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Abstract

In the field of neuroanatomy, automatic segmentation of
electron microscopy images is becoming one of the main
limiting factors in getting new insights into the functional
structure of the brain. We propose a novel framework for the
segmentation of thin elongated structures like membranes in
a neuroanatomy setting. The probability output of a random
forest classifier is used in a regular cost function, which en-
forces gap completion via perceptual grouping constraints.
The global solution is efficiently found by graph cut opti-
mization. We demonstrate substantial qualitative and quan-
titative improvement over state-of the art segmentations on
two considerably different stacks of ssTEM images as well
as in segmentations of streets in satellite imagery. We
demonstrate that the superior performance of our method
yields fully automatic 3D reconstructions of dendrites from
ssTEM data.

1. Introduction
Neuroanatomists build 3D reconstructions of neuronal

structures and their synaptic connections in order to gain
insight in the functional structure of the brain. The iden-
tification of post synaptic densities is crucial for this task,
and currently electron microscopy is the only imaging tech-
nique which can provide sufficient resolution. Recent ad-
vances in sample preparation and the imaging process make
the acquisition of large data volumes possible [15, 10, 8]. In
contrast to these technological advances for acquisition, the
subsequent imaging work flow required for analyzing these
data still relies heavily on manual labor [11]. Not only does
this very tedious manual intervention by the neuroanatomist
make the process susceptible to errors, it is also the major
bottleneck for automatic evaluation and reconstruction.

To build 3D reconstructions of neuronal tissue based on
transmission electron microscope (TEM) images, the sam-
ple is first embedded into resin, which is subsequently cut

into ultra thin sections of about 50 nm thickness. Each sec-
tion is then recorded with the TEM. The image processing
work flow that follows consists of (i) registering the image
stack, (ii) segmenting structures of interest, and (iii) build-
ing 3D reconstructions out of these segmentations. As den-
drites and axons are surrounded by membranes, a perfect
membrane segmentation allows for a full reconstruction of
the data volume.

Significant progress has been made in recent years on the
front for the registration and warping of serial section TEM
(ssTEM) images from single sections into a single image
volume [4, 14, 18]. However, the automatic segmentation
of ssTEM data is still an unsolved problem. The images
typically show highly textured dense biological structures,
which renders the detection of membranes difficult. Fur-
thermore, variations such as different animal species, sam-
ple preparation, staining protocols e.t.c., can lead to very
different image characteristics (see Figure 4) which poses
an additional challenge for the automatic segmentation.

In order to cope with the data annotation problem, semi-
automatic tools have been developed to speed up manual an-
notation [19, 20, 24, 21]. Recent works in automatic recon-
struction use intracellular staining procedures to simplify
the segmentation task [12, 3, 22]. This approach sacrifices
important anatomical details like dendrite and bouton tex-
tures which are necessary to identify synapses and to build
neural circuit reconstructions. In [13], the authors devel-
oped a method for neuronal circuit 3D reconstructions from
ssTEM images. The authors tackle the membrane segmen-
tation problem by thresholding on linear diffusion filtering,
but this approach is only applicable to unusually high data
quality.

For thin and elongated structures like membranes, graph
cut is well known to have problems with “shrinking bias”.
Current state of the art segmentation methods overcome
this problem by combining overall smoothness with gra-
dient flux, to enhance the segmentation result [23, 5]. In
[24] gradient flux is additionally used to segment the in-
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terior region of a dendrite. But, in images with textured
background, like electron microscopy images, gradient flux
leads to false positive detections, due to the high gradient in
the background.

In this paper, we propose a novel energy term to over-
come the shortcomings of gradient flux for the automatic
segmentation of membranes. We improve the segmentation
of thin elongated structures by enhancing gap completion.
The energy term is regular and thus can be efficiently glob-
ally optimized using max-flow/min-cut computation. The
novel energy framework combines a discriminative model
for membrane appearance learned by a random forest clas-
sifier with perceptual grouping constraints for contour com-
pletion in a single energy minimization framework. The
gap completion term follows the principle of good contin-
uation, which states that elongated structures, which form
a continued visual line should be grouped together. Thus,
the proposed energy term focuses on the main characteris-
tics of membranes as thin elongated structures, which are
biologically given and therefore not influenced by different
sample preparations. We also take information of adjacent
sections into account to support the segmentation of mem-
branes which are not prominent in one image, but better de-
tectable in corresponding regions of nearby sections. This
corresponds to the principle of non accidentalness, which
states that elements should be grouped, if their configura-
tion is unlikely to occur by chance.

The framework is evaluated on two different data sets
of conventional ssTEM images from neuroanatomy. The
image stacks differ not only in the type of animal brain
shown (mammal and insect), but also in the staining pro-
tocols used, leading to very different image characteristics.
On both data sets, the proposed cost function with per-
ceptual grouping constraints outperforms the state-of-the-
art segmentation using gradient flux. These results point
out the robustness of the proposed perceptual grouping con-
straints to different staining protocols and animal types. The
high quality of the membrane segmentations allows for fully
automatic 3D reconstructions of neuronal structures. To
demonstrate the wide applicability of the proposed frame-
work we also provide segmentation results for streets from
satellite imagery.

2. Perceptual grouping constraints via graph
cut

In the graph cut framework each pixel p is mapped to
corresponding labels yp ∈ {0, 1} such that the entire la-
beling y for all pixels minimizes a given energy function
E(y). Typically the energy function E(y) consists of a
summation over the data term Ed(yp) and a smoothness

term Es(yp, yq) over neighboring pixels:

E(y) =
∑
p∈P

Ed(yp) + λ
∑

p∈P,q∈N2(p)

Es(yp, yq), (1)

where P denotes the set of all pixels and N2(p) the set
of all pixels adjacent to a pixel p in the 2D image plane.

As long as Es is regular, i.e. Es(0, 0) + Es(1, 1) ≤
Es(1, 0) + Es(0, 1), the global minimum of E(y) can be
efficiently found by max-flow/min-cut computation [17, 1].
For this purpose, a graph G = (V, E) is defined. The set
of graph nodes V consists of all pixels p ∈ P and two
additional terminal modes s and t which represent fore-
ground and background in the segmentation. The set of
directed edges E connects all pixels p to their neighbors
q ∈ N2(p). Weights are assigned to these edges as spec-
ified by the smoothness term Es(yp, yq). In addition the set
of edges E connects each pixel to the two terminal nodes s
and t with weights specified by Ed(yp). Minimizing E(y)
corresponds to finding the optimal cut C ⊂ E such that no
path exists between the terminal nodes s and t in the graph
Gcut = (V, E − C). The cut is optimal in the sense that the
sum of all edge weights of all edges included in the cut is
minimal.

Often graph cut approaches use a definition of Es which
penalizes for discontinuities in the segmentation for neigh-
bored pixels of similar intensities [5]:

Es(yp, yq) = exp

(
− (xp − xq)2

2σ2
s

)
· δ(yp, yq)
dist(p, q)

, (2)

where xp is the gray value of the image at pixel p and
dist(p, q) takes the distance between neighbored pixels into
account. The Kronecker delta function δ(yp, yq) equals 0 if
yp = yq and 1 otherwise. This ensures that the energy term
is regular.

For the segmentation of thin and elongated structures,
like blood vessels, it is common to use an additional term
Egf (yp) that incorporates the flux of the gradient vector
field into the segmentation. It has been shown that this can
overcome the problem of “smoothing away” thin structures
[23]. Flux is defined according to

F (p) =
∑

q∈N2(p)

< upq, vq >, (3)

where upq is a unit vector oriented from pixel p to the neigh-
boring pixel q ∈ N2(p) and vector vp corresponds to the
gradient vector at pixel p. This term can be seen as the flow
of the gradient vector field through the contour of the seg-
mented region. The corresponding unary potential Egf (yp)
is defined as:

Egf (yp) =

{
max(0, F (p)) for yp = 1

−min(0, F (p)) for yp = 0
(4)



A detailed description on how to define edge weights for
flux in graph cut is given in [16].

In a simple setting, the term Ed(yp) of Equation (1) can
be defined as relying directly on the pixel intensities in the
original gray value image. But, structures in electron mi-
croscopy images are often only recognizable by their tex-
ture in the local context. Therefore, we use the probabilis-
tic output of a random forest classifier [6] trained on anno-
tated data for membrane detection, similar to the approach
in [25, 9]. We use Haar-like features as well as histograms
over context regions to capture a discriminative representa-
tion of the central pixel with little computational cost. To
account for the random forest classifier, we rename the data
term to Erf (yp) throughout the paper.

Taking the details explained above into account, our im-
plementation of the state of the art segmentation method
looks as follows:

E(y) =
∑
p∈P

Erf (yp) + λs
∑
p∈P

,q∈N2(p)

Es(yp, yq)

+λgf
∑
p∈P

Egf (yp).

(5)

Using gradient flux to enhance the segmentation of thin
objects also has a drawback. In textured images the image
gradient is not only very high at the desired segmentation
borders, but also at other image regions with high contrast.
Therefore the gradient flux can cause a large amount of false
positives in the resulting segmentation. In addition we want
to use the output of a trained membrane detector as data
term for the segmentation. Experiments showed that gra-
dient flux and smoothness alone is not sufficient to com-
pensate for weakly detected membranes, as is illustrated in
the following toy data setting. We generate an image, of
a perfect membrane represented as straight black line on a
white background. A weak classifier response is simulated
by fading out a section of the line (Figure 1). Although
the gradient flux and smoothness terms were calculated on
the perfect, non-faded line, they cannot compensate for the
weakErf input. The gradient enhances segmentation of the
rim of the lines, but any attempt to make the segmented re-
gions solid by using the smoothness term Es leads to gaps
in the membranes segmented. This problem is more ag-
gravated on real data, since weak classifier responses often
occur in the case of membranes which appear fuzzy in the
image due to non orthogonal cutting or staining conditions.
In these cases the gradient along the membrane is small and
thus further limits the use of the gradient vector flux in the
segmentation. To overcome this problem we introduce a
novel energy term, that focuses on the principle of good
continuation to close gaps along membranes.

To overcome the shortcomings of gradient flux, we in-

Figure 1. Toy example for membrane segmentation. The good
continuation energy term is able to produce a solid segmentation
where gradient flux fails. From top to bottom: (1) original perfect
line, (2) line with a faded out segment as input for the data term
Erf , (3) with gradient flux, segmentation of borders is improved,
(4) attempt to close segmented structures by additional use of the
smoothness term Es, (5) solid segmentation using only Erf ,and
the directed term Egc.

troduce a directional energy term that is based on the per-
ceptual concept of good continuation. Intuitively, lines as
well as membranes are directed structures. By the princi-
ple of good continuation well classified parts of directed
structures should enforce smoothness in labels along their
orientation. This is formulated by Egc(yp, yq):

Egc(yp, yq) =| < vp, upq > | · exp
(
− (xp − xm)2

2σ2
gc

)
·δ→(yp, yq)

dist(p, q)
,

(6)

where upq is a unit vector with the orientation of a
straight line between pixels p and q, and vp is a vector di-
rected along the membrane. The length of vp reflects the
orientedness of the image at p. For this purpose we use a
directed filter consisting of a straight line with a thickness
equal to the average membrane thickness in the training im-
ages. < vp, upq > is then estimated by the response to this
filter oriented according to upq . The value of xm is given
as the average gray value of membrane pixels and σ2

gc can
be estimated as the variance of these gray values. Thus, the
difference (xp − xm) weights the energy term according to
the similarity of xp to the typical gray value of a membrane.

In contrast to Equation 2 the factor δ→(yp, yq) is not
symmetric. Instead δ→(yp, yq) = 1 for yp = 1, yq = 0
and δ→(yp, yq) = 0 for all other cases. This asymmetric
definition ensures that Egc only penalizes for cuts that vio-
late the smoothness along the direction of membrane pixels.
Although δ(yp, yq) is not symmetric, it is still regular and
thus the global optimality of the resulting segmentation is
assured (see also [5, 26]).

In addition we incorporate information from adjacent



sections into the segmentation using:

Ena(yp, yq) = mq · | < vp, vq > | ·
δ←(yp, yq)

dist(p, q)
, (7)

where mq is the probability of pixel q being a membrane
and vp is the large eigenvector of the Hessian at pixel p
multiplied by the corresponding eigenvalue. Thus, a high
confidence in pixel q being a membrane is propagated to
the next section if the corresponding region is similarly ori-
ented. This has the benefit, that it is unlikely for false posi-
tive detections to be propagated to the next section, as they
will not have a similar oriented correspondence in the other
image. δ←(yp, yq) again is defined asymmetrically, such
that only Ena(0, 1) is penalized. In Equation (8) the cor-
responding sum runs over all neighbors N3(p), which are
defined as neighbored pixels in adjacent sections (3 dimen-
sional). To solve the correspondences between images we
followed the nonlinear warping method described in [14].

From our experience, the use of gradient flux is likely to
lead to false positive membrane segmentations due to tex-
ture in the images. Thus, we decided to omit gradient flux
in the final energy term:

E(y) =
∑
p∈P

Erf (yp) + λgc
∑
p∈P,

q∈N2(p)

Egc(yp, yq)

+λs
∑
p∈P,

q∈N2(p)

Es(yp, yq) + λna
∑
p∈P,

q∈N3(p)

Ena(yp, yq).

(8)
Although this energy term incorporates information from

adjacent sections, the main focus of the segmentation is
two dimensional. This is due to the fact that the resolution
of TEM images is high (about 5nm per pixel), but along
the vertical direction of the image stack, the resolution is
limited by the section thickness of the sample. Even very
skilled human operators can at best cut sections of 40nm
thickness. Thus, resolution along the z direction is an order
of magnitude worse than the resolution along the x-y plane
(see also Figure 5). This strongly favors a 2D segmentation
approach.

3. Experiments and results

We evaluate the proposed method on two different neu-
roanatomical data sets of ssTEM images. Data set 1 shows
part of the dorsolateral fasciclin-II tract of the ventral nerve
cord of the first instar larva of drosophila, at abdominal seg-
ment 5. It consists of 40 images with 512x512 pixels, di-
vided into two sub volumes of 10 and 30 sections. The
resolution is 3.7 nm per pixel in the image plane and sec-
tion thickness is 50 nm. Data set 2 was taken from layer
4 of Area 17 (primary visual cortex) of one adult cat. The

data set consists of 9 images with 4312x3018 pixels. Res-
olution is 1.38 nm per pixel in the image plane and section
thickness is 40 nm. Both data sets resemble average image
quality from neuroanatomy projects and were fully man-
ually segmented by human experts using TrakEM2 [7], a
free plugin for ImageJ [2]. The samples for these data sets
were not only taken from different brain types (insect and
mammal), but also prepared with different staining proce-
dures and recorded at different magnifications, leading to
very different image characteristics. As can be seen in Fig-
ure 4, the membranes of data set 1 appear very dark in the
images, but also fuzzy in a lot of areas. Data set 2 con-
tains considerably more texture caused by sub cellular ele-
ments like vesicles, microtubules and mitochondria inside
the cells. Despite these different challenges, the new ap-
proach yields good segmentations on both data sets, demon-
strating the great robustness against varying image charac-
teristics.

In addition the proposed framework was applied to satel-
lite images of San Francisco. The extracted features and the
classifier employed for the segmentation of streets are the
same as for the membrane segmentation, as the focus of the
evaluation is on the different graph cut energy terms and not
the quality of the classifier.

For the evaluation of the perceptual grouping framework
all data sets were split into training and test sets. For the
drosophila data set, the small volume was used for train-
ing and the large volume for testing. For the cat data set
only nine annotated images are available, therefore leave
one out cross validation was used in this case. The random
forest classifier ensemble consists of 500 trees. The trees
were build with 10 out of 116 features randomly selected
for each split. The plots in Figure 2 show the precision and
recall of the segmentations on all test images. Here preci-
sion can be seen as the probability that a pixel classified as
foreground by the automatic segmentation is also marked
as foreground in the hand labels given. Recall corresponds
to the probability that a foreground pixel is detected. For
the membrane segmentation on both data sets the percep-
tual grouping framework was evaluated with λs = 0.6 and
for the evaluation of Ena, λgc = 1.6. For the state of the art
segmentation with gradient flux λgf was set to 5. For the
San Francisco street data set the parameters are λs = 0.8
and λgf = 10. The street data set contains no 3d informa-
tion, therefore Ena is not included in the evaluation. In all
three data sets the good continuation energy term Egc leads
to a considerable improvement in recall. As can be seen
in the example segmentations in Figure 2 the loss in preci-
sion is mainly caused by thicker membrane segmentations.
For the 3d reconstruction of neuronal structures, high recall
with closed contours is more desirable than a good preci-
sion, as long as no splitting errors are introduced. There-
fore, we also evaluate the number of splitting and merging



0.6 0.7 0.8 0.9 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

precision

re
ca
ll

1

0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

precision

re
ca
ll

0.75 0.8 0.85 0.9 0.95 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

precision

re
ca
ll

Drosophila Larva

Cat San Francisco

Drosophila Larva

E
gc

+E
s
+E

na
good continuation + smoothness + non accidentalness

E
gc

+E
s

good continuation + smoothness

E
gf

+E
s

gradient flux + smoothness

E
rf

random forest

optimal operation point for images in Figure 4

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

number of splitting errors per region

n
u

m
b

er
 o

f 
m

er
g

in
g

 e
rr

o
rs

 p
er

 r
eg

io
n

A

C D

B

Figure 2. Comparison of the proposed framework Erf +Egc+Es+Ena against the state of the art gradient flux energy term Erf +Egf +
Es. The plots depict the precision and recall performance per pixel over all test images. The combination of random forests with perceptual
grouping constraints yields a considerable improvement in recall. The split and merge error plot (B) demonstrates that the improved recall
is caused by gap completion which is highly desirable for 3d reconstructions of neuronal structures.

errors per region for the drosophila larva data set (see plot
B in Figure 2). The plot shows the number of splits and
merges per region in the automatically obtained segmenta-
tion with respect to the manual ground truth. The splitting
error counts the number of times a region from the ground
truth segmentation is overlapped by more than one region
from the automated segmentation. In order to be significant
the split has to be bigger than one percent of the ground
truth region. The merging error is the same in reverse. It
counts how often a region of the automated segmentation is
overlapped by more than one region in the ground truth.
Thus, the error is increased if a segmented membrane is
not closed and ground truth regions are merged in the auto-

mated segmentation. A low splitting and merging error per
region preserves the duality between membranes and en-
closed regions and thus enables automatic reconstructions
of neuronal structures. Plot B in Figure 2 clearly demon-
strates the substantial improvement in the segmentation by
our good continuation term. The cat brain data set does
not contain enough regions to provide meaningful results in
terms of splitting and merging errors, due to the large size
of the neuronal structures in these images. The term Ena

that incorporates information from adjacent sections, is very
beneficial for the cat data set and leads to an additional in-
crease in recall. For the drosophila data set, the influence
of adjacent sections is smaller than for the cat data set be-



cause the drosophila images change significantly between
sections.

Example segmentations of test images are given in Fig-
ure 4. The segmentation is very good with respect to tex-
ture caused by vesicles and microtubules, but mitochondria
still pose a challenge. They are not only surrounded by a
membrane, but also very similar to small dendrites in shape,
leading to false positive detections. A possible solution to
this problem would be to include extra labels for mitochon-
dria in the training set and either make the random forest
classifier more sensitive to these structures or train a second
classifier specifically for mitochondria. This is part of our
future research. A segmentation result for the San Francisco
data set is given in Figure 3. Shown are the segmentation
results with 0.85 precision for smoothness combined with
good continuation (green) or gradient flux (red). Black pix-
els were marked as streets by both methods. Although this
image is from a completely different domain, the segmen-
tation result shows the same characteristic for both methods
as for the electron microscopy images. The good continua-
tion constraint leads to thicker segmentations, but improves
the segmentation by gap completion, whereas the gradient
flux gives false positive responses at background pixels with
high contrast.

The split and merge error of our cost function is low
enough, to obtain fully automatically reconstructed den-
drites over several sections. An example reconstruction is
shown in Figure 5. The five dendrites are segmented over
30 sections. Regions were automatically grouped between
sections by maximum overlap. This simple tracking method
will fail if the structures of interest are not orthogonal to the
cutting direction. Improvement of region tracking in more
complex scenarios is the main focus of our future research.
Also shown in this Figure are cutting planes through the im-
age volume. The very low resolution of the volume in the
direction orthogonal to the cutting plane is clearly visible.
Because of this difference in resolution we decided to focus
our segmentation on the image plane.

4. Conclusion
The framework introduced in this paper addresses one

of the main bottlenecks for 3D reconstructions in neu-
roanatomy: the fully automated segmentation of mem-
branes in ssTEM images. The architecture comprises a
random forest for classifying single pixels, and novel en-
ergy terms for membrane segmentation with graph cut
optimization. Large scale quantitative evaluation experi-
ments demonstrated the algorithms performance on cat and
drosophila larva brain.

In summary the proposed framework is characterized by
the following benefits: (i) local to global optimization: a
random forest classifier estimates the probability for a mem-
brane locally, while a regular cost function guarantees a

Figure 3. Example segmentation at 0.85 precision for the San Fran-
cisco street data set. Green pixels are positive detections with the
good continuation constraint, red pixels are positive detections by
smoothness and gradient flux, black pixels were marked by both
methods as streets. Segmentation by good continuation looses pre-
cision by thickening the detected streets, but gains additional recall
by gap completion. Gradient flux looses precision by false positive
detections at high gradient contours.

global optimum employing graph cuts. (ii) good continu-
ation: novel energy terms allow for contour completion in
situations where gradient flux based methods fail. (iii) ro-
bustness: the algorithms produces proper results even on
different animal species. (iv) consistency: we have success-
fully reconstructed a 3D model of dendrites based on the
consistent segmentation of an image stack with 30 slices.
(v) excellent performance: the presented algorithm outper-
forms the state of the art on all quantitatively evaluated real
world scenarios.
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Figure 4. Example images and segmentations from two data sets. Upper row: drosophila larva, lower row: cat. From left to right:
original image, automatic segmentation with perceptual grouping constraints, manual labels. Most membranes are correctly segmented.
The algorithm copes well with textured regions of vesicles and microtubuli. False positive detections are mainly caused by mitochondria
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