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Abstract

In this paper, we show how to generate a sharp

panorama from a set of motion-blurred video frames. Our

technique is based on joint global motion estimation and

multi-frame deblurring. It also automatically computes the

duty cycle of the video, namely the percentage of time be-

tween frames that is actually exposure time. The duty cycle

is necessary for allowing the blur kernels to be accurately

extracted and then removed. We demonstrate our technique

on a number of videos.

1. Introduction

A convenient way to generate a panorama is to take a

video while panning and then stitch the frames using a com-

mercial tool such as AutoStitch, Hugin, Autodesk Stitcher,

or Microsoft Image Composite Editor. However if there is

significant camera motion, the frames in the video can be

very blurry. Stitching these frames will result in a blurry

panorama, as shown in Figure 1 (b). In this paper, we de-

scribe a new technique that is capable of generate sharp

panoramas such as that shown in (c).

Our framework assumes that the scene is static and ade-

quately far away from the camera. Hence the apparent mo-

tion and motion blur in the video are mainly due to camera

rotation. This allows us to parameterize the image motion

as a homography [18]. Moreover, we assume that the cam-

era motion is piecewise linear (i.e., the velocity is constant

between successive frames). This is a reasonable approxi-

mation for videos due to their high capture rate.

We pose the problem of generating a sharp panorama

from a sequence of blurry input photos as that of estimating

the camera motion, its duty cycle, and the sharpened im-

ages, where the motion and the duty cycle give us the blur

kernel for sharpening. In our approach, all these are esti-

mated jointly by minimizing an energy function in a multi-

image deconvolution framework, which we shall describe

1This work was supported in part by NSF grant IIS 0713185.

Figure 1. Stitching example. First row: (a) Input frames (only

first and last frames shown). Second row: (b) Result of directly

stitching the input frames. Third row: (c) Result of our technique.

in detail in later sections. Note that the blur kernel in our

model, though parameterized by global motion, is in fact

spatially varying, which is a necessary consequence of the

modeling of camera rotation.

The main contributions of this paper are: (1) the ability

to estimate camera duty cycles from blurred videos, and (2)

the formulation as a single joint optimization of duty cy-
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Blur kernel# images Single-image Multi-image

Spatially constant [17] [2]

Multi. piecewise-const. [8] [7], [5], [15]

Spatially varying [6] [4], Ours

Table 1. Categorization of deblurring techniques, illustrated with

some of the representative works. Not a complete taxonomy

cle, motion and latent deblurred images in a manner that is

computationally tractable.

2. Related Work

Image and video deblurring has been studied extensively

in the context of computer vision, graphics, and signal pro-

cessing. Table 1 lists representative deblurring techniques

in our brief survey, which is not meant to be exhaustive.

Multi-image techniques. Jin et al. [7] address the prob-

lem of simultaneous tracking and deblurring in motion

blurred image sequences. They use the observation that mo-

tion blur operations are commutative to match blur across

frames for tracking. However, the blur kernels estimated in

this way are only relative, namely they satisfy the proposed

blur constraint but are not necessarily the actual kernels that

produced the input images. Moreover, the work assumes

that the blur kernel can be modeled as a 1D Gaussian, which

is not typical of real-world motion blur.

Cho et al.’s work [5] uses segmentation masks to simul-

taneously estimate multiple (parametric) motion blurs over

the whole image as well as handle occlusion. It can be re-

garded as an extension of the previous technique [7], since it

uses a similar blur constraint and also assumes that the blur

kernel is a 1D Gaussian. While capable of estimating mul-

tiple motions and blurs, it shares most of the assumptions of

[7] and hence has similar limitations.

Bascle et al. [4] jointly perform deblurring and super-

resolution on image sequences using a generative back-

projection technique. The technique assumes that the 1D

motion that produces blur is completely determined by

affine motion between images. This, however, is only true

when the camera duty cycle, i.e., the relative exposure time,

is known a priori, and their work does not address the issue

of estimating duty cycles.

The work that has the most similar goal to ours is that

of Onogi and Saito [15]; they also deblur video frames for

panorama generation. In their case, they perform feature

tracking with the assumption that there are only foreground

and background global motions. Like Bascle et al., they de-

rive the blur directly from the estimated motions, implicitly

assuming known duty cycle, and invert each frame indepen-

dently using the Wiener filter. In contrast, our approach is

jointly estimate motion and duty cycle, and performs multi-

image deblurring.

Single-image techniques. Many single-image deblurring

techniques have been proposed, and here, we mention only

a small number of representative methods. One of the more

recent techniques is that of Shan et al. [17], where the blur is

due to camera shake and assumed to be spatially invariant.

While impressive results were reported, it appears that their

system parameters are highly data-dependent, which limits

its practicality.

Levin [9] removes motion blur from a single image by

predicting derivative distributions as a function of the blur

kernel width, assuming the motion blur is caused by con-

stant velocity motion. Joshi et al. [8] model spatially-

varying motion blur by dividing the image into non-

overlapping sub-windows and estimating a blur kernel for

each window. The method uses hypotheses of sharp edges

instead of motion cues for blur estimation.

Dai and Wu [6] derive a local motion blur constraint sim-

ilar to the optical flow constraint. Their constraint is based

on matte extraction and is capable of recovering spatially-

variant motion blur. However, it is sensitive to matting er-

rors.

Techniques with specialized capture process. There are

also techniques for deblurring that either use specialized

hardware or assume a highly controlled capture process.

For instance, Tai et al. [19] use simultaneously captured

high-resolution video at low frame rate and low-resolution

video at high frame rate. Yuan et al. [21] use a blurred long-

exposure image and a noisy short-exposure image of the

same scene. Tico and Vehvilainen [20] address the problem

of motion blur by taking many short exposure (and hence

high noise) images so that they are relatively free from blur.

However, it does not actually model blur and hence is not

applicable to inputs that has a contain substantial amount of

blur.

Agrawal et al. [2] uses multi-image deconvolution to ad-

dress the problem of zeros in the frequency domain of blur

kernels. This is done by jointly deblurring a sequence of

images that are taken with different and known exposure

times. The method also requires that the scene consists of

a single moving object at constant velocity and static back-

ground. While such requirements are not uncommon in the

deblurring literature [16, 5], they are not typically met in

most real-world videos.

In contrast, our inputs are videos from readily available

off-the-shelf digital equipment.



Figure 2. Overview of our method

3. Overview

We solve the deblurring problem by jointly estimating

motion, duty cycles, and latent (sharp) images. 1 This is

performed by minimizing an energy function corresponding

to multi-image deconvolution. We will describe the energy

function in the following section.

The energy minimization is carried out using gradient

descent. This is viable under our model since we can com-

pute the derivative of the energy function with respect to

motion, duty cycles, as well as latent images. We initial-

ize motion by computing global parametric optical flow

between successive video frames using the Lucas-Kanade

method [13]. Duty cycles are set to an initial guess, which

needs not be accurate. Subsequently, we alternate between

updating latent images while holding motion and duty cy-

cles constant (i.e., performing deconvolution) and updating

motion and duty cycles while holding the latent images con-

stant. See Figure 2 for illustration. The updates are de-

scribed in Section 4 and 5 respectively. Although in theory

all three sets of variables can be optimized simultaneously,

the alternating scheme has a much smaller and hence man-

ageable memory footprint and is effective in practice.

4. Multi-image Deconvolution

Let I1, · · · , In be the sequence of observed images with

motion blur and L1, · · · , Ln be the corresponding underly-

ing latent images without motion blur. 2 If we regard each

image as a m-dimensional vector, where m is the number

of pixels, then the spatially varying motion blur can be rep-

resented as sparse m-by-m matrices B1, · · · , Bn, namely

Ii = BiLi + Ni (1)

for each image i ∈ {1, · · · , n}, where Ni is the noise. Re-

call that Bi is parameterized by motion (i.e., homographies)

and duty cycles under our model. Similarly, let Ai,j denote

the warping to frame i from frame j, which is determined

also by the relative motion, i.e.,

Li = Ai,jLj . (2)

1In our framework, motion and duty cycles parameterize blur kernels

(which will be described in the next section).
2Assume images have been converted into linear (luminance) space.

Hence

Ii = BiAi,jLj + Ni. (3)

Assuming Gaussian noise, the maximum-likelihood esti-

mate for frame j is then obtained by minimizing the energy

function

EML(Lj) =

j+
∑

i=j
−

∣

∣

∣

∣D−1
i (BiAi,jLj − Ii)

∣

∣

∣

∣

2
, (4)

where j− = max(j − r, 1), j+ = min(j + r, n), Di is a

diagonal matrix whose entries are the standard deviations of

noise at each pixel in the i-th image, and r is the number of

nearby observations to include in each temporal direction.

In our work, r is typically in the range of 1 to 3. Note that if

r = 0, the problem reduces to single image deconvolution.

Because of noise in the observation Ii as well as empirical

errors in the recovered warping Ai,j and blur Bi, a common

approach is to introducing an image prior on L that typically

regularizes its gradients (e.g. [10]). Hence the maximum

a posteriori estimate corresponds to the minimum of the

energy function

EMAP(Lj) =

j+
∑

i=j
−

∣

∣

∣

∣D−1
i (BiAi,jLj − Ii)

∣

∣

∣

∣

2
+ρ(Lj), (5)

where ρ(·) is the functional form of the prior. The overall

energy function can be minimized with respect the latent

images Lj using gradient-based MAP-deconvolution tech-

niques (e.g. [10]).

5. Motion and Duty Cycle Estimation

In this section, we describe how to refine motion

and duty cycles given the latent images. Again, let

I = (I1, · · · , In) be the blurred video frames and L =
(L1, · · · , Ln) be the underlying sharp frames that we want

to recover. Let H = (H1, · · · ,Hn) be the warps to each

frame from some reference frame. Let τ = (τ1, · · · , τn)
denote the duty cycles of each frame. We denote θ =
(H, τ ) for notational convenience. Hence both Ai,j and

Bi (defined in the previous section) are functions of H and

τ , and we will subsequently write them as Aθ

i,j and Bθ

i to

reflect this. Since the correct warps and duty cycles should

result in a deblurred output with lower energy than incorrect

ones, it is desirable to minimize Equation (5) over the whole

sequence with respect to these variables as well. Hence we

aim to minimize the following energy function

E(L,θ) =

n
∑

j=1

j+
∑

i=j
−

∣

∣

∣

∣D−1
i (Bθ

i Aθ

i,jLj − Ii)
∣

∣

∣

∣

2
+ ρ(Lj).

(6)

The minimization of Equation (6) with respect to L amounts

to MAP-deconvolution, which we already addressed in the



previous section; therefore the rest of this section will de-

scribe how to minimize it with respect to θ.

5.1. Pure Translation

We start with pure translation for simplicity of presenta-

tion. In this case, the warps H can be represented by the cor-

responding 2-component vectors h = (h1, · · · ,hn). Thus

we let θ = (h, τ ) for pure translation. Since the image

prior ρ(Lj) does not depend on θ, it can be ignored as far

as the optimization of θ is concerned. Also for conciseness

we omit the noise matrices D−1 from the subsequent no-

tation, since it is simply a weighting factor on each pixel.

Furthermore, we will write E(L,θ) as simply E(θ) since

minimization is with respect to θ. Hence

E(θ) =
n

∑

j=1

j+
∑

i=j
−

∣

∣

∣

∣Bθ

i Aθ

i,jLj − Ii

∣

∣

∣

∣

2
(7)

Let

Lθ

i,j = Aθ

i,jLj (8)

and

Iθ

i,j = Bθ

i Lθ

i,j = Bθ

i Aθ

i,jLj , (9)

i.e., Lθ

i,j is the sharp frame i obtained by warping Lj , and

Iθ

i,j is the blurred version of Lθ

i,j . Therefore

E(θ) =

n
∑

j=1

j+
∑

i=j
−

∑

p∈pixels of Ii

δIi,j,p(θ) (10)

where

δIi,j,p(θ) = (Iθ

i,j(p) − Ii(p))2. (11)

Here we use p to denote the 2-component vector represent-

ing a pixel’s location (xp, yp)
T in the image. Thus it suf-

fices to find the derivative of δIi,j,p(θ), which in turn de-

pends on the derivative of Iθ

i,j(p) (with respect to θ). Recall

that in our model the blur kernel is determined by the rela-

tive warps to the two adjacent frames due the assumption of

piecewise linear motion, i.e.,

Iθ

i,j(p) =

∫ τi

t=−τi

Lθ

i,j(p + t(hi+sign(t) − hi))dt, (12)

where sign(t) is 1 if t is positive and -1 otherwise. Thus

it can be approximated by a sequence of sampled points on

the motion path for each point,

Iθ

i,j(p) =
1

2s + 1

s
∑

k=−s

Lθ

i,j(p + (13)

|k|

2s + 1
τi(hi+sign(k) − hi))

=
1

2s + 1

s
∑

k=−s

Lj(p +

|k|

2s + 1
τi(hi+sign(k) − hi) + (hi − hj))

where constant s is the number of samples in each temporal

direction (independent of the duty cycles) used to approxi-

mate the blur kernel. In our case s = 50. The derivative of

Iθ

i,j(p) is

d

dθ
Iθ

i,j(p) = ∇Lj(p
θ

i,j,k) ·
1

2s + 1

s
∑

k=−s

d

dθ
pθ

i,j,k, (14)

where

pθ

i,j,k = p +
|k|

2s + 1
τi(hi+sign(k) − hi) + (hi − hj) (15)

and ∇Lj is the image gradient of Lj . In the case of i = n
and k > 0, hi − hi+1 is replaced with hi−1 − hi as an

approximation (since hn+1 does not exist). The case of

i = 1 and k < 0 is handled similarly.

5.2. Full Homography

The case for a homography is analogous. Recall that

H = (H1, · · · ,Hn) defines the warps to each frame from

some reference frame, and the relative warp to frame i from

frame j is thus Hi,j = H−1
j Hi. Let p now denote the

homogeneous coordinates of a pixel, i.e., p = (xp, yp, 1)T .

Thus to extend the relationship between the energy function

and θ from translation to general homography, we only need

to rewrite Eqn (14) and (15), so that

Iθ

i,j(p) =
1

2s + 1

s
∑

k=−s

Lθ

i,j(p
θ

i,j,k) (16)

with

pθ

i,j,k = φ(Hi,j

[

p +
|k|

2s + 1
τi

(

φ(Hi+sign(k),i · p) − p
)

]

)

(17)

where φ(·) is the projection of points in homogeneous co-

ordinates onto the image plane z = 1, i.e.,

φ((x, y, z)T ) = (
x

z
,
y

z
, 1)T . (18)

Equation 17 uses the approximation that every pixel is

moving at constant velocity in between successive frames.

The approximation is reasonable for videos since one can

expect the perspective change between successive frames

to be small. We make the further approximation that

φ(Hi+sign(k),i · p) ≈ Hi+sign(k),i · p, which is valid since

the perspective change in Hi+sign(k),i is small. Hence Equa-

tion (17) simplifies to

pθ

i,j,k = φ(H−1
j

[

Hi +
|k|

2s + 1
τi

(

Hi+sign(k) − Hi

)

]

p).

(19)

The derivatives with respect to warps and duty cycles can be

obtained using standard matrix calculus with the chain rule.

Hence, the energy function can be minimized via gradient-

based optimization methods (L-BFGS [14] in our case).



Sparsity prior + IRLS SLRF prior + L-BFGS

Figure 3. Sample output from deblurring using the sparsity prior

[10] optimized by IRLS and the SLRF prior [11] optimized by

L-BFGS, with otherwise identical parameters. The latter is notice-

ably sharper and yet has less ringing artifacts.

6. Experiments

We evaluate our model on both synthetic and real

videos. For energy minimization, we use limited-memory

BFGS (L-BFGS) of [14]. Compared with iterative re-

weighted least square (IRLS), L-BFGS does not have the

re-weighting step and requires only the value and the deriva-

tive of the energy function. In our experiments we found it

to be converge slightly faster than IRLS and reach compara-

ble energy levels. As is outlined in Section 4, an image prior

is used to regularize the output. In particular we use the

recently proposed sparse long-range random field (SLRF)

[11], which we found to produce noticeably sharper images

and fewer ringing artifacts than the sparsity prior [10] (Fig-

ure 3). 3 The noise levels of the input videos are automati-

cally estimated using the method of Liu et al. [12].

6.1. Synthetic Videos

For quantitative evaluation, we generated synthetic

blurred videos with ground truth information. This is

done by moving a virtual video camera in front of a high-

resolution image, which serves as the scene to be recorded.

Motion blur is generated by temporally averaging consec-

utive frames. Since the virtual camera can have an arbi-

trarily high frame rate, we have dense enough samples to

accurately approximate the motion blur kernel. We output

the middle frame of the samples (of successive frames) that

are used to produce the blurred frame as the corresponding

“true” sharp frame.

Figure 4 shows a sample frame from deblurring a se-

quence with synthesized motion blur. The goal is to com-

pare multi-image deconvolution against single-image de-

convolution. In this particular experiment, motion from an

initial motion estimation and the known duty cycle value

were used. Hence no iterative refinement was performed.

We also did not use any image prior in this case since

the purpose here is to compare multi-image deconvolution

against the single-image counterpart, the two of which dif-

3All the figures are best viewed electronically with zooming-in.

Ground truth Blurred

Single-image deconvolution Multi-image deconvolution

Figure 4. Sample output frame from synthetic video sequence. The

camera undergoes translational motion. The result of multi-image

deconvolution is sharper and has fewer ringing artifacts than that

of single-image deconvolution.

fer only in the data term (i.e., the part of the energy func-

tion excluding the image prior). For this experiment, 7

blurred frames are used for reconstructing each deblurred

frame for multi-image deconvolution (the temporal radius

r = 3). The results show that the image restored using

multi-image deconvolution exhibits noticeably fewer ring-

ing artifacts, demonstrating the advantage of using multiple

observations.

In Figure 5, the top-left image shows a blurred frame of a

synthetic video where the camera undergoes in-plane rota-

Blurry frame Result of Shan et al. [17]

Result of Joshi et al. [8] Our result

Figure 5. Sample output frame from synthetic video sequence. The

amera undergoes in-plane rotation. Our model is capable of han-

dling such challenging scenarios by modeling spatially varying

blur and utilizing motion motion cues from the video.



tion about its center. As can be seen from the image, the blur

is highly non-uniform. The amount of blur is lower near the

center and higher near the border of the image, and the di-

rection of blur also changes with location. The bottom-right

image shows the corresponding frame of the deblurred out-

put using our method, which is sharp and clean. In contrast,

models using piece-wise constant blur kernels can not pro-

duce satisfactory results on such sequences (e.g. top-right,

the result of Shan et al. [17], and bottom-left, the result of

Joshi et al. [8]). This demonstrates the importance of being

able to model spatially varying motion blur.

Figure 6 shows the errors of motion, duty cycles,

and restored frames, over the whole 11-frame video se-

quence, plotted against the number of iterations com-

pleted. The plots correspond to four different sequences

with combinations of two types of camera motions (transla-

tion/perspective rotation) and two duty cycle values values

(approximately half/full). A temporal radius of 1 is used in

these experiments. Motion errors are expressed as average

end-point errors [3] of warps between successive frames;

restoration errors are in the range between 0 and 255. In all

these experiments, the duty cycles are initialized to 1 for the

entire sequence. As can be observed from the figures, the

duty cycles converge to the correct values even when the

initial value is quite far away from the true values. In the

case where the initialization is close to the ground truth, the

estimated values remain close to the true values over the it-

erations. The experiments show that the estimation of duty

cycles is quite robust. Finding the correct duty cycles is es-

sential for determining the blur kernel size and subsequently

achieving good deblur performance. This is reflected in the

plots, where the restoration error is highly correlated with

the duty cycle error. Figure 7 shows a sample frame of the

deblur output using the initial incorrect duty cycles and one

using the refined duty cycles (after the last iterations). The

difference is emphatic.

One may notice that the decrease in motion error is far

less than the decrease in duty cycle and restoration errors,

and that the sequences with perspective rotation have higher

motion error than the translation sequences. This is likely

due to the approximations in handling homographies, as de-

scribed in Section 5. This, however, does not pose a prob-

lem, since the motion estimation is still adequately accurate

for reliable restoration.

6.2. Real Videos

Real-world video sequences are simply collected using

the video mode of a point-and-shoot camera. We used a

Canon SD1100, a Canon A540, and a FlipHD for this pur-

pose. For the SD1100 and the A540, we performed gamma

correction using the camera response functions (CRF) from

the web [1] that were obtained by calibrating on a set of

benchmark scenes and taking the average. We were not

Figure 6. Errors of motion, duty cycles, and restoration (i.e., deblur

output) on synthetic video sequences, plotted against the number

iterations completed. For the last two, the camera rotation is out-

of-plane, hence perspective change

able to find the CRF for the FlipHD, and thus simply used

a gamma value of 1.8. The step is necessary for real videos

since the CRF can be highly non-linear [1]. For all exper-

iments, initial duty cycle was set to one of 1/4, 1/2, or 1,

depending on if the sequence appears to have a mild, mod-

erate, or high degree of blur, and a temporal radius of r = 1
is used.



Input video Result of Shan et al. [17]

Result of Joshi et al. [8] Our result

Figure 8. Stitched Panoramas. The input video was taken by a Canon SD1100. Gamma correction is performed for all three methods.

Initial output (iteration 0) Final output (last iteration)

Figure 7. Comparison of sample frames from the initial and the

final deblurred output on the synthetic sequence with rotational

camera motion and a true duty cycle value of 0.495 (the last plot

in Figure 6). The initial duty cycle value is 1.

Figure 8 shows the panorama stitched from a blurry

video and the those stitched from the deblurred outputs of

Shan et al. [17], Joshi et al. [8], and our method respec-

tively, using Microsoft Composite Image Editor (ICE). Our

method produces far more pleasant result than the compet-

ing methods. Figure 9 displays addition sample frames of

the deblurred outputs on real videos, showing the enhance-

ment over the inputs.

Our method may fail to produce satisfactory results in

certain scenarios, which typically involve hash lighting or

moving objects (Figure 10). Nonetheless, such scenes are

not suited for producing panoramas in the first place.

7. Discussion and Future Work

In this paper, we have shown how to generate sharp,

high-quality panoramas from blury input videos. Our tech-

nique is based on joint global motion estimation and multi-

frame deblurring. It also automatically computes the duty

cycle of the video (i.e., percentage of time between frames

that is actually exposure time). This is a strong step for-

ward in increasing the ease with which users can capture

panorama. Video cameras and video modes on still cam-

eras and phones have become more prevalent, thus there

will be increased need for users to generate panoramas from

videos; however, many of these video devices have limited

capture quality due to the need for lightweight, low cost

components. As a result, dealing with blurred videos will

also become quite necessary.

Our results suggest several areas for future work. While

we have assumed the scene is static, a logical next step is to

allow for some amount of local scene motion. In this case,

we would down-weight areas that are not consistent with

the global motion – this would also us to potentially remove

moving objects or, alternatively, keep a moving object intact

by reinserting a view of it at one selected time.

Another area of future work is to use our method for

video stabilization. If moving objects are successfully han-

dled, i.e., don’t introduce artifacts, then we could resample



Figure 9. Sample results on real video sequences. Left column:

frames of input video; right column: frames of deblurred out-

put. Row 1 and 2: Canon SD1100; Row 3: Canon A540; Row

4: FlipHD.

Figure 10. Failure cases on real videos. Left image: high satura-

tion and contrast. Right image: moving object, where the person

near the low-left corner was crossing in front of the camera.

a smooth version of our recovered input path to generate a

stabilized video, where the static areas are deblurred.

Lastly, there are situations where our method may fail to

produce satisfactory result. Such scenarios usually involve

high degrees of saturation and contrast, which are typically

also difficult for all other deblurring methods. Many cam-

eras perform some post-processing that may be dependent

on the scene radiance distribution. While using the average

CRF over a few benchmark scenes provides a good approx-

imation in most cases, it can break down in harsh lighting

conditions. How to adaptively estimate the CRF in these

situations is interesting direction for future work.
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