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Abstract
A meaningful image hierarchy can ease the human ef-

fort in organizing thousands and millions of pictures (e.g.,
personal albums), and help to improve performance of end
tasks such as image annotation and classification. Previ-
ous work has focused on using either low-level image fea-
tures or textual tags to build image hierarchies, resulting
in limited success in their general usage. In this paper, we
propose a method to automatically discover the “semantivi-
sual” image hierarchy by incorporating both image and tag
information. This hierarchy encodes a general-to-specific
image relationship. We pay particular attention to quanti-
fying the effectiveness of the learned hierarchy, as well as
comparing our method with others in the end-task applica-
tions. Our experiments show that humans find our seman-
tivisual image hierarchy more effective than those solely
based on texts or low-level visual features. And using the
constructed image hierarchy as a knowledge ontology, our
algorithm can perform challenging image classification and
annotation tasks more accurately.

1. Introduction

The growing popularity of digital cameras allows us to
easily capture and share meaningful moments in our lives,
resulting in giga-bytes of digital images stored in our hard-
drives or uploaded onto the Internet. While it is enjoyable
to take, view and share pictures, it is tedious to organize
them. Vision technology should offer intelligent tools to do
this task automatically.

Hierarchies are a natural way to organize concepts and
data [5]. For images, a meaningful image hierarchy can
make image organization, browsing and searching more
convenient and effective (Fig. 1). Furthermore, good image
hierarchies can serve as knowledge ontology for end tasks
such as image retrieval, annotation or classification.

Two types of hierarchies have recently been explored in
computer vision: language-based hierarchy and low-level
visual feature based hierarchy. Pure language-based lexi-
con taxonomies, such as WordNet [28, 31], have been used
in vision and multimedia communities for tasks such as im-
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Figure 1. Traditional ways of organizing and browsing digital im-
ages include using dates or filenames, which can be a problem for
large sets of images. Images organized by meaningful hierarchy
could be more useful.

age retrieval [19, 20, 13] and object recognition [26, 32].
While these hierarchies are useful to guide the meaningful
organization of images, they ignore important visual infor-
mation that connects images together. For example, con-
cepts such as snowy mountains and a skiing activity are far
from each other on the WordNet hierarchy, while visually
they are close. On the other hand, a number of purely vi-
sual feature based hierarchies have also been explored re-
cently [16, 27, 30, 1, 4]. They are motivated by the observa-
tion that the organization of the image world does not neces-
sarily follow a language hierarchy. Instead, visually similar
objects and concepts (e.g. shark and whale) should be close
neighbors on an image hierarchy, a useful property for tasks
such as image classification. But visual hierarchies are dif-
ficult to interpret – none of the work has a quantitatively
evaluated of the effectiveness of the hierarchies directly. It
is also not clear how useful a purely visual hierarchy is.

Motivated by having a more meaningful image hierarchy
useful for end-tasks such as image annotation and classifi-
cation, we propose a method to construct a semantivisual
hierarchy, which is built upon both semantic and visual in-
formation related to images. Specifically, we make the fol-
lowing contributions:

1. Given a set of images and their tags, our algorithm au-
tomatically constructs a hierarchy that organizes im-



ages in a general-to-specific structure.
2. Our quantitative evaluation by human subjects shows

that our semantivisual image hierarchy is more mean-
ingful and accurate than other hierarchies.

3. Serving as a knowledge ontology, our image hierarchy
performs better on image classification and annotation.

2. Related Work

Building the Image Hierarchy. Several methods [1, 4,
16, 27, 30] have been developed for building image hierar-
chies from image features. Most of them assess the quality
of the hierarchies by using end tasks such as classification,
and there is little discussion on how to interpret the hierar-
chies1. We emphasize an automatic construction of mean-
ingful image hierarchies and quantitative evaluations of the
constructed hierarchy.
Using the Image Hierarchy. A meaningful image hi-
erarchy can be useful for several end-tasks such as clas-
sification, annotation, searching and indexing. In object
recognition, using WordNet [28] has led to promising re-
sults [26, 32]. Here, we focus on exploiting the image hier-
archy for three image related tasks: classification (e.g., “Is
this a wedding picture?”), annotation (e.g., a picture of wa-
ter, sky, boat, and sun) and hierarchical annotation (e.g., a
picture described by photo→ event → wedding → gown).

Most relevant to our work are those methods matching
pictures with words [3, 14, 9, 6, 33, 24]. These models build
upon the idea of associating latent topics [17, 7, 5] related
to both the visual features and words. Drawing inspiration
from this work, our paper differs by exploiting a image hi-
erarchy as a knowledge ontology to perform image anno-
tation and classification. We are able to offer hierarchical
annotations of images that previous work cannot, making
our algorithm more useful for real world applications like
album organization.
Album Organization in Multi-media Research. Some
previous work has been done in the multimedia commu-
nity for album organization [8, 18, 11]. These algorithms
treat album organization as an annotation problem. Here,
we build a general semantivisual image hierarchy. Image
annotation is just one application of our work.

3. Building the Semantivisual Image Hierarchy
Our research in building such a meaningful image hier-

archy considers the following issues:

• Images should cluster meaningfully at all levels of the
hierarchy. Tags related to the images should be cor-
rectly assigned to each node of the hierarchy;

1[30] has provided some interesting insights of their hierarchy by la-
beling the nodes with class names of human segmented image regions [34]
but without any quantitative evaluations.
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Figure 2. Schematic illustration of associating a training image in
the semantivisual hierarchical model (left) and assigning a test im-
age to a node on a given path of the hierarchy (right). The hierar-
chical model is summarized in variable T , where only one path is
explicitly drawn from C1 to Cn. Left of the model: Two train-
ing images and their Flickr tags are shown. Each image is further
decomposed into regions. Each region is characterized by the fea-
tures demonstrated in the bounding box on the left. A region is
assigned to a node that best depicts its semantic meaning. Right
of the model: A query image is assigned to a path based on the
distribution of the concepts it contains. To further visualize the
image on a particular node of the path, we choose the node that
corresponds to the dominating region concepts in the image.

• Our algorithm organizes the images in a general-to-
specific relationship which is deliberately less strict
compared to formal linguistic relations;

• It is unclear what a semantically meaningful im-
age hierarchy should look like in either cognitive re-
search [29] or computer vision. Indeed formalizing
such relations would be a study of its own. We fol-
low a common wisdom - the effectiveness of the con-
structed image hierarchy is quantitatively evaluated by
both human subjects and end tasks.

Sec. 3.1 details the model. Sec. 3.2 sketches out the learn-
ing algorithm. Sec. 3.3 visualizes our image hierarchy and
presents the quantitative evaluations by human subjects.

3.1. A Hierarchical Model for both Image and Text

We use a multi-modal model to represent images and
textual tags on the semantivisual hierarchy (Fig.2). Each
image is decomposed into a set of over-segmented regions
R = [R1, . . . , Rr, . . . , RN ], and each of the N regions is
characterized by four appearance features – color, texture,
location and quantized SIFT [25] histogram of the small
patches within each region. An image and its tags W =

[W1, . . . , Ww, . . . , WM ] form an image-text pair. M is the
number of distinct tags for this image. Each image is asso-
ciated with a path of the hierarchy, where the image regions
can be assigned to different nodes of the path, depending
on which visual concept the region depicts. For example, in
the “photo→zoo→parrot→beak” path, a foliage region of a
bird photo is likely to be associated with the more general
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Figure 3. The graphical model (Left) and the notations of the variables(Right).

“zoo” node, whereas a region containing the bird beak is
likely to be assigned to the leaf node “beak”.

Fig.3 (Left) shows the graphical model. Each
image-text pair (R,W ) is assigned to a path Cc =

[Cc1 , . . . , Ccl , . . . , CcL ] in the infinite image and text hier-
archy T = [C1, . . . , Cc, . . . , C∞]. Here l indicates the level
in the path, with L the maximum. The path is sampled from
an nCRP(γ) (nested Chinese Restaurant Process)[5], where
γ is a parameter controlling the branching probability.

Let d be the index of an image-text pair, with Nd re-
gions, Md tags in this image-text pair, and NF = 4 types of
region descriptors indexed by j. The joint distribution of all
random variables (hidden and observed) is

p(C, θ, Z, R, S, W , β, ϕ|α, φ, λ) =
∏

c∈T

∏4
j=1 p(βj,c|φj)p(ϕc|λ)

∏D
d=1 p(Cd|C1:d−1)p(θd|α)

∏Nd
r=1 p(Zd,r|θd)

∏4
j=1 p(Rd,r,j |Cd, Zd,r, β)

∏Md
w=1 p(Sd,w|Nd)p(Ww|Cd, Zd, Sd,w, ϕ), (1)

where λ, φj , α are Dirichlet priors for the mixture propor-
tion of concepts θ, region appearances given concept β, and
words given concept ϕ. The conditional distribution of Cd

given C1:d−1, p(Cd|C1:d−1), follows the nested Chinese
restaurant process (nCRP).
Remarks. The image part of our model is adapted from the
nCRP [5], which was later applied in vision in [4, 30]. We
improve this representation by coupling images and their
tags through a correspondence model. Inspired by [6], we
use the coupling variable S to associate the image regions
and the tags. In our model, the correspondence of tags and
image regions occurs at the nodes in the hierarchy. This
differentiates our work from [1, 4, 16, 27, 30]. Both tex-
tual and visual information serve as bottom up information
to estimation of the hierarchy. As shown in Fig.5, by com-
bining the tag information, the constructed image hierarchy
becomes meaningful, since textual information are often
more descriptive. A comparison between our model and [5]
demonstrates that our visual-textual representation is more
effective than the language-based representation (Fig.6).

3.2. Learning the Semantivisual Image Hierarchy

Given a set of unorganized images and user tags associ-
ated with them (e.g. Flickr images and user tags), the goal
of learning is to estimate an image hierarchy in which im-
ages and tags of the same concept can be associated with
each other via learning of the concept index Z and the cou-
pling variable S. In addition, their location in the hierarchy
is estimated by learning the concept index Z and the path
C. This involves computing the posterior distribution of the
hidden variables given the observations. However, this pos-
terior is intractable to compute in our model. We use an
approximation algorithm i.e. Gibbs sampling [15]. Gibbs
sampling defines a Markov chain whose stationary distribu-
tion is the posterior of interest. The chain is defined by it-
eratively drawing each hidden variable from its conditional
distribution given the other hidden variables and observa-
tions. We use a collapsed version of Gibbs sampling algo-
rithm by integrating out β, ϕ and θ. It samples the concept
index Z, the coupling variable S and the path C.
Sampling concept index Z. The conditional distribution
of a concept index of a particular region depends on 1) the
likelihood of the region appearance, 2) the likelihood of tags
associated with this region and 3) the concept indices of the
other regions in the same image-text pair. Since the path
assignment for the image-text pair is fixed at this step, the
resampled concept index is restricted to this path. For the
rth region of dth image-text pair, let Sr = {w : Sd,w = r}
be the set of tags associated with this region r,

p(Zd,r = l|rest) ∝
p(Zd,r = l|Z−r

d , α)
∏4

j=1 p(Rd,r,j |R−dr,Cd, Z, φj)

p({Wd,w : w ∈ Sr}|W−dw:w∈Sr ,Cd, Zd,r, λ) =

∏4
j=1

n−dr
Cd,l,j,Rd,r,j

+φj

n−dr
Cd,l,j,·+Vjφj

×∏
w∈Sr

n−dw
Cd,l,Wd,w

+λ

n−dw
Cd,l,·+Uλ

× n−r
d,l

+α

n−r
d,·+Lα

,

where n−r
d,l is the number of regions in the current image

assigned to level l except the rth region, n−dr
Cd,l,j,Rd,r,j

is
the number of regions of type j, index Rd,r,j assigned to



node Cd,l except the rth region in image-text pair d, and
n−dw

Cd,l,Wd,w
is the number of tags of index Wd,w assigned

to node Cd,l except the wth region in image-text pair d.
Marginal counts are represented with dots.
Sampling coupling variable S. Coupling variable S cou-
ples the image regions with the tags. Since it has a uniform
prior over the number of regions, its conditional distribu-
tion solely depends on the likelihood of the tag, i.e. how
frequently one specific tag is assigned to a node through an
image region. Note that the path assignment is still fixed at
this step. The conditional probability is

p(Sd,w = r|rest) ∝ p(Wd,w|Sd,w = r, S−dw, W−dw, Zd, Cd, λ)

=
n−dw

Cd,Zd,r
,Wd,w

+λ

n−dw
Cd,Zd,r

,·+Uλ
.

Sampling path C. The path assignment of a new image-
text pair is influenced by the previous arrangement of the
hierarchy and the likelihood of the image-text pair:

p(Cd|rest) ∝ p(Rd, Wd|R−d, W−d, Z, C, S)p(Cd|C−d),

where p(Cd|C−d) is the prior probability induced by nCRP
and p(Rd,Wd|R−d,W−d,Z,C,S) is the likelihood,

p(Rd, Wd|R−d, W−d, Z, C, S) ∝ ∏Md
w=1

n−d
Cd,Zd,Sd,w

,Wd,w
+λ

n−d
Cd,Zd,Sd,w

,·+Uλ
×

∏L
l=1

∏4
j=1

(
Γ(n−d

Cd,l,j,·+Vjφj)

∏
v Γ(n−d

Cd,l,j,v
+φj)

×
∏

v Γ(n−d
Cd,l,j,v

+nd
Cd,l,j,v+φj)

Γ(n−d
Cd,l,j,·++nd

Cd,l,j,·+Vjφj)

)
.

The Gibbs sampling algorithm samples the hidden vari-
ables iteratively given the conditional distributions. Sam-
ples are collected after the burn in.

3.3. A Semantivisual Image Hierarchy

We use a set of 4, 000 user uploaded images and 538
unique user tags2 across 40 image classes from Flickr3 to
construct a semantivisual image hierarchy. The average
number of tags for each image is 4. As Fig. 4 shows, pho-
tos from real-world sources are very challenging to aver-
age, even for human. We detail in this section how we con-
duct our evaluation and how effective our image hierarchy
is compared to other hierarchies.
Implementation. Each image is divided into small patches
of 10× 10 pixels, as well as a collection of over-segmented
regions based on color, brightness and texture homogeneity
[2]. Each patch is assigned to a codeword in a codebook of
500 visual words obtained by applying K-means clustering
to the 128-dim SIFT features extracted from 30 randomly

2Incorrectly spelled words and adjectives are omitted.
3The image classes are: animal, bride, building, cake, child, christmas,

church, city, clouds, dessert, dinner, flower, spring, friends, fruit, green,
high-school, calcio, italy, europe, london, love, nature, landscape, macro,
paris, party, present, sea, sun, sky, seagull, soccer, reflection, sushi, vaca-
tion, trip, water, silhouette, and wife.

Figure 4. Example images from each of the 40 Flickr classes.

chosen images per class. Similarly, we obtain our 4 region
codebooks of size 100, 50, 100 and 100 for color (HSV his-
togram), location (vector quantization of the region center,
top and bottom position), texture (normalized texton [22]
histogram ) and normalized SIFT histogram respectively.
To speed up learning, we initialize the levels in a path by as-
signing the regions with high tf-idf (term frequency-inverse
document frequency) scores in one of the visual feature to
the leaf node and those with low tf-idf scores to the root
node. It takes about 2 hours to learn the hierarchy from
4, 000 images and 30 minutes for test on 4, 000 images on a
PC with an Intel 2.66GHz CPU.
Visualizing the semantivisual hierarchy. For all 4, 000
images and 538 tags, we obtain a hierarchy of 121 nodes, 4
levels and 53 paths. Fig. 5 visualizes in more details differ-
ent parts the hierarchy. Our observations are as follows.

• The general-to-specific relationship is observed in
most parts of the hierarchy. The root node contains
images that are difficult to be named, but fall under the
general category of “photo”. Directly under the root,
images are organized into “architecture”, “garden”,
“event”, “food”, etc. Examine the leftmost path of
the “event” subtree. This path is about photos taken at
wedding events. The leaf node of this path is “wedding
gown”, a child of “wedding” and a sister of “wedding
flower”. This organization can be useful for brows-
ing large photo libraries. The users no longer have to
remember different dates of various wedding events.
Instead, they can quickly access the wedding concept
and its related classes.

• We have argued that purely visual information some-
times cannot provide meaningful image hierarchy. As
demonstrated by the “event” subtree, it is difficult to
imagine that pictures of “dancing at a birthday party”
can be a sister node to “birthday cake” based only on
low-level image features. Our semantivisual hierarchy
offers a connection between these two groups via the
parent of “birthday.”

• Similarly, a purely language-based hierarchy would be
likely to miss close connections such as “tower” and
“business district” (in the “architecture” subtree). In
WordNet, “tower” and “business district” have to tra-
verse 15 inherited parent nodes to reach each other.
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Figure 6. Evaluation of the hierarchy. Top: “How meaningful is
the path” experiment. Top Left: The AMT users are provided
with a list of words. The users need to identify the words that are
not related to the image to the left. Top Right: Quantitative re-
sults of our hierarchy and nCRP[5]. Our hierarchy performs the
best by incorporating the visual information associated to the tags.
Bottom: “How meaningful is the hierarchy” experiment. Bottom
Left: The AMT users are provided with all permutations of candi-
date words from the path corresponding to the image 4. The users
need to identify a choice that correctly represents the hierarchical
structure. Bottom Right: Quantitative results of our hierarchy,
nCRP [5] and Flickr. All three algorithms use exactly the same tag
input to construct the hierarchy.

• Our hierarchy illustrates that images assigned to each
node are diverse. It is easy to predict that for nodes
at the higher levels, the visual appearance of images
are diverse because the semantic meaning of the nodes
is general. For example, “food” can be interpreted as
“sushi”, “cake”, or “dinner”. As one traverses down
along a path, concepts represented in the nodes be-
come more specific. However even at the bottom lev-
els such as “sugar” and “cheese”, the images are di-
verse. This is because of the tightly coupled clustering
of images using both the visual and textual informa-
tion. A purely visual-feature based algorithm would
not be able to achieve this.

A quantitative evaluation of image hierarchies. Eval-
uating the effectiveness of an image hierarchy is not an
easy task. What makes a meaningful image hierarchy? We
consider two criteria for evaluation: 1) good clustering of
images that share similar concepts, i.e., images along the
same path, should be more or less annotated with similar
tags; 2) and good hierarchical structure given a path, i.e.,
images and their associated tags at different levels of the
path, should demonstrate good general-to-specific relation-
ships. To measure if an image on a path associates well with
the set of concepts depicted by this path, we present human
subjects trials in which each image and six word concepts
are presented (Fig. 6). Inspired by [10], we present five of
the six tag concepts associated with the path of the image
(learned by the model) and one randomly chosen tag con-
cept that is unlikely to be in the path. The subject is asked
to select which set of tags are unrelated to the image (Fig. 6
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Figure 7. Results of the hierarchical annotation experiment. Three
sample images and their hierarchical annotations by our algorithm
and the original Flickr tags are shown. The table presents quantita-
tive comparison on our hierarchy and nCRP[5]. The performance
is measured by the modified Damerau-Levenshtein distance be-
tween the proposed hierarchical annotation by each algorithm and
the human subjects’ result.

(top left)). In the ideal case, if the image path is effective,
then it is more likely that the randomly chosen word would
be the only irrelevant concept to the image. An Amazon
Mechanical Turk (AMT) experiment is set up for this evalu-
ation (see supplementary material for details). We compare
our hierarchy with one that is obtained by using only text
clustering [5]. Fig. 6 (top right) shows that our hierarchy is
more effective than the purely text-based method.

The second metric measures how good the hierarchical
relations are in our image hierarchy. Again we use AMT.
We break down the evaluation by path. For each trial, a
path of L levels is selected from the hierarchy. The (L−1)!
permutations of the nodes in the path4 are presented to a
human subject, depicted by the text concepts (see Fig. 6
(bottom left)). Subjects are instructed to select the path
that best illustrates a general-to-specific hierarchical rela-
tion. We compare the human selected path (as ground-truth)
with the model generated path using modified Damerau-
Levenshtein distance (see supplementary material for more
details). We compare our hierarchy with two purely text-
based hierarchies including one obtained by [5] and the de-
fault by Flickr. Fig. 6 (bottom right) shows that our hierar-
chy agrees more with human ground-truth than the others.

4. Using the Semantivisual Image Hierarchy
A good image hierarchy can serve as a knowledge on-

tology for difficult recognition tasks such as image classi-
fication and annotation. In the following experiments, we
choose three tasks to show the applications of the hierarchy.

4.1. Hierarchical Annotation of Images
Given our learned image ontology, we can propose a

hierarchical annotation of an unlabeled query image, such
as photo→zoo→bird→flamingo. For an unannotated im-
age I with the posterior path assignments represented as
SC = {C1

I ,C2
I , · · · ,C

|SC |
I }, the probability of tag W for

4The root node is kept intact because “photo” is always assigned to it.
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level l is estimated by averaging the paths in SC ,

p(W |I, level = l) ≈ (1/|SC |)
∑|SC |

i=1 p(W |ϕ̃i, C
i
I(l)),

where ϕ̃i is the MAP (maximum a posterior) estimate of
tag concept distributions from the training data given the
ith sample, Ci

I(l) specifies the node in path Ci
I at level l

and p(W |ϕ̃, Ci
I(l)) indicates the probability of tag W given

node Ci
I(l) and ϕ̃, i.e. ϕ̃Ci

I(l),W .

We show in Fig. 7 examples of the hierarchical image
annotation results and the accuracy for 4000 testing images
evaluated by using our image hierarchy and the nCRP algo-
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an AMT evaluation task.

rithm [5]5. Our experiment shows that our semantivisual
hierarchical model outperforms the text-only model [5].
There are two reasons. First, [5] cannot perform well on
sparse tag words (about 4 tags per image in our dataset).
Its proposed hierarchy has many words assigned to the root
node, resulting in very few paths. This hierarchy cannot
demonstrate the real structure of the image-text data. Sec-
ond, a simple clustering algorithm such as KNN cannot find
a good association between the test images and the training
images in our challenging dataset with large visual diver-
sity. In contrast, our model learns an accurate association
of visual and text data simultaneously.

4.2. Image Labeling
Serving as an image and text knowledge ontology, our

semantivisual hierarchy and model can be used for im-
age labeling without a hierarchical relation. This is the
image annotation task. For a test image I and its pos-
terior samples SC = {C1

I ,C2
I , · · · ,C

|Sc|
I } and SZ =

{Z1
I ,Z2

I , · · · ,Z
|SZ |
I } (|SC | = |SZ |). We estimate the prob-

ability of tag W given the image I as,

p(W |I) ≈ (1/|SC |)
∑|SC |

i=1

∑L
l=1 p(W |ϕ̃i, C

i
I(l))p(l|Zi

I),

which sums over all the region assignments over all levels.
Here p(l|Zi

I) is the empirical distribution over the levels
for image I . In this setting, the most related words will be
proposed regardless of which level they are associated to.

Quantitatively, we compare our method with two other
image annotation methods: the Corr-LDA [6] and a widely
known CBIR method Alipr [23]. We collect the top 5 pre-
dicted words of each image by each algorithm and present
them to the AMT users. The users then identify if the words
are related to the images in a similar fashion as Fig. 6(top).

5Note that the original form of [5] is only designed to handle textual
data. For comparison purposes, we allow it to annotate images by applying
the KNN algorithm to associate the testing images with the training images
and represent the hierarchical annotation of the test image by using the tag
path of the top 100 training images.
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Figure 9. Comparison of classification results. Top Left: Over-
all performance. Confusion table for the 40-way Flickr images
classification. Rows represent the models for each class while the
columns represent the ground truth classes. Top Right: Compar-
ison with different models. Percentage on each bar represents
the average scene classification performance. Corr-LDA also has
the same tag input as ours. Bottom: classification example. Ex-
ample images that our algorithm correctly classified but all other
algorithms misclassified.

Fig. 8 shows that our model outperforms Alipr and Corr-
LDA according to the AMT user evaluation. As shown
in Fig. 8(first image column), Alipr tries to propose words
such as “landscape” and “photo” which are generally ap-
plicable for all images. Corr-LDA provides relatively more
related annotation such as “flower” and “garden” based on
the co-occurrence of the image appearance and the tags
among the training images. Our algorithm provides both
general and specific descriptions, e.g. “wedding”, “flower”
and “gown”. This is largely because our model captures the
hierarchical structure of images and tags.

4.3. Image Classification

Finally, we evaluate our model on a highly challenging
image classification task. Another 4, 000 images are held
out as test images from the 40 classes. Each image is rep-
resented by the estimated concept distribution over the en-
tire hierarchy. If there are K nodes in the learned hierar-
chy, the dimension of the distribution is K. Only nodes that
are associated to the image have nonzero values in the dis-
tribution. We calculate the χ2-distances between the con-
cept distribution of the test images and those of the training
images. The KNN algorithm is then applied to obtain the
class label. Fig. 9 shows the confusion table of classifica-
tion achieved by our algorithm. In the bar plot in Fig.9, we
compare our result to spatial pyramid matching (SPM) [21],
SVM [12], Bart et. al. [4], Corr-LDA [6] and LDA [7].

From Fig. 9 (top right), we observe that LDA [7] gives
the lowest classification performance. This shows that a flat



single modality model cannot capture the complex structure
of our challenging dataset. The classification performance
improves by incorporating semantic meaning of the images
in training (Corr-LDA [6]) or a more descriptive hierarchi-
cal representation [4]. By encoding semantic meaning to
the hierarchy, our semantivisual hierarchy delivers a more
descriptive structure, which could be helpful for classifica-
tion. Finally, comparison among our algorithm, SPM and
SVM demonstrates the importance of semantic meaning in
interpreting complicate and noisy real world images such as
“Christmas” or “party” photos.

5. Conclusion
In this paper, we use images and their tags to con-

struct a meaningful hierarchy, termed the semantivisual
hierarchy. The quality of the hierarchy is quantita-
tively evaluated by human subjects. We then use sev-
eral end tasks to illustrate its wide applications. The
dataset, code and supplementary material will be available
at http://vision.stanford.edu/projects/lijiali/CVPR10/.
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