
Learning Weights for Codebook in Image Classification and Retrieval

Hongping Cai1,2 Fei Yan2 Krystian Mikolajczyk2

1National University of Defense Technology, China 2University of Surrey, UK
{hongping.cai,f.yan,k.mikolajczyk}@surrey.ac.uk

Abstract

This paper presents a codebook learning approach for
image classification and retrieval. It corresponds to learn-
ing a weighted similarity metric to satisfy that the weighted
similarity between the same labeled images is larger than
that between the differently labeled images with largest
margin. We formulate the learning problem as a convex
quadratic programming and adopt alternating optimization
to solve it efficiently. Experiments on both synthetic and
real datasets validate the approach. The codebook learning
improves the performance, in particular in the case where
the number of training examples is not sufficient for large
size codebook.

1. Introduction
Bag-of-words model [3] has been widely and success-

fully used in visual recognition and retrieval, although it
was first proposed for text retrieval. In the bag-of-words
model, local features extracted from an image are mapped
to a codebook, which is typically produced with a cluster-
ing method. An image is then represented as a histogram
of codeword occurrences. Among all attempts to improve
the bag-of-words model, much attention has been focused
on generating a discriminative codebook [6, 9, 13, 14]. In
this paper our aim is to learn weights for an existing code-
book. Some codewords can be more informative than others
thus more discriminative for classification. This assumption
holds in particular for dense sampling of features, which
tends to produce better performance than interest points in
many classification tasks [7, 9, 13]. Such densely sampled
descriptors result in codewords that should not be attributed
equal importance. Our weight learning is based on the intu-
ition that the weighted similarity between same labeled im-
ages should always be larger than that between differently
labeled images. Inspired by the recent work on learning lo-
cal feature weights for image classification [4], in which the
problem is modeled as maximization of the margin between
within-class distance and between-class distances [12], we
learn the codewords weights in a framework similar to dis-

tance metric learning. A constrained quadratic program-
ming approach is proposed to learn the weights for code-
book, where the sum of the empirical loss and a regulariza-
tion term is minimized.

In order to capture fine differences between features,
large-size codebooks have been widely used in image clas-
sification and retrieval [11]. However, large-size codebooks
suffer from insufficient training examples. We demonstrate
that in such a case our learning approach can improve the
performance. Moreover, the large size of codebook also
poses challenges for weight learning, since it requires large
memory and intensive computation when using standard
optimization software. We address this issue at two stages.
First, we select only a subset of constraints in the optimiza-
tion problem and update the subset iteratively in a boot-
strapping manner. Secondly, we employ the idea of Alter-
nating Optimization (AO) [1] for solving the optimization
problem. In each iteration of the AO, the objective func-
tion is optimized with respect only to a subset of variables.
This AO has been shown experimentally to converge to the
global solution quickly. We combine these two iterations in
a nested manner, and show that the approach offers signifi-
cant efficiency gains in terms of both time and space com-
plexity.

In the following we first review the existing work in both
codebook weighting and supervised distance metric learn-
ing. In Section 3, we propose our codebook weight learning
approach. Section 4 discusses two techniques for solving
the optimization problem efficiently. We then evaluate the
learning approach on both synthetic dataset in Section 5 and
four image benchmarks in Section 6. Finally, conclusions
end this article.

2. Related Work
Codebook weighting Codebook plays the key role in the
bag-of-words model, and it is a collection of vector quan-
tized features. The most popular way of creating codebook
is by using k-means clustering or its variant, i.e., hierarchi-
cal k-means [5]. However, it is argued that k-means does
not select the most informative descriptors as it tends to
concentrate the cluster centers in high density areas of the

feature space and starves lower density ones [6, 14]. In
[6, 14], radius-based clustering is used for codebook gen-
eration. However, radius-based or agglomerative clustering
results in an unbalanced codebook. Most features are as-
signed to very few codewords, while majority of codewords
are not statistically significant. Therefore, with overall con-
sideration, the k-means clustering is still most widely used
and also adopted in our work. Our weighting strategy for
codebook can be used as a method for improving the dis-
criminability of the k-means clustered codebook.

A simple codebook weighting approach, often used in
retrieval, is the tf-idf (term frequency-inverse document
frequency) weighting scheme, where commonly occurring
codewords are down-weighted. Instead of assigning each
feature to only one codeword, soft assignment for a few
closest codewords is investigated in [14], which can also
be considered as a codebook weighting. The reported im-
provements with tf-idf and soft assignment suggest that the
discriminability of codebooks can be improved.

Codewords selection can also be viewed as assigning a
binary weight. In [16], a large k-means clustered codebook
was reduced by merging codewords to achieve a trade-off
between within-class compactness and between-class dis-
criminability. In [6], the codewords were selected according
to mutual information between optimally thresholded code-
word frequency and category, while [13] performed code-
words selection according to the relative frequency.

In all these codeword selection and weighting ap-
proaches, the weights are assigned according to some crite-
ria. However, little effort has been made to accurately mea-
sure the contribution of each codeword and to incorporate
this information into a machine learning based approach. In
this context, our contribution is to learn the weights for the
codebook in a similarity learning framework with the goal
of distinguishing same labeled images from differently la-
beled images.
Supervised distance metric learning Although our opti-
mization problem is learning codebook weights, it is closely
related to learning supervised distance metric [2]. This has
been successfully used in many machine learning problems
(see [17] for a comprehensive discussion). The motivation
of supervised distance metric learning is to induce a dis-
tance metric with labeled data so as to preserve the class
discriminatory information from labeled points.

Among supervised distance metric learning techniques,
large margin methods have been a particularly promising
direction. A weighted Euclidean distance was learnt from
relative constraints in [12]. The solution was to solve a con-
vex quadratic problem similar to SVM by minimizing `2
regularization and the hinge loss. This idea was success-
fully used in local feature weight learning in object catego-
rization [4]. Our work is inspired by these two approaches,
but instead of learning millions of weights for all local fea-

tures, we learn the weights for codewords. Thus, we avoid
the problem of overfitting that occurs in large dimensional
models from limited training samples. Another success-
ful work in this area is Large Margin Nearest Neighbor
(LMNN) [15], which formulates distance metric learning as
a constrained semi-definite programming problem and max-
imizes the margin between within-class pairs and between-
class pairs. However, optimization is inefficient for a full
M × M matrix from an M -dimensional codebook and it
is easy to overfit. Furthermore, experiments in [12] have
shown that the Mahalanobis matrix solution does not im-
prove the results over the weight vector. Therefore, a weight
vector, instead of a matrix, is learnt for similarity measure
in our approach.

3. Learning Weighted Codebook

We first briefly introduce the notations used in this sec-
tion. Let T be a triplet index set of training images:
T = {(i, j, k)|yi = yj , yi 6= yk}, where yi denotes the
class label for image Ii. For image Ii, the local features
are assigned to the predefined codebook. Suppose hi(m)
(m = 1, ...,M) is the frequency of the m-th codeword
in image Ii . The intersection of the m-th codeword oc-
currence frequency between image Ii and image Ij is de-
noted by sij(m) = min(hi(m), hj(m)) in the bag-of-
words model (or level weighted intersection in SPMK, re-
fer to [7] for more details). Accordingly, sij represents
the intersection vector between image Ii and image Ij :
sij = (sij(1), sij(2), ..., sij(M))T .

In the typical bag-of-words model or SPMK [7], the
similarity between two images is the sum of the equally
weighted intersections: s(Ii, Ij) =

∑
m sij(m). In con-

trast, we assign different weights for codewords, resulting
in a weighted similarity defined as sw(Ii, Ij) =wT sij =∑
m w(m)sij(m), which is a similarity metric according to

the definition in [2].
We aim to make the weighted similarity between same

labeled images larger than that between differently labeled
images. Ideally, the learnt weight vector w ∈ RM satisfies
the constraint

wT sij > wT sik,∀(i, j, k) ∈ T (1)

It is impossible to fulfil these constraints for all triplets
simultaneously. Hence, a soft margin method is used by
inducing slack variables ξijk ≥ 0: wT sij − wT sik ≥
1 − ξijk. This means that wT sij > wT sik can be violated
but this violation (or empirical loss) should be minimized:
min

∑
ijk ξijk. However, focusing only on the empirical

loss may result in over-fitting. Therefore, an `2 regulariza-
tion term ‖w‖2, similar to SVM, is imposed. Hence, the
similarity metric learning corresponds to a constrained con-

vex quadratic programming:

min
w,ξijk

1
2‖w‖

2 + C
∑
ijk ξijk

s.t. wT sij −wT sik ≥ 1− ξijk,∀(i, j, k) ∈ T
w ≥ 0, ξijk ≥ 0,∀(i, j, k) ∈ T (2)

where C is a trade-off constant between the empirical loss
and regularization.

4. Implementation
To solve (2) efficiently with some standard optimization

software, especially when the codebook size is large, two is-
sues have to be addressed. One is how to choose the triplets
when the training set T is large. The other is how to op-
timize the speed and memory usage for a large codebook
case.

We tackle these two issues with two nested recursive pro-
cedures. The outside loop, with subscript q, is for triplets
selection where w is estimated on a growing set of triplets.
The inside loop, with subscript r, is for estimating w in an
efficient way. Instead of optimizing (2) directly (we call it
Global Optimization, GO), Alternating Optimization (AO),
which optimizes sub-vectors of w in a recursive way, is
adopted.

4.1. Triplets Selection

There exist a large amount of image triplets even in the
case of a small-size classification problem. For example, a
two-class classification problem with 150 training samples
in each class has more than 3×106 triplets (150×149×150).
To overcome this complexity problem, a subset of triplets
was selected in [12] and showed to achieve considerable
performance. In [4], half of the triplets were pruned ac-
cording to their feature-to-set distances. In our approach,
we adopt a bootstrapping strategy for triplets selection. The
weight vector is estimated iteratively on a growing set of
triplets. Except for the first iteration which randomly sam-
ples triplets, only triplets that do not fulfil wT sij > wT sik,
are added in each iteration.

Suppose there areN triplets from the whole index set T .
We estimate the weight vector only on a subset T (q) in the
q-th iteration. The weight vector is refined using the stages
discussed below and illustrated in Figure 1 (a). Note that
in this process the estimation set T (q) is different from the
candidate set Tq and the adding set T +

q .

• Initialization The weight vector is initialized with
equal weights w0 = 1. We first randomly pick a subset
of triplets T1 ⊂ T with cardinality N1 for estimating
w1 in (2): T (1) = T1.

• Update In the q-th iteration (q = 2, 3, ...), wq is esti-
mated with alternating optimization (see Section 4.2)

Figure 1. Top: diagrams for triplets selection. In each iteration, wq

is estimated on T (q) with Alternating Optimization (AO), shown
in the bottom figure. Bottom: one iteration in AO. Inside r-th iter-
ation, the sub-vector in the white box is the item being optimized
with all the remaining sub-vectors (in shadow boxes) fixed.

on T (q) with cardinality Nq , with Nq−1 < Nq < N .
T (q) = T (q−1)∪T +

q with T +
q the adding set of triplets

that violates condition (1):

T +
q = {(i, j, k) ∈ Tq|wT

q−1sij < wT
q−1sik} (3)

here Tq is a subset randomly selected from the remain-
ing triplets: Tq ⊂ T /∪q−1

l=1 Tl. The error is estimated on
the triplets subset Tq+1: ε(q) = |T +

q+1|/|Tq+1| where
| · | represents the cardinality of the set.

• Stop criterion The iteration stops if ε(q) > ε(q−1) or
q > Lq , where Lq is a maximal number of iterations.

Intuitively, adding the triplets that do not satisfy condi-
tion (1) to constraints will reduce the empirical error as it
enables the learning process to focus on the triplets lying
close to the separation hyperplane. However, adding too
many such triplets may lead to overfitting. Hence the pro-
cess stops when the error starts to increase or the process
reaches the maximum number of iterations. Figure 2 (Left)
shows the classification performance decreases after q = 3.

4.2. Alternating Optimization

Although with the proposed bootstrapping strategy, the
number of constraints is significantly reduced, it is still
computationally and memory intensive to estimate the high
dimensional vector wq using standard optimization soft-
ware, such as Mosek1. We adopt the alternating optimiza-
tion [1] to solve this bottleneck.

1http://www.mosek.com/

Figure 2. Left: the average correct rate on Scene-15 [7] in
consecutive iterations of triplets selection. Right: The con-
vergence of alternating optimization. The dash lines show the
difference between the AO solutions and the global solution:
‖w(r) − w∗‖/‖w∗‖, while the solid lines represent (‖w(r) −
w(r−1)‖/‖w(r−1)‖) (when r = 1, the average difference is
17.34). Experiments are performed 10 times with randomly se-
lected training and test sets, visualized with different colors.

Formulation Alternating Optimization (AO) is an iterative
procedure for minimizing a function by optimizing a subset
of variables recursively. In our approach, we partition the
weight vector into t parts: w = (w1,w2, ...,wt)T , wi ∩
wj = ∅, i 6= j. In contrast to Global Optimization (GO)
in (2), which optimizes the whole vector, the AO optimizes
a subvector wl (l = 1, 2, ..., t) one by one in the iterative
procedure with the objective function as follows.

min
wl,ξijk

1
2
‖w‖2 + C

∑
ijk

ξijk (4)

The only difference between (4) and (2) is the optimized
variable, wl and w respectively. To distinguish from solu-
tion w∗ obtained with GO (2), the solution with AO (4) is
referred to as w̃∗. To simplify notation, the sub-index q is
omitted in this section, i.e., w(r)

q and w(r)
ql are referred to as

w(r) and w(r)
l , respectively. Note that the alternating op-

timization is performed in each triplets selection iteration,
which is visualized in Figure 1 (Top).

In the r-th iteration, w(r) = (w(r)
1 ,w(r)

2 , ...,w(r)
t)T .

As visualized in Figure 1 (Bottom), sub-vectors w(r)
l , l =

1, ..., t, are optimized one by one by the following quadratic
optimization problem:

min
w

(r)
l ,ξp

1
2‖w

(r)
l ‖2 + C

∑
p ξp

s.t. w(r)T
l ∆pl ≥ 1− C(r)

l − ξp,∀p ∈ T

w(r)
l ≥ 0, ξp ≥ 0,∀p ∈ T (5)

where ∆p = sij − sik with ijk simplified with p. ∆p

is accordingly partitioned as ∆p = (∆p1,∆p2, ...,∆pt)T .
C

(r)
l =

∑l−1
j=1 w(r)T

j ∆pj +
∑t
j=l+1 w(r−1)T

j ∆pj is a con-
stant since wj , j 6= l are fixed.

The iteration terminates when the stopping criterion
‖w(r) −w(r−1)‖/‖w(r−1)‖ < ε or r > Lr is satisfied.

Convergence of AO The convergence of AO has been in-
vestigated in [1]. We compare GO with AO on “bike” cate-
gory in GRAZ02 dataset [10]. w ∈ R2000 is partitioned into
20 parts evenly. The experiments are carried out 10 times
with different randomly selected training samples. Consis-
tent convergence behavior is observed, as shown in Figure 2
(Right). The AO converges very fast and it does converge to
the GO solution w∗. In our experiments, we use the Mosek
toolbox to solve the quadratic problems (2) and (4). The GO
needs 36 hours in average with 30,000 triplets. By contrast,
AO takes one hour and 15 minutes for the same setting.

5. Experiments on Synthetic Data
We first perform experiments on a two-category syn-

thetic dataset. In this simulation, neither actual image nor
codebook is generated. We start the simulation at the in-
termediate step of bag-of-words approach, namely, at code-
book occurrence histogram. 8-dimensional codebook oc-
currence histograms h = (h1, h2, ..., hM),M = 8 are gen-
erated to simulate the normalized histograms that are typ-
ically computed for every image. Due to the normaliza-
tion, these histograms are located on a hyperplane defined
by

∑
i hi = 1. The distributions of these codeword oc-

currences in the examples from the two categories are dis-
played in Figure 3 (Left). Each histogram dimension is
distributed according to Gaussian or uniform distributions
whose detailed coefficients are given on the top of the dis-
tribution in Figure 3. It is easy to see that the most discrim-
inative codeword is h1 followed by h2, since their distri-
butions differ most for the two categories. While the least
discriminative dimensions are h5, h6 and h7.

We perform a classification experiment in which the his-
tograms are simulated according to distributions from Fig-
ure 3 (Left). The Equal Error Rate (EER) of the Receiver-
Operating Characteristic (ROC) is adopted for evaluation
on 150 testing histograms per category. Readers are re-
ferred to section 6.1 for how the ROC curve is computed.
We generate several sets of training data with increasing
number of training histograms per category. Each exper-
iment is run 50 times for a given number of training sam-
ples. The average EER and its standard deviation are shown
in Figure 4. Note that we do not use AO, since GO can be
done efficiently for this small size codebook. Intuitively, the
performance is lower for a small number of training exam-
ples due to insufficient training data. However, the code-
book with learnt weights gives much higher performance
than that with equal weights. An interesting observation is
that the learnt weights help much when there is few train-
ing examples compared to the codebook size, while only
slight improvement is observed in the case of large num-
ber of training examples. This significant improvement for
insufficient training examples is exactly what we expect in
recognition of real image data. In most recognition bench-

Figure 3. Left 16 figures: distribution for each dimension of the simulated data. Top row: category 1. Bottom row: category 2. (x axis: the
i-th codeword occurrence: hi, y axis: occurrence). Right: learnt weights averaged in 50 runs with 15 training samples per category.

Figure 4. Means and standard deviation of ROC equal error rates
with varying training samples on 8-dim simulated histograms for
50 runs.

marks, there are hundreds of training examples, while the
codebook consists of a few thousands of codewords, which
leads to underestimated high dimensional occurrence his-
tograms.

The difference of performance for various numbers
of training examples comes from the fact that the non-
discriminative entries (eg. h5, h6, h7) do not help in clas-
sification, neither do they decrease the score in the case
of sufficient training samples. However, they strongly af-
fect the performance in the case of insufficient training
samples. Hence, the learnt weights can reduce this ef-
fect by assigning small weights to the non-discriminative
codewords. The learnt weights for 15 examples per cat-
egory are shown in Figure 3 (Right), which is consistent
with what was expected from the distributions in Figure 3
(Left). Higher weights are assigned to the first two code-
words, lower weights to the others.

6. Experiments on Real Data
In this section we conduct experiments on standard im-

age classification and retrieval data. The classification ex-
periments are performed with Spatial Pyramid Match Ker-
nel (SPMK) [7] and k-nearest neighbor classifier, in which
2000 codewords with level L = 1, i.e., 1×1 and 2×2 cells,
are used. Densely sampled regions combined with SIFT [8]
are used. All the results reported in this section are averaged
over 10 runs with randomly selected different training and
test images.

6.1. Binary Classification on GRAZ02 & GRAZ01

We carry out object vs. background classification
on two datasets with large intra-class variations, namely,
GRAZ02 [10] and GRAZ01 [10]. GRAZ02 and GRAZ01
contain 3 and 2 object classes respectively as well as the
background class. We follow the evaluation protocol from
[10]. For GRAZ02, we train on 150 object images and 150
background images and test on 150 images, half from the
object and half from the background class. For GRAZ01,
these three numbers equal 100.

Figure 5 (b) illustrates the learnt weights for the 2000-
dimensional “person” codebook. Sample patches from the
three top-weighted codewords are shown in Figure 5(c) and
highlighted in Figure 6 with solid red rectangles. The most
distinctive codewords for “person” represent the edges of
the legs and the body. The corresponding codeword occur-
rence distributions on “person” and “no person”, similar to
Figure 3, are shown to the right of the patches, in which
the distribution differ for the two categories. According to
the distributions, much fewer such codewords occur in “no
person” images than in “person” images, which shows the
codeword’s discriminability. In contrast, both categories
have very similar distributions of the zero-weighted code-
words, as shown in Figure 5 (f). The first two zero-weighted
codewords corresponds to the ground, wall and tree texture,
while the last one is a vertical edge which is not helpful
for distinguishing “person” and “no person” either. These
three codewords are highlighted in Figure 6 with solid blue
rectangles.

Patches randomly picked from the 6 highest-weighted
codewords for “bike” and “car” are displayed in Figure 7
(Top). The patches mainly come from different parts of the
bike wheels, bottom of the car and corners of car windows.
It clearly shows that the codewords learning is able to find
the most distinctive features for specific categories. The 6
highest-weighted and 10 lowest-weighted (zeros) ones are
also indicated by red and blue in bike and car images in Fig-
ure 7 (Bottom). Most of the highest-weighted codewords
are located on the object and the low-weighted patches are
on the background. This indicates that the learnt high-
weighted codewords can be used for object localization.

(a) (b)

(c) (d) (e) (f)
Figure 5. (a) One “person” image shown with two high-weighted regions. (b) the learnt weights for codebook for “person/no person”. (c)
sample patches in the three highest-weighted codewords highlighted in (b) with red rectangles (e) sample patches in the three zero-weighted
codewords highlighted in (b) with blue rectangles (d)(f) the codeword occurrence distributions in the two categories for the left codewords.

Figure 6. The 10 highest-weighted codewords are highlighted with red rectangles in “person” and “no person” images, while the 10
zero-weighted codewords are denoted with blue rectangles. The solid rectangles are the six codewords shown in Figure 5.

We adopt ROC curve for evaluation as in [10]. For a
test example a, all the training samples are ranked accord-
ing to the similarity with this test example in a decreas-
ing order. Let yi ∈ {0, 1} be the label of the i-ranked
training sample bi: yi = 1 if bi belongs to positive class.
The confidence of the positive category with is defined as:

p(I)(a) =
∑I
i=1

Pi
j=1 yj

i yi. The ROC curve is generated
by thresholding this confidence for each test example.

Table 1 (Top) summarizes the ROC equal error rates
of our approach as well as the state-of-the-art results on
GRAZ02. Compared with the equally weighted codebook,
the learnt codebook improves the performance significantly,
especially for “car” and “person”, where the improvement
of nearly 10% is achieved. Our approach outperforms [10]
significantly and also exceeds the recent work in [9], in
which randomized clustering forests are used for generat-

Figure 7. Top two rows: The 6 highest-weighted codewords learnt
in “bike” and “car”. Bottom two rows: Highest and zero-weighted
codewords are highlighted with red and blue rectangles.

GRAZ02, SPMK, M=2000, L=1
[10] [13] [9] equal w our approach

bike 76.5 89.5 84.4 81.3±1.3 84.9±2.1
car 70.7 80.2 79.9 72.9±0.8 82.2±2.0

person 81.0 85.2 – 75.6±0.8 84.9±2.0
GRAZ01, SPMK, M=2000, L=1

[10] [7] [18] equal w our approach
bikes 86.5 86.3 92.0 83.3±1.2 86.7±4.6

person 80.8 82.3 88.0 80.7±2.3 84.0±2.0
Table 1. The ROC equal error rate (%) on GRAZ02 and GRAZ01

ing codebook. Compared with the best performance on
this dataset so far [13], we obtain lower performance on
“bike”, but better on “car” and comparable on “person”. In
[13], SVM classifier is used on a selected 5000 or 10,000-
size codebook, which is computationally more expensive.
Our approach uses kNN classifier with only 2000-size code-
book.

Table 1 (Bottom) shows consistent improvement com-
pared to the equal-weighted codebook on GRAZ01. Our
approach achieves similar results to [10] and [7] for “bikes”,
but better for “person”. The performance is lower than the
best performance in [18] where two types of feature detec-
tors (Harris-Laplace and Laplace), two descriptors (SPIN
and SIFT) and SVM were used.

6.2. Multi-Class Classification on Scene-15

We also test our approach on a scene classification
dataset from [7] which consists of 15 categories. 100 im-
ages randomly selected in each category are for training and
the rest for testing. We pick N0 = 90, 000 initial triplets
as constraints, Nq = 90, 000 candidate triplets in each it-
eration. We perform experiments for two codebook sizes

equal w our approach
M = 200, L = 2 70.3±1.1 70.8±0.7
M = 2000, L = 1 68.8±1.4 73.4±1.0

Table 2. The average correct rate (%) on Scene-15 with K-nearest
neighbor classifier (K = 15)

with k-nearest neighbor classifier on this dataset. The re-
sults shown in Table 2 indicate that the learnt weights can
hardly help for small size codebook where the training ex-
amples is sufficient. This is consistent with the observation
on the synthetic dataset in Section 5. In contrast, 4.6% im-
provement is achieved for large-size codebook (M = 2000,
L = 1). Surprisingly, the 2000-size equal-weighted code-
book performs even worse than 200-size codebook if the
level difference is ignored. We argue that it is due to insuf-
ficient number of training examples for the large codebook.
Despite this, the weighted codebook given by the proposed
approach can compensate for insufficient data. The state-
of-the-art performance in this dataset is 81.4% reported by
[7]. However, strong SVM classifier has been used there as
opposed to our approach based on kNN.
Discussion We also compare the equal weight scheme with
our learning scheme by replacing kNN with SVM. 83.5%
classification rate is achieved with equal weight scheme and
the learnt weights have marginal effect on the performance
if SVM is used. This is consistent with the observations
in [13] and shows that codeword weighting is more suit-
able for kNN classifiers. These are still more applicable
in the example based retrieval scenario than SVM. Note
that we learn global weights for all categories. Since each
codeword may have different contribution for different cat-
egories, the performance can be boosted if the weights are
class-specific, in a similar way to [4, 15]. Our approach can
also be extended to class-specific case although the number
of parameters to optimize significantly increases.

6.3. Image Retrieval on Oxford5K

To validate our learnt codebook weighting scheme, we
compare to the commonly used tf-idf weighting strategy
in the context of image retrieval in the Oxford Building
dataset [11]. It contains 5,062 images for 11 Oxford land-
marks with manually annotated ground truth and distracters.
We follow the setup in [11], where 5 images per landmark
are used for query. The Average Precision (AP) is taken
as the performance metric for measuring the retrieval accu-
racy.

We learn the codebook weights for each landmark with
randomly selected 7 positive images and 500 negative im-
ages. The 4,555 (=5,062-7-500) remaining images are used
for testing. Note that the 7 positive images do not include
the 5 queries. This process is repeated 5 times and the mean
performance is reported. This offline supervised learning
for retrieval is applicable in situations such as searching for

cat. equal w tf idf our approach
all souls 49.31 50.47 63.94

ashmolean 55.61 57.92 60.31
bodleian 55.73 53.06 72.70

christ church 58.85 59.14 62.51
hertford 70.53 71.09 66.40

magdalen 12.22 13.27 20.47
radcliffe camera 65.42 66.01 60.20

MAP 52.53 53.01 58.08
Table 3. Average precisions (%) on Oxford5K

a logo, a person or a specific landmark, where many training
images are available in advance. We test the learning strat-
egy on 7 landmarks out of 11 as there are too few training
examples for the remaining 4.

To make our results comparable, we directly use the
codebook assignments mapped from a 1M-size codebook
downloaded from Oxford website, where the local features
are generated with SIFT descriptors on multi-scale Hes-
sian interest points. The similarity between two images is
the weighted histogram intersection with standard bag-of-
words model (M = 106, L = 0). For the implementation
of the weight learning, all 21,000 constraints (= 7×6×500)
are used without triplets selection and the long weight vec-
tor is partitioned into 300 subsets for AO.

As shown in Table 3, the tf-idf only slightly outperforms
equal weights. The performance of our learnt weights ex-
ceeds that of the tf-idf scheme for most categories. In terms
of the mean AP on the 7 landmarks, we observe a signifi-
cant gain of 5% over tf-idf weights. This experiment con-
firms the superiority of the proposed learning method over
the commonly-used tf-idf scheme.

7. Conclusions

We have proposed a machine learning based approach
for estimating codebook weights. The complexity problem
has been addressed by iterative constraint selection and al-
ternating optimization which has been shown to converge
to the global optimum. Experiments on both synthetic and
real datasets demonstrate that our learning approach can
improve the classification and retrieval performance over
the commonly used equally weighting and tf-idf weighting
schemes, especially when the training examples are insuffi-
cient for a large size codebook. The approach can also be
used for codeword selection to reduce the dimensionality of
codeword occurrence histograms in large scale image clas-
sification and retrieval problems, as more than half of the
codewords are zero weighted in our experiments. Moreover,
a potential research direction can be object localization with
the help of our learnt codebook.

Acknowledgments
This research was supported by UK EPSRC EP/F0034

20/1 grant and the BBC R&D.

References
[1] J. C. Bezdek and R. J. Hathaway. Convergence of alternating

optimization. Neural, Parallel Sci. Comput., 11(4):351–368,
2003.

[2] S. Chen, B. Ma, and K. Zhang. On the similarity met-
ric and the distance metric. Theoretical Computer Science,
410:2365–2376, 2009.

[3] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and
C. Bray. Visual categorization with bags of keypoints. In
Workshop of ECCV, pages 1–22, 2004.

[4] A. Frome, Y. Singer, F. Sha, and J. Malik. Learning globally-
consistent local distance functions for shape-based image re-
trieval and classification. In ICCV, pages 1–8, 2007.

[5] K. Grauman and T. Darrell. The pyramid match kernel:
discriminative classification with sets of image features. In
ICCV, volume 2, pages 1458–1465, 2005.

[6] F. Jurie and B. Triggs. Creating efficient codebooks for vi-
sual recognition. In ICCV, volume 1, pages 604–610, 2005.

[7] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In CVPR, pages 2169–2178, 2006.

[8] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60(2):91–110, 2004.

[9] F. Moosmann, E. Nowak, and F. Jurie. Randomized cluster-
ing forests for image classification. PAMI, 30(9):1632–1646,
2008.

[10] A. Opelt, A. Pinz, M. Fussenegger, and P. Auer. Generic ob-
ject recognition with boosting. PAMI, 28(3):416–431, 2006.

[11] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisser-
man. Object retrieval with large vocabularies and fast spatial
matching. CVPR, 0:1–8, 2007.

[12] M. Schultz and T. Joachims. Learning a distance metric from
relative comparisons. In NIPS, 2004.

[13] T. Tuytelaars and C. Schmid. Vector quantizing feature space
with a regular lattice. In ICCV, pages 1–8, 2007.

[14] J. C. van Gemert, J. M. Geusebroek, C. J. Veenman, and
A. W. M. Smeulders. Kernel codebooks for scene catego-
rization. In ECCV, 2008.

[15] K. Q. Weinberger and L. K. Saul. Fast solvers and effi-
cient implementations for distance metric learning. In ICML,
pages 1160–1167, 2008.

[16] J. M. Winn, A. Criminisi, and T. Minka. Object categoriza-
tion by learned universal visual dictionary. In ICCV, vol-
ume 2, pages 1800–1807, 2005.

[17] L. Yang and R. Jin. Distance metric learning: A compre-
hensive survey. Technical report, Department of Computer
Science and Engineering. Michigan State University, 2006.

[18] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local
features and kernels for classification of texture and object
categories: A comprehensive study. IJCV, 73(2):213–238,
2007.

