable, but we
can find a supergradient1 in the following way:

Lemma 1. Let λ0 be given and let x∗ be the optimal solu-
tion to h(λ0) = minx

(
f1(x) + λT

0 f2(x)
)

. Then f2(x∗) is
a supergradient to h at λ0.

Proof. For any λ, we have

h(λ) ≤ f1(x∗) + λTf2(x∗)

= f1(x∗) + λT
0 f2(x∗) + (λ− λ0)Tf2(x∗)

= min
x

(
f1(x) + λT

0 f2(x)
)

+ (λ− λ0)Tf2(x∗)

= h(λ0) + (λ− λ0)Tf2(x∗),

which is the definition of a supergradient.

It follows from this lemma that xi − yi, for i ∈M ∩N ,
is a supergradient to g. The algorithm for maximizing g
becomes:

Start with λ = 0
repeat

Update x and y by evaluating g(λ)
λ← λ+ τ(xi − yi).

until xi = yi, i ∈M ∩N
This iterative scheme is very efficient, since the search trees
of the already solved graphs can be reused. Only a small
number of costs are changed between iterations and our
experiments show that these subsequent max-flow computa-
tions can be completed within microseconds, see Table 1.

The step size τ needs to be chosen in each iteration. One
possible choice is τ = 1/k, where k is the current iteration
number. We have found that this scheme and others appear-
ing in the literature [1, 11] are a bit too conservative for our
purposes. We achieved faster convergence with the empirical
scheme introduced in Section 4.

3.3. More than two subproblems

Splitting a graph into more than two components can be
achieved with the same approach. The energy functions

1completely analogous to subgradients for convex functions

(a) 2× 2 (b) 2× 2× 2

Figure 2: Splitting a graph into several components. The blue, green
and red parts are weighted by 1/2, 1/4 and 1/8, respectively.

analogous to (6) might then contain terms weighted by 1/4
and 1/8, depending on the geometry of the split. See Fig. 2.

4. Implementation
While the algorithm in the previous section works satis-

factory, the actual implementation we ended up using for
our experiments differs slightly. Instead of using a single
step length τ , we associate each vertex in the overlap with
its own step length τi. This is because different parts of the
graph behave in different ways.

In each iteration, we ideally want to choose λi so that
xi = yi; therefore, if xi−yi changed sign from the previous
iteration, our previous step was too large and we should move
in the opposite direction with a reduced step length.

foreach i ∈M ∩N do
if xi − yi 6= 0 then
λi ← λi + τi(xi − yi)
if xi − yi 6= previous difference then

τi ← τi/2
end

end
end

To handle cases like the one shown in Fig. 8, we also in-
crease the step length if nothing happens between iterations.
Empirical tests show that keeping an individual step length
improves convergence speed for all graphs we tried. The
extra memory requirements are insignificant.

4.1. Convergence

Some graphs may have problems converging to the opti-
mal solution. This can occur for graphs admitting multiple
solutions. Fig. 3 shows an illustrative example. While the
proposed scheme will converge toward λ = 1 for this graph,
it will not reach it in a finite number of iterations. If λ 6= 1,
the two partial solutions will not agree for the vertex marked
black. In practice, we observed this phenomenon for a few
pixels when processing large graphs with integer costs.

One possible solution is to add small, positive, random
numbers to the edge costs of the graph. If the graph only has
integer costs, this is not a problem. Increasing edge costs



/.-,()*+s
1

��======
_ _ _ _ _�
�
�
�
�
�

�
�
�
�
�
�_ _ _ _ _

�������� oo 1 // �������� oo 1 // • oo 1 // �������� oo 1 // ��������
1

��======

/.-,()*+t
(a) Original graph

/.-,()*+s
1

��======

�������� oo 1 // �������� oo 1 // •
λ��/.-,()*+t

(b) Left part

/.-,()*+s
λ��
• oo 1 // �������� oo 1 // ��������

1

��======

/.-,()*+t
(c) Right part

Figure 3: Convergence problem. The original graph (a) has multiple
solutions, i.e., multiple minimum cuts. If λ 6= 1, the solutions for
the two graphs (b) and (c) will not agree.

only increases the maximum flow, so the global maximum
flow in the original graph is the integer part of the flow in
the modified graph provided the sum of all values added is
less than 1. However, there is an alternative way of handling
graphs with integer costs:

Theorem 2. If all the edge costs ci,j are even integers, then
there is an integer vector λ maximizing the dual function
(8).

Proof. The constraint sets DM and DN in (7) can be de-
scribed by Az ≥ b, where A is an (integer) matrix, z =[
xT yT

]T
and b is an (integer) vector. Therefore, the

optimization problem (7) can be written as:

minimize
z

dTz

subject to Az ≥ b

xi − yi = 0, i ∈M ∩N.
z ≥ 0.

(9)

Here, d is a vector describing the objective function in (7).
It is integral because every edge cost ci,j is an even integer.
Forming the dual function for the entire problem, we get:

g̃(ν,λ) = min
z

{
dTz + νT(b− Az) +

∑
λi(xi − yi)

}
.

We also write Bz = 0 for the equality constraints in this pro-
gram. Because the optimization problem is a linear program,
maximizing the dual function for ν ≥ 0 can be written as a
dual program:

maximize
ν,λ

bTν

subject to ATν + BTλ ≤ d

ν ≥ 0.

(10)

Since A is totally unimodular (TUM) (c.f. [18, Section 13.2]),
so is AT. Also B is TUM and d is integer, and thus the dual
function g̃ has an integer optimum (ν∗,λ∗). Since we have
g(λ) = maxν≥0 g̃(ν,λ), we are done.

Remark. The theorem does not necessarily hold if the costs

are integers. The graph s
∞ // �������� 1 // �������� 1 // t , split at the second

node, provides a counterexample. The subproblems are

s
∞ // �������� 1 // ��������1/2+λ// t and s

λ // ��������1/2// t . We have g(0) = g(1) =
1/2, but g(1/2) = 1.

For a general graph with integer costs split into two pieces,
we may multiply each edge by 2 and obtain an equivalent
problem with an integer maximizer λ. The graph may be
split in more than two pieces in such a way that smaller
costs than 1/2 are used, as in Fig. 2. When setting up these
problems we multiply every cost by 4 and 8, respectively, to
ensure integer maximizers.

5. Experiments on a single machine
In this section we describe experiments performed in par-

allel on a single machine executed across multiple threads.
We used the BK-method (v3.0 available for download) both
for the single-threaded experiments and for solving the sub-
problems. All timings of the multi-threaded algorithm in-
clude any overhead associated with starting and stopping
threads, allocation of extra memory etc. In all experiments
we have only considered the time for actual maximum flow
calculations, which means that the time required to construct
the graphs is not taken into account. We note, however, that
graph construction trivially benefit from parallel processing.

5.1. Image segmentation

We applied our parallel method for the 301 images in the
Berkeley segmentation database [16], see Fig. 6 for exam-
ples. The segmentation model used was a piecewise constant
model with the boundary length as a regulating term. The
boundary length can be approximated with a neighborhood
of edges around each pixel, usually of sizes 4, 8 or 16 in the
two-dimensional case.

The relative times (tmulti-thread/tsingle) using two computa-
tional threads are shown in Figs. 4 and 5. Since the images
in the database are quite small, the total processing time for
a single image is around 10 milliseconds. Even with the
overhead of creating threads and iterating to find the global
minimum, we were able to get a significant speed improve-
ment for almost all images. The exceptions are discussed in
Section 5.4.

Table 1 shows how the processing time varies with each
iteration. In the last steps, very few vertices change and
solving the maximum flow problems can therefore be done
very quickly within microseconds.



Relative time

Fr
eq

ue
nc

y

0.25 0.5 0.75 1 1.25

20

40

60

Figure 4: Relative times with 2 (red) and 4 (dotted blue) compu-
tational threads for the 301 images in the Berkeley segmentation
database, using 4-connectivity. The medians are 0.596 and 0.455.
See Sections 5.1 and 5.4.

Relative time

Fr
eq

ue
nc

y

0.25 0.5 0.75 1 1.25

20

40

60

Figure 5: Relative times using 8-connectivity and 2 computational
threads. The median is 0.628.

Figure 6: Examples from the Berkeley database [16].

It is very important to note that the problem complexity
depends heavily on the amount of regularization used. That
is, a segmentation problem in which boundary length is given
a low cost is easy to solve and to parallelize. In the extreme
case where no regularization is used, the problem reduces to
simple thresholding, which of course is trivial to parallelize.
Therefore, it is relevant to investigate how the algorithm
performs with different amounts of regularization. We have
done this and can conclude that our graph decomposition
scheme performs well for a wide range of different settings,
see Fig. 7. We see that the relative improvement in speed
remains roughly constant over a large interval of different
regularizations, whereas the absolute processing times vary
by an order of magnitude.

When the number of computational threads increase, the
computation times decrease as shown in Fig. 4.

Figure 8: “Worst-case” test. The left and right side of the image is
connected to the source and sink, respectively. The edge costs are
determined by the image gradient. All flow must be communicated
between the two computational threads when splitting the graph
vertically.

5.2. Stereo problems

The “Tsukuba” dataset (which we obtained from [17])
consists of a sequence of max-flow instances corresponding
to the first iteration of α-expansions [4]. First, we solved the
16 problems without any parallelization and then, with two
computational threads. The relative times ranged from 0.51
to 0.72, with the average being 0.61.

5.3. Three-dimensional graphs

We used the graph construction described in [12] with
data downloaded from [17] to evaluate the algorithm in three
dimensions. For the “bunny” dataset from [17] the relative
time was 0.67 with two computational threads.

5.4. Analysis of limitations

We have tried to explore the limitations of the method by
examining cases with (i) poor splits and (ii) poor speed-ups.

To see how our algorithm performs when the choice of
split is very poor, we took a familiar image and split it in half
from top to bottom as depicted in Fig. 8. We then attached
the leftmost pixel column to the source and the rightmost to
the sink. Splitting horizontally would have been much more
preferable, since splitting vertically severs every possible
s-t path and all flow has to be communicated between the
threads. Still, the parallel approach finished processing the
graph 30% faster than the single-threaded approach. This is
a good indication that the choice of the split is not crucial
for a speed improvement.

Figs. 4 and 5 contain a few examples (< 1%) where the
multi-threaded algorithm actually performs slower or almost
the same as the single-threaded algorithm. The single exam-
ple in Fig. 4 is interesting, because solving one of the sub-



0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

λ

R
e
la

ti
v
e
 s

p
e
e
d

Figure 7: Relative improvement in speed with two computational threads when the regularization parameter changes. Although the
processing time ranged from 230 ms to 4 seconds, the relative improvement was not affected.

Iteration 1 2 3 4 5 6 7 8 9 10 11
Differences 108 105 30 33 16 16 16 16 9 9 0
Time (ms) 245 1.5 1.2 0.1 0.08 0.09 0.07 0.15 0.06 0.07 0.47

Table 1: Detailed information about the processing time for each iteration for a 1152× 1536 example image (shown in Fig. 7). The number
of overlapping pixels (M ∩N ) was 1536 (one column). Deallocating memory and terminating threads is the cause of the processing time
increase in the last iteration. The advantage of reusing search trees is clearly seen in the short processing times after the first iteration.

graphs once takes significantly longer than solving the entire
original graph. This can happen for the BK algorithm, but
is very uncommon in practice. We have noted that slightly
perturbing any of the problem parameters (regularization,
image model, split position etc.) makes the multi-threaded
algorithm faster also for this example.

The other slow examples have a simpler explanation:
there is simply nothing interesting going on in one of the
two halves of the graph, see e.g. the first image in Fig. 6.
Therefore, the overhead of creating and deallocating the
threads and extra memory gives the multi-threaded algorithm
a slight disadvantage. The approach in [14] (using smaller
pieces) is better suitable for these graphs.

6. Splitting across different machines

We now turn to another application of graph decomposi-
tion. Instead of assigning each part of the graph to a compu-
tational thread, one may assign each subgraph to a different
machine and let the machines communicate the flow over a
network.

Memory is often a limiting factor for maximum flow
calculations. Using splitting we were able to segment 4-
dimensional (space+time) MRI heart data with 95×98×30×
19 = 5.3M voxels. The connectivity used was 80, requiring
12.3 GB memory for the graph representation. By dividing
this graph among 4 (2-by-2) different machines and using
MPI [21] for communication, we were able to solve this
graph in 1980 seconds. Since only a small amount of data (54
kB in this case) needs to be transmitted between machines
each iteration, this is an efficient way of processing large
graphs. On the system we used2, the communication time

2 LUNARC Iris, http://www.lunarc.lu.se/Systems/IrisDetails

was about 7-10 ms per iteration, for a total of 68 iterations
until convergence.

We also evaluated the algorithms for some of the big
problems available at [17]. The largest version of the “bunny”
dataset is 401 × 396 × 312 = 50M with 300M edges was
solved in 7 seconds across 4 machines. As a reference,
a slightly larger version of the same dataset (not publicly
available) was solved in over a minute with an (iterative)
touch-and-expand approach in [12].

The largest data set we used was a 512× 512× 2317 =
607M voxel CT scan with 6-connectivity. Storing this graph
required 131 GB of memory divided among 36 (3×3×4) ma-
chines. We are not aware of any previous methods designed
to handle graphs of this magnitude. The regularization used
was low, which ensured convergence in 38 seconds with
fairly even load distribution. Even with low regularization,
the computation required 327 iterations.

Splitting graphs across multiple machines also saves com-
putation time, even though the MPI introduces some over-
head. For the small version of the “bunny” dataset, a single
machine solved the problem in 268 milliseconds, while two
machines used 152 ms. Four machines (2-by-2) required 105
ms. For the medium sized version the elapsed times were
2.3, 1.34 and 0.84 seconds, respectively.

It should be noted that in many cases the BK algorithm
is not the fastest possible choice, especially for graphs with
higher dimensionality than 2 and connectivity greater than
the minimum [3]. However, the method described in this
paper could just as easily be combined with a push-relabel
algorithm better suited for graphs with 3 or 4 dimensions.
Using a method optimized for grid graphs with fixed connec-
tivity instead of the general BK would also reduce memory
requirements significantly.

http://www.lunarc.lu.se/Systems/IrisDetails


7. Conclusions and future work
We have shown that it is possible to split a graph and

obtain the global maximum flow by iteratively solving sub-
problems in parallel. Two applications of this technique
were demonstrated:

• Faster maximum flow computations when multiple
CPU cores are available (Section 5).

• The ability to handle graphs which are too big to fit
in the computer’s RAM, by splitting the graph across
multiple machines (Section 6).

Good results were demonstrated even if the split severs many,
or even all s-t paths of the graph (Fig. 8). Experiments with
different amounts of regularization suggest that the speed-up
is relatively insensitive to regularization (Fig. 7).

The technique was applied to different graphs arising in
computer vision. Our experiments included surface recon-
struction, stereo estimation and image segmentation with
two, three and four dimensional data.

Methods based on push-relabel generally perform better
than BK for large, high dimensional and highly connected
graphs as discussed in [3]. Therefore, using our approach
with push-relabel should be investigated in the future.

The source code used for the experiments in this paper has
been made publicly available and may be downloaded from
our webpage.3

Acknowledgments
This work has been funded by the Swedish Research

Council (grant no. 2007-6476), by the Swedish Foundation
for Strategic Research (SSF) through the programme Future
Research Leaders, and by the European Research Council
(GlobalVision grant no. 209480). We thank Einar Heiberg
and Jane Sjögren for sharing MRI and CT data sets.

References
[1] D. P. Bertsekas. Nonlinear programming. Athena Scientific,

1999. 2, 4
[2] A. Bhusnurmath and C. J. Taylor. Graph cuts via `1 norm

minimization. IEEE Trans. Pattern Analysis and Machine
Intelligence, 30(10):1866–1871, 2008. 2

[3] Y. Boykov and V. Kolmogorov. An experimental comparison
of min-cut/max-flow algorithms for energy minimization in
vision. IEEE Trans. Pattern Analysis and Machine Intelli-
gence, 26(9):1124–1137, Sept. 2004. 1, 2, 7, 8

[4] Y. Boykov, O. Veksler, and R. Zabih. Markov random fields
with efficient approximations. In Conf. Computer Vision and
Pattern Recognition, 1998. 1, 6

3http://www.maths.lth.se/~petter

[5] A. Delong and Y. Boykov. A scalable graph-cut algorithm for
N-D grids. In Conf. Computer Vision and Pattern Recognition,
2008. 1, 2

[6] H. Everett. Generalized Lagrange multiplier method for solv-
ing problems of optimum allocation of resources. Operations
Research, 11:399–417, 1963. 2

[7] L. M. Goldschlager, R. A. Shaw, and J. Staples. The maxi-
mum flow problem is log space complete for P. Theoretical
Comput. Sci., 21(1):105–111, Oct. 1982. 1

[8] D. M. Greig, B. T. Porteous, and A. H. Seheult. Exact max-
imum a posteriori estimation for binary images. Journal of
the Royal Statistical Society, 1989. 1

[9] M. Klodt, T. Schoenemann, K. Kolev, M. Schikora, and
D. Cremers. An experimental comparison of discrete and
continuous shape optimization methods. In European Conf.
Computer Vision, 2008. 2

[10] P. Kohli and P. H. S. Torr. Efficiently solving dynamic markov
random fields using graph cuts. In Int. Conf. Computer Vision,
2005. 2

[11] N. Komodakis, N. Paragios, and G. Tziritas. MRF optimiza-
tion via dual decomposition: Message-passing revisited. In
Int. Conf. Computer Vision. IEEE, 2007. 2, 4

[12] V. Lempitsky and Y. Boykov. Global optimization for shape
fitting. In Conf. Computer Vision and Pattern Recognition,
Minneapolis, USA, June 2007. 1, 6, 7

[13] V. Lempitsky, C. Rother, S. Roth, and A. Blake. Fusion moves
for markov random field optimization. IEEE Trans. Pattern
Analysis and Machine Intelligence, 2009. To appear. 2

[14] J. Liu and J. Sun. Parallel graph-cuts by adaptive bottom-up
merging. In Conf. Computer Vision and Pattern Recognition,
2010. 1, 7

[15] J. Liu, J. Sun, and H.-Y. Shum. Paint selection. ACM Trans-
actions on Graphics, 28(3):1–7, 2009. 1

[16] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecological
statistics. In Int. Conf. Computer Vision, 2001. 5, 6

[17] U. of Western Ontario. Max-flow problem instances in vision.
http://vision.csd.uwo.ca/maxflow-data. 6, 7

[18] C. H. Papadimitriou and K. Steiglitz. Combinatorial Opti-
mization; Algorithms and Complexity. Dover Publications,
1998. 3, 5

[19] A. Rantzer. Dynamic dual decomposition for distributed
control. In American Control Conference, 2009. 2

[20] C. Rother, V. Kolmogorov, and A. Blake. Grabcut -interactive
foreground extraction using iterated graph cuts. ACM Trans-
actions on Graphics, 23(3):309–314, 2004. 1

[21] M. Snir and S. Otto. MPI — The Complete Reference: The
MPI Core. MIT Press, Cambridge, MA, USA, 1998. 7

[22] V. Vineet and P. Narayanan. CUDA cuts: Fast graph cuts
on the GPU. In Computer Vision and Pattern Recognition
Workshops, CVPRW, June 2008. 1

[23] Wikipedia. Max-flow min-cut theorem — Wikipedia, the
Free Encyclopedia. [Online; accessed 9-January-2010]. 3

http://www.maths.lth.se/~petter
http://vision.csd.uwo.ca/maxflow-data
http://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

