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Abstract

Recent work suggests that the human ear varies signifi-
cantly between different subjects and can be used for iden-
tification. In principle, therefore, using ears in addition to
the face within a recognition system could improve accu-
racy and robustness, particularly for non-frontal views. The
paper describes work that investigates this hypothesis using
an approach based on the construction of a 3D morphable
model of the head and ear. One issue with creating a model
that includes the ear is that existing training datasets con-
tain noise and partial occlusion. Rather than exclude these
regions manually, a classifier has been developed which au-
tomates this process. When combined with a robust reg-
istration algorithm the resulting system enables full head
morphable models to be constructed efficiently using less
constrained datasets. The algorithm has been evaluated us-
ing registration consistency, model coverage and minimal-
ism metrics, which together demonstrate the accuracy of the
approach. To make it easier to build on this work, the source
code has been made available online.

1. Introduction

In the field of face recognition, morphable model fitting
has been used very effectively to identify people under rel-
atively unconstrained settings [6]. However, evaluations of
these techniques show that there is still significant scope for
improvement [18]. One possibility is to include additional
recognition features. The ear is particularly suitable for this
purpose as it has a wide variation in appearance between
individuals and, like the face, is recognisable at a distance.
It also has some advantages over the face in that its appear-
ance does not alter with expressions, is rarely disguised by
makeup or cosmetic surgery, and is believed to remain sim-
ilar in appearance with age.

Earlier work has confirmed the ear as a viable
feature for recognition using two dimensional tech-
niques [10] [11] [1] [13]. However, results are sensitive
to large pose or lighting changes so an alternative approach
based on the construction of a morphable model of the face
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and ear is now being investigated.

Existing morphable models of the head have focused on
the face and implicitly or explicitly avoided accurate ear re-
construction [5] [2]. As aresult, range scan data of the ear is
generally of lower quality and less complete than that avail-
able for the face [21]. This neglect of the ear is partly due
to the challenge of modelling its more detailed and self oc-
cluding structure. In addition, ears have not been a priority
in existing work as they are not generally used by humans
for recognition.

The main contribution of the work described here is a
novel technique for the morphable model construction of a
face profile and ear using noisy, partial and occluded data.
The resulting system is the first developed for modelling the
three dimensional space of ear shapes. The model is con-
structed by registering a generic head mesh with 160 range
scans of face and ear profiles. Occluders and noise are iden-
tified within the scans using an automated classifier. The
remaining valid regions are then used to register the mesh
using a robust non-linear optimisation algorithm. Once reg-
istered, the scan orientations are normalised and then used
to construct a linear model of all head shapes.

The next section summarises relevant existing work on
morphable model construction and the representation of
ears in those models. This is followed by a discussion of
how the fitting problem can be formalised and the technique
is then described in detail. Particular attention is given to the
automated process for removing noise and occlusions in the
training data. Finally, an evaluation section describes how
three model metrics are measured and summarises the ex-
perimental results obtained. The paper concludes with pro-
posals for future work. The algorithms used in this paper
are available through the project website [9].

2. Related work

In 1999, Blanz and Vetter created the first 3D morphable
model [7]. It was constructed from over 200 cylindrical
range and colour scans of male and female heads, registered
with each other using an optical flow algorithm. The model
was constructed using the mean of these values and their
first 90 eigenvectors calculated using PCA (principal com-
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Figure 1. This image is of the base mesh, cleaned scan and fitted
model for the technique used by Amberg et al. [3] It shows that the
ear is not affected by the range scan and retains the shape of the
base mesh

ponents analysis). This produced a highly realistic model of
face appearances which they then used to create photoreal-
istic 3D meshes from single photographs.

Further work has concentrated on improving the regis-
tration process. For example, in 2006, Basso et al. ex-
tended the optic flow approach to handle expression vary-
ing datasets [5]. In the same year, Vlasic et al. produced
a multilinear morphable model that enabled independent
adjustment of identity and expressions [20]. This used an
optimisation-based fitting technique. Then in 2008 Am-
berg et al. [3] replaced the general optimisation framework
with a non-rigid iterated closest point algorithm. With their
approach they were able to construct models using partial
range scans. Another contribution from Patel et al. was to
demonstrate the importance of Procrustes normalisation of
scans before calculating the subspace and they proposed an
alternative fitting algorithm using thin-plate splines between
manually labelled feature points [17].

Other researchers have applied the morphable model ap-
proach to different objects. For example in 2005, Allen et al.
constructed morphable models of human body shapes [2].
In similar work, Anguelov et al. [4] developed a novel au-
tomated registration algorithm for bodies with significant
pose variation. Their technique enabled the construction of
a model to estimate a subject’s body shape under different
poses.

These existing approaches have concentrated on face
or body shape and have generally, explicitly or implicitly
avoided constructing accurate ear models. For example, in
the work of Allen et al. the ear region of their training data is
marked as inaccurate, which removes its influence on model
construction. This produces heads on which all ears have
the same shape. Similarly Amberg et al’s and Basso et al’s
fitting results show little influence of the ear on the fitting
process, as indicated in Figures 1 and 2.

Of the existing research, some of the most accurate ear
models have been produced by the original Blanz and Vetter
model (Fig. 3). Their work approximated the head by reg-
ularly sampling points over its surface and then connecting
them to form a complete manifold. This technique creates
ear models that lack folds and self occlusion but as the sur-
face texture includes some shadow information the visual
results look reasonably accurate.
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Figure 2. Results from the work by Basso et al. [5] showing the
base mesh, range scans and the resulting registered models. Note
that the registered models have less protruding ears than the origi-
nal scans and lack internal detail

Y

Figure 3. Image of a fitted Blanz and Vetter ear [7], the inner detail
of which is missing but is compensated by the information in the

B

Figure 4. Image of a fitted Paysan et al. [14] ear, much of the ear is
accurately modelled. However, the top left outer curve and middle
ear hole covering are not fully reconstructed.

In addition, a recent paper by Paysan et al. [14] has
demonstrated high quality head models (Fig. 4). These were
constructed using a more precise scanning process and reg-
istered using the algorithm of Amberg et al. This is in
contrast to the work described in this paper, which focuses
on achieving accurate results using less controlled datasets
through the use of an automated occlusion and noise clas-
sifier. All of the above techniques involve some degree of
manual labelling to achieve accurate results. However, early
work by Brand [8] demonstrated the potential for automat-
ically constructing morphable models directly from video
sequences. This approach used optical flow, structure from
motion, and novel matrix factorisation techniques. The re-
sulting models are visually convincing but are only demon-
strated on single individuals and lack the detail of models
produced by registered range scans.

3. Defining the problem

One current difficulty in developing new types of mor-
phable model is that there is no recognised definition for an



optimal model; that is, there is no agreement on the metrics
to be used to optimise the model parameters.

Initial morphable model construction work used quali-
tative rather than quantitative evaluations of accuracy. In
each case, the precision of the techniques were shown visu-
ally through a number of rendered example registrations [7].
One exception to this, however, is the work of Amberg et
al. [3], which includes two measures of the quality of their
created models. The first was based on the accuracy with
which excluded training samples could be reconstructed us-
ing a model built from the remaining data. The second mea-
sure evaluated the average angle between the normals of
corresponding points on separate registered models. This
quality value was determined by calculating this difference
between every possible pair of models in the training set
and averaging the results. The rationale behind this mea-
sure was that correctly registered model parts should have
correspondingly similar surface normals.

This error measure can be formalised as

!
Z cos Y (wn(i, k), vn(j, k))>

k=0

error(i,j) =

Where i and j are the two aligned models, vn(i, k) is a
function that returns the normal of the vertex k of the model
7, and [ is the number of vertices in the model.

A similar evaluation was provided by Patel et al. [17]
where they projected labelled points on range scans not in-
cluded in the training set and then estimated the resulting
reconstruction error when the models had been fitted to the
images. In this way the value of the model for accurate re-
construction from images could be estimated.

To build on this work the paper explores two desir-
able morphable model properties: coverage and minimal-
ism. Model coverage refers to the degree to which the
model can generalise to samples beyond its training set and
model minimalism refers to the amount of redundancy in
the model; in essence, the size of non-head space that is cov-
ered. Unfortunately, calculating these properties directly is
ill-posed and computationally expensive. This is due to the
extremely large number of parameters involved and the rel-
atively small quantity of training data available. In the case
of morphable models of a class of object, such as all heads,
existing approaches use heuristic techniques and assump-
tions to make the problem tractable.

The primary underlying assumption of existing mor-
phable model work is that by creating an accurate regis-
tration between a large set of head models a linear sub-
space can be created that accurately approximates all head
shapes. A difficulty here, however, is that the registration
is not unique, as there is no agreement on which parts of
a modelled object should be considered the same between
different subjects. Existing approaches have tackled this is-
sue in different ways.

With the exception of the automated technique of
Brand [8], all current techniques initialise their registrations
using a set of manually labelled features, followed by the
application of an algorithm that calculates a dense corre-
spondence. In the work of Patel et al. [17] a thin plate spline
is used to interpolate a cylindicral mapping calculated from
the manually labelled points. In contrast, Vlasic et al. [20]
use an iterative approach based on a similar principle to the
iterative closest point algorithm, progressively adjusting the
fitting using closest points as an estimate of the correspon-
dence between mesh and range data. This was refined by
Amberg [3] to calculate the optimal least deformation solu-
tion to the correspondence at each iteration. Finally, both
Blanz et al. [7] and Anguelov et al. [4] include local appear-
ance similarity measures in their fitting techniques.

Blanz and Vetter’s work formulated the problem as an
optic flow calculation between cylindrical range scans. In
contrast, Anguelov et al. calculated local mesh signatures
using Spin images [15]. Spin images are a translation
and rotationally invariant signature that describe the surface
shape of a range scan. By using this feature their approach
could be applied to less constrained range meshes. In addi-
tion, their correlated correspondence algorithm calculated
the global minimum for both the local similarity and the lo-
cal smoothness of each part of a mesh using loopy belief
propagation. Using this technique they were able to con-
struct accurate full body morphable models with significant
variation in body pose.

Overall, the accuracy and consistency of these tech-
niques is dependent on the quality of the initial labelling
and the smoothness of their cost functions. Their relative
performance can be evaluated by analysing the resulting
morphable models or through direct metrics that evaluate
each fitting individually. In the work described in this paper,
the quality of each registration has been evaluated using the
consistency of the resulting mesh. The consistency of the
fitting is calculated by comparing the similarity of meshes
produced when multiple range images of the same person
are fitted independently. If multiple scans of the same per-
son result in meshes that are more similar than those of any
of the other subjects then it is likely that the fitting process
and the resulting model can be used for recognition pur-
poses.

In addition, normalisation can be applied to improve the
minimalism in the constructed model. Normalisation in-
volves aligning registered head models with one another so
they can be expressed by a minimal subspace. This is based
on the observation that the minimal subspace removes vari-
ation due to differing head poses, rather than differing sur-
face shapes. This is most obvious when a number of identi-
cal meshes at different poses are used to construct a model.
The minimal subspace is then achieved when all the models
are perfectly aligned.



The technique described in this paper is based on the ap-
proach developed by Vlasic et al. [20]. By using this general
non-linear optimisation framework, constraints can easily
be adapted and incorporated without a major change in the
underlying algorithm. The details of this technique and its
evaluation are outlined in the next section.

4. Technique
4.1. Training data

Where possible, it is desirable to use existing datasets
as a source of representative 3D scans. One of the largest
datasets is that provided for the Face Recognition Grand
Challenge [18]. This data is in the form of front facing
range data and colour values. The range data is estimated to
be accurate to within 0.4 mm. As the images are front fac-
ing, however, the ear data detail is restricted. A smaller, but
more relevant source is the Notre Dame Biometric Database
J [21]. This dataset was obtained with the same sensor as
the FRGC data and was designed specifically for ear recog-
nition. It contains a number of profile head images and has
been used to evaluate various existing 3D ear recognition
algorithms.

The original work by Blanz and Vetter used complete
head scans with minimal noise and uniform lighting. As a
result, they could perform an optic flow calculation based
on the surface appearance. However, the Notre Dame data
is less constrained and less complete. In particular, it does
not cover the entire head surface and is recorded with vary-
ing poses and lighting conditions. This makes an optic flow
calculation less reliable. More recent work, such as that of
Allen et al. [2], has instead focused on deforming a generic
base mesh to align it with the range data. The aligned mesh
parameterises the range data and registers the samples. This
is the framework that has been used in the approach de-
scribed here.

4.2. Preprocessing

The scans used by Blanz and Vetter were preprocessed
manually to remove hair and provide an initial head align-
ment. They also made their subjects wear caps to minimise
hair occlusion. Allen et al. also used caps [2]. In addition,
they marked regions of the base mesh as being scanned in-
accurately. These points then had no influence on the fit-
ting process. The range scan data used in this paper only
covers a part of the head volume. In addition, the ear re-
gions contain significant self-occlusion. General hole fill-
ing algorithms have been developed that could complete
these scans [12]. However, the internal complexity of the
ear is likely to produce incorrect results as these algorithms
make smoothness and convexity assumptions that are not
valid for an ear shape. For this reason, the mesh registration
and model construction steps have been designed to work

Figure 5. Left: A range scan of the ear Right: A tilted view reveal-
ing inaccurate mesh regions
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Figure 6. A flow chart showing the classification algorithm

with partial data. The Notre Dame data contain partial oc-
clusions as well as noise generated by the range scanning
process. This is particularly noticeable near the Intertragic
Notch where there is a sudden change in depth. This region
is circled within Figure 5.

To address these issues, the model construction process
has been adapted to be robust to both occlusion and noise.
This is achieved by labelling parts of the mesh as invalid.
These invalid regions then do not contribute to the fitting
process. The labelling process is performed automatically
using a classifier trained on 30 manually labelled images.
Figure 6 shows a flow chart summarising this process.

To classify the surface, the model was first aligned and
deformed using a set of labelled feature points. The range
scan was then given an approximate registration by calculat-
ing the closest mesh surface points to range scan pixels. Us-
ing this registration each point on the mesh surface was as-
signed a two dimensional uv location. This uvmap of points
was then split into a number of overlapping regions. Each
region was used to train a separate classifier using the Spin
images of each pixel of the manually labelled examples.
The classifier approximates the space of positive and nega-
tive samples with a pair of Gaussian models. These models
are then used to estimate the class of each training sample,
with the closer model being used as an estimate of valid-
ity. The values that are incorrectly estimated by this pro-
cess are grouped into sets of false positive and false negative



Figure 7. The location of the manually identified feature points

samples. Each of these samples is used to calculate Gaus-
sian models representing their regions. Within each region
memory efficient kdtrees are constructed for classification.
These kdtrees are then used to evaluate the k nearest neigh-
bours’ estimate of each region. In this way the majority
of potential range samples are classified with the efficiency
of a simple Gaussian classifier whilst still maintaining the
accuracy of a detailed decision boundary between classes.
Once classified, each overlapping region contributes votes
to the validity of its pixels. The estimate with the most votes
is returned as the classification. In cases where the votes are
equal a negative classification is returned.

The classification accuracy is analysed in the evaluation
section. This classifier is straightforward to implement and
has the added advantage that it can be constructed efficiently
for large datasets.

4.3. Feature points

Similar to existing work, the base mesh is initialised us-
ing manually placed feature points, as indicated in Figure 7.
These points were selected through experimentation to ad-
dress visible errors in the fitting of a training sample set
whilst minimising the number of required feature points.

4.4. Initial registration

Using the 3D position of the marked feature points, the
Procrustes algorithm is used to calculate the least-squared
error rigid transformation between the base mesh feature
points and those in the range scan (Fig. 8). Once initialised
a more precise fit is obtained.

4.5. Optimisation based fitting

The fitting optimisation problem can be formulated in a
number of different ways. In all cases, however, the goal is

Figure 8. Image of least squared rigid registration of base mesh to
feature points

to define the optimisation such that when the error values
are minimised the resulting registration will lead to an opti-
mal model. In addition, the ideal error values are those that
smoothly and monotonically decrease towards a solution.
Under these conditions, existing non-linear least squares
based optimisations can be used to find a solution. Also, to
obtain these results efficiently, it is desirable for the prob-
lem to be expressed with parameters that each influence a
small number of error values. This will result in zero values
for most elements of the matrices of the optimisation prob-
lem. As a result, efficient sparse variants of linear algebra
methods can be used.

The challenge with morphable model construction is that
it is not obvious how best to define the problem so that a
minimal value corresponds to an optimal result. However,
consistent with existing work, the technique described here
minimises the following properties:

Distance to Feature Points: The features points are la-
belled on the range image by selecting the range point that
most closely represents the feature. The error is a three di-
mensional value representing the relative displacements of
the Mesh features in the X, Y and Z directions. The feature
points are defined on the mesh as points on the triangles
of the surface of the mesh. The movement of the vertices
of the triangle are then the only parameters that influence
these error values.

Smooth Deformation: In the work of Allen et al. [2]
and Vlasic et al. [20] this error is formulated by associat-
ing a homogeneous transformation matrix with each vertex
of the mesh to be aligned. Smoothness is then maintained
by minimising the Frobenius norm between the matrices of
connected vertices, where connection is determined by the
edges of the mesh. This causes a preference for regions
of consistent local affine transformation, namely rotation,
scaling and shearing. These operations maintain the surface
continuity and preserve local detail, resulting in a smooth
deformation. In this way the parameters of the fitting pro-
cess are the elements of the matrices of each vertex.

Alignment of Mesh Surface to Range Points: Each valid
range point has the closest mesh surface point estimated.
These are parameterised using barycentric coordinates of
the closest triangle. Each point places a constraint on the



three vertices defining the triangle. This is in contrast to
existing work which uses the distance between mesh ver-
tices and their closest range points as an error term. The
approach proposed here enables a more accurate alignment
of any given resolution of mesh.

Optimisation Algorithm: Using the constraints defined
in the preceding paragraphs the optimisation algorithm can
be constructed. The constraints have a large number of
parameters. In addition, they have a non-linear effect on
their error values. These constraints can be solved using
existing non-linear optimisation algorithms. For general
smooth problems, such as these, one of the most efficient
is the Levenberg-Marquart optimisation algorithm [16] for-
mulated to take advantage of sparse constraints.

At each iteration of the Levenberg-Marquart optimisa-
tion, the error values associated with the distance of the
mesh surface to the range points are sorted and the largest
1% of the errors are estimated to be false positives in the
surface classification process. These errors and their asso-
ciated constraints are then excluded from the optimisation.
The percentage of constraints excluded has been estimated
manually to achieve the best balance between excluding
misclassified surface constraints and using the maximum
amount of information to register the mesh accurately.

4.6. Data normalisation

Once a number of range images have been registered,
the model can be created. This involves calculating the
mean and principal components of the shape. However,
the range meshes may contain variations due to the pose
of the subjects when they were recorded. These variations
are partially addressed through the initialisation using fea-
ture points but may not represent the optimal normalisation
necessary to construct a minimal model. To address this
problem, models are normalised using the Procrustes trans-
form.

An added complication is that fitted meshes are only
valid for part of the surface due to noise and occlusion of
the range data. In this case a valid subset of the data is
used for normalisation. To address this issue each fitted
mesh is registered to the original base model shape using
the vertices that were constrained by the valid range data.
The position of the remaining vertices are then estimated
using the smoothness constraints in Section 4.5. This cre-
ates a smooth head model with no visible artefacts and ex-
ploits the implicit anatomical information contained within
the base mesh. As all of the head samples cover a similar
surface region this normalised head shape remains similar
between multiple scans of the same subject. This allows a
direct PCA algorithm to be used to construct the model. If
this were not the case it would be necessary to use a PCA
variant that operated with partial data, such as Probabilistic
PCA [19].

The percentage of the head surface
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Figure 9. Graph showing the percentage of the head region that
can be classified within a given error range

5. Evaluation

The work here builds on existing approaches by examin-
ing a number of metrics for determining the quality of the
registration and the resulting model. The model has been
constructed using 160 training images taken from the Notre
Dame Biometric Database J [21].

5.1. Automated classification accuracy

To evaluate the accuracy of the noise and occlusion clas-
sifiers, ten-fold cross validation was applied to 30 hand-
labelled training samples. Each region’s accuracy was cal-
culated using 10-fold cross validation. The distribution of
accuracies can be seen in Figure 9 where the percentage of
regions within a given error range is identified. Over half
of the head surface is either not visible within the training
set or consists exclusively of skin or occluder samples. The
majority of the remaining regions have been correctly clas-
sified, but there is still a significant number of misclassi-
fications. This is compensated for to some extent by the
robust fitting process but still contributes error to the result-
ing model. It is likely that additional information, such as
surface colour, will further improve these results.

5.2. Fitting consistency

The fitting consistency evaluates the uniqueness of each
registration by comparing the similarity of meshes produced
when two range images of the same person are fitted in-
dependently. This measure is calculated as the average
distance between vertices of triangles that have been con-
strained by both range images. To compensate for vari-
ations in the pose of heads in each scan, the meshes are
normalised to the base mesh using the Procrustes transform
applied to the shared vertices. Figure 10 shows the relative
distances between the closest registered head and the next
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Figure 11. Two examples of registered head models

closest nine scans. For all 160 samples within the training
set, the closest head is the scan of the same person taken at
a later date. The significant difference between the closest
and the other scans indicates that the registration process is
effective in extracting a consistent shape that can be used
for recognition. Examples of these registrations can be seen
in Figure 11.

5.3. Model metrics

The model has been evaluated using the criteria of cov-
erage and minimalism as defined in Section 3. The results
are:

Coverage: this is measured using a ten-fold cross valida-
tion technique, implemented by excluding a set of training
images from the model construction process and then mea-
suring the accuracy with which the fitted images can be re-
constructed using the model. This is evaluated by projecting
the fitted meshes into the space of the model and measuring
the L2-norm of the difference in vertex positions between
the fitted meshes and their representation using the model.
The results can be seen in Figure 12.

Minimalism: this has been estimated using the square
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Figure 13. Graph of minimalism

root of the sum of the square of the eigenvalues of each
model. This metric can be formalised as

minimalism(e) =

where e represents the model’s eigenvalues.

As with coverage, the error in these values has been cal-
culated using ten-fold cross validation. Figure 13 shows
these results.

The graph of coverage shows a much faster rate of con-
vergence than that for minimalism. This can be explained
by errors within the registration process increasing the min-
imalism of the model without significantly improving its
coverage.

6. Conclusions

This work demonstrates the first complete head mor-
phable model explicitly designed to recreate both the face



and ear shape accurately. In addition, it improves the ro-
bustness of existing morphable model construction tech-
niques by using classifiers trained to detect occluding and
high noise areas. It also provides a framework for the evalu-
ation of morphable models and uses this framework to high-
light the advantages and sensitivities of the proposed tech-
nique. The evaluation shows that the described technique
is extracting a consistent shape associated with the identity
of the individual and that within the error margins of the
registration process the 160 training samples are close to
achieving convergence of the model.

Further work in this area will involve the use of the eval-
uation framework to examine other morphable model tech-
niques, such as the correlated correspondence algorithm of
Anguelov et al. [4] or the non-rigid iterated closest point
algorithm developed by Amberg et al. [3] In addition, this
framework can be expanded to evaluate the utility of the
model in inferring identity from partial data such as detected
features within 2D images.

There is also scope for creating an improved surface clas-
sifier, through additional distance constraints, and provid-
ing improved speed and precision using support vector ma-
chines or boosting techniques. If this could be combined
with an automatic feature point detection process, fully au-
tomated model construction from relatively unconstrained
training data would be possible. This offers the potential for
more widespread application of morphable models within
object recognition.
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