One-Shot Multi-Set Non-rigid Feature-Spatial Matching
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Abstract The problem we address in this paper is how to find
matches betweemultiple sets of features where both the
We introduce a novel framework for nonrigid feature feature descriptor similarity and the spatial arrangenént
matching among multiple sets in a way that takes into con-the features need to be enforced. However, the spatial ar-
sideration both the feature descriptor and the features spa rangement of the features needs to be encoded and enforced
tial arrangement. We learn an embedded representationin a relaxed manner to be able to deal with non-rigidity, ar-
that combines both the descriptor similarity and the spa- ticulation, deformation, and within class variation.
tial arrangement in a unified Euclidean embedding space. The problem of matching appearance features between
This unified embedding is reached by minimizing an objec-two images in a spatially consistent way has been addressed
tive function that has two sources of weights; the feature recently (e.g.11, 5, 3, 27]). Typically this problem is for-
spatial arrangement and the feature descriptor similarity mulated as an attributed graph matching problem where
scores across the different sets. The solution can be ob-graph nodes represent the feature descriptors and edges rep
tained directly by solving one Eigen-value problem that is resentthe spatial relations between features. Enforaing c
linear in the number of features. Therefore, the framework sistency between the matches led researchers to formulate
is very efficient and can scale up to handle a large number this problem as a quadratic assignment problem where a
of features. Experimental evaluation is done using differe linear term is used for node compatibility and a quadratic
sets showing outstanding results compared to the state oterm is used for edge compatibility. This yields an NP-hard
the art; up to 100% accuracy is achieved in the case of the problem []. Even though some efficient solutions (e.g. lin-
well known ‘Hotel’ sequence. ear complexity in the problem description length) have been
proposed for such a probleri][the problem description it-
self remains quadratic, since consistency has to be modeled
1. Introduction between every pair of edges in the two graphs. This puts a
huge limitation on the applicability of such approaches to

Finding correspondences between features in d|fferenthandle large number of featufes

images plays an important r?'e IN many computer vision — gaqjqeg this scalability limitation, most of the state of
tasks. Severgl r_obust an_d optimal approach_es_ havc_a been d?ﬁe art algorithms for matching can only match two sets of
veloped for finding consistent matches for rigid objects by points. They do not generalize to match multiple sets of
exploiting a prior geometric constrainty]. The problem features

becomes more challenging in a general seting, match- In this paper, we introduce a framework for feature

ing features on an articulated object, deformable ObJem’matching among multiple sets of features in one shot, where

or matching between T[WO instances (or a model to an """ poth the feature similarity in the descriptor space, as asl|
stance) of the same object class for recognition and laaliz the local spatial geometry are enforcedhis formulation
tion. For such problems, many researchers recently tend toorings three contributions to the problem:

use high-dimensional descriptors encoding the local appea 1) Graph Matching through Embeddingve formulate the

ance, (?.g. SIFT fealzure$3]). U_St')'?g such Ih'g?ly discrim- problem of consistent matching as an embedding problem
inative ee_ltures Makes it possi i€ to SOIVe Tor Correspon-y pare the goal is to embed all the features in a Euclidean
dences without much structure information or avoid solv-
ing for correspondences all together, which is quite papula  *For example, for matching. features in two images, an edge com-

: ; ot P ; patibility matrix of sizen? x n?, i.e.,O(n*), needs to be computed and
trend in ObJeCt categonzaﬂoﬂl@]. This is also motivated by manipulated to encode the edge compatibility constrai@tsviously this

avoiding the high complexity of solving for spatially cosisi s pronibitively complex and does not scale to handle a langaber of
tent matches. features.




embedding space where the locations of the features in that
space reflect both the descriptor similarity and the spatial
arrangement. This is achieved through minimizing an ob-
jective function enforcing both the feature similarity ahd
spatial arrangement. Such embedding space acts as a new
unified feature space (encoding both the descriptor and spa- —~ ]
tial constraints) where the matching can be easily solved. fo:':;ementy %i‘r’f;nag'ement
The framework is illustrated in Fif). )

2) Matching Multiple sets in one shothe proposed frame-
work directly generalizes to matching multiple sets of fea- pou
tures in one shot through solving one Eigen-value problem.  Embedding: o
Consistent matching of multiple sets of features is a fun-  Unified Feature Space .
damental problem, for which very few solutions have been
proposed.

3) Scalability: An interesting point in this formulation is
that the spatial arrangement for each set is only encoded
within that set itselfji.e., in a graph matching context no
compatibility needs to be computed between the edges (no
guadratic terms or higher order terms), yet we can enforce ‘ -
spatial consistency. Therefore the proposed approach is Figure 1. Motivative Example on two faces

scalable and can deal with hundreds and thousands of fea-

tures. Minimizing the objective function in the proposed

framework can be done by solving an Eigen-value problem

which size is linear in the number of features in all images ] )

Extensive evaluation on several standard datasets show&0 Weighted or unweighted graphs to enforce edge com-
that the proposed approach gives better or comparable rePatibility, €.g [24, 21, 25). The intuition behind such ap-
sults to the state of the art algorithmsi] 5, 3, 27] that proaches is that th_e spectrum of a graph is |nva_r|ant un-
uses quadratic assignment. In fact, we achieve 100% corder node permutation and, hence, two isomorphic graphs
rect matching on a standard benchmark with our muItisetShOUId have the same spectrum, the converse does not_hold.
setting. The experiment results also show that the proposed€Veral approaches formulated matching as a quadratic as-
approach can find consistent matching under wide range ofS'/9nment problem and introduced efficient ways to solve it,
variability including: 3D-motion, viewpoint change, reta €9 [9 2, 5, 11, 27]. Such formulation enforces edgewise
tion, zooming, blurring, articulation and nonrigid defam consistency on the matching. We discussed the limitations

Feature
Similarity

tion. of such approaches in SectianEven, higher order consis-
tency terms have been introduce’.[In [3] an approach
2 Related Work was introduced to learn the compatibility functions from

examples and was found that linear assignment with such
There is a huge volume of literature on matching featuresa learning scheme outperforms quadratic assignment solu-
given a class of geometric transformation between two im- tions such as9]. Our experiments show that we can reach
ages or a model to an image. However, more related tosimilar or better results without resorting to higher order
our work, are recent papers on matching highly discrimina- compatibility terms.
tive local appearance features under relaxed geometric con
straints [L1, 5, 3, 22, 10] which are more geared towards Matching multiple sets in image sequences can be ad-
dealing with nonrigidity and within-class variability. dressed by forward tracking a set of featurés][ There
There is a huge literature on formulating correspondenceare very few papers that addressed solving for multiset cor-
finding as a graph-matching problem. We refer the readerrespondences in a fundamental wayg [16, 4]. In [4] a
to [3] for an excellent survey on this subject. Matching simulated annealing-like approach was introduced to find
two sets of features can be formulated as a bipartite graphcorrespondences between multiple point sets and was used
matching in the descriptor spaaeg [1], and the matches to obtain shape average. However, the solution deals only
can be computed using combinatorial optimizaties, the with point features (no appearance). Multiset correspon-
Hungarian algorithm17]. Alternatively, spectral decom- dences can also be found through clustering in the descrip-
position of the cost matrix can yield an approximate re- tor space. Such solution is popular in object recognition to
laxed solution,e.g [19, 6]. Alternatively, matching can  obtain a visual codebooki f]. However such solution ig-
be formulated as a graph isomorphism problem betweennores the spatial consistency.



3. Feature Embedding Framework Let us jump ahead and assume an embedding can be
achieved satisfying the aforementioned spatial strueode
the feature similarity constraints. Such an embeddingespac
We are givenk sets of feature pointsy!, X2,... X & represents a new “Feature” space that encodes both the
in K images whereX* = {(zf, fF),---, (2, , )} features’ descriptor and the spatial structure infornmatio
Each feature pointz?, f) is defined by its spatial loca- Given such an embedding, the matching problem between
tion in its image plane:* € R? and its feature descriptor ~two sets reduces to solving a Bipartite graph matching be-
f¥ € RP, whereD is the dimensionality of the feature de- tween the two sets of embedded coordindtésand Y
scriptor space For example, the feature descriptor can be a Where the weights between the two sets are mainly based
SIFT, HOG, etc. Notice that the number of features in each on the Euclidean distances in the embedding space. Match-
set might be different. We usd), to denote the number ing multiple sets reduces to a clustering problem in the Eu-
of feature points in thé-th point set. LetN be the total ~ clidean embedding space.

3.1. Problem Statement

number of points in all data sets, i.&7, = ZkK_l N Embedding all the input points in such a way will result
There are two kinds of information that need to be pre- in @ consistent set of matches, which means the pairs of
served: matches will obey some common transformation between

1) Feature similarity: feature descriptors in generaleepr the two point sets. Therefore, there is no need to explicitly
sents the appearance in a way that is assumed to be invariar@dd pairwise consistency constraints as done in quadratic
to viewing conditions. matching approaches,[5, 11, 272].

2) spatial structure of each data set represents the shape or L i
the arrangement of the features. 3.2. Objective Function

To achieve a model that preserves these two constraints  Gjven the above stated goals, we reach the following ob-

we introduce two data kernels based on the affinities in jective function on the embedded poirits which need to
the spatial and descriptor domains separately. The spatiahe minimized

affinity (structure) in each image can be represented by a e evaek )

weight matrixS* where Sk, = K, («F,25) and K,(- ) ®(V) =YD llyi = b1l + D> llv? — il U,

is a spatial kernel local to thg-th image that measures ko iy Pq Q]

the spatial proximity. The feature affinity between image . (:_'-)

p andq can be represented by the weight matig where ~ Wherek, p andq = 1,---, K andp # ¢. The objective
U™ = K;(fF, f7) and K;(-,-) is a feature kernel that function is mt_url]t_lve, thhe first term _pre_servei the shpatrall;a .
measures the similarity in the descriptor domain betweena@ngementwit mkeac SkeL since it tries to Sept ek?m ed-
thei-th feature in image and thej-th feature in image. ding coordinateg;” andy; of any two pointsz; andzj in

Here we describe the framework given any spatial and fea-2 9iven point set close to each other based on their spatial
ture weights in general and in Sectibwe will give specific ~ kernel weightS;;. The second term of the objective func-
details on the kernels we use. tion tries to bring close the embedded poigfsandy; if

We are looking for an embedding for the all feature their feature similarity kerndU'7! is high.

points into a common embedding space. {/etc R de- This objective function can be rewritten using one set of
notes the embedding coordinate of paifit whered is the weights defined on the whole set of input points as:
dimensionality of the embedding space,, we are seeking B QU2 Apq
a set of embedded point coordinaiés = {y}, -,y } oY) = Z Z ly: = yjlI" A, (2)
for each input feature set”. The embedding should sat- P
isfy the following two constraints where the matriXA is defined as

e The feature points from different point sets with high API S, p=q=k 3)

feature similarity should become close to each other in * Uyl p#4q

the resulting embedding as long as they do not violate

the spatial structure. whereAP?? is the p-qg block ofA.

The matrixA is an N x N weight matrix with K x K
e The spatial structure of each point set should be pre-blocks where the — ¢ block is of sizelV,, x N,. Thek-th
served in the embedding space and should not be af-diagonal block is the spatial structure kerBé&lfor the k-th
fected by false feature matcheise(, should not be set. The off-diagonal — ¢ block is the descriptor similarity
pulled away by false matches). kernelsUP?. The matrixA is symmetric by definition since
. . . q _ qu
2Throughout this paper, we will use superscripts to indicatiateset dlagonal .bIOCkS are Symmemc and Sané’. =U .
(image) index and subscripts to indicate point index withimset, i.e.x* The matr_le can be mterpreted as a weight .mamx b_e'
denotes point in the k-th set. tween points on a large point set where all the input points




are involved in this point set. Points from a given data set problems between two sets of embedding coordinates. We
are linked be weights representing their spatial stru@lire  give details about how to obtain the matching in 8ex
while nodes across different data sets are linked by seitabl
weights representing their feature similarity kerhel.

We can see that the objective function Efjreduces to
the problem of Laplacian embedding of the point set
defined by the weight matrifA. Therefore, the objective
function reduces to

Multiset Pairwise Matching (MP): If we have multiple
sets of features and we would like to find pairwise matching
between each pair of sets, then embedding all the features
in all the sets will give a global unified feature space. Pair-
wise matches between any two sets can also be solved as a
bipartite graph matching where the weights are defined in
Y*—arg min tr(YTLY), 4) _the embedding coordinates. In_ th?s case, Fhe glot_)al_ solutio
YTDY=I is expected to enhance the pairwise solution. This is shown

) ) o in the experiment in Se@.2. We give details about how to
whereL is the Laplacian of the matriA, i.e.,L =D — A, obtain the matching in Set.2.

whereD is the diagonal matrix defined &3;;, = Zj Ajj.
The N x d matrix Y is the stacking of the desired embed- Multiset Clustering (MC): If we have multiple sets of fea-
ding coordinates such that, ture points the unified embedding should bring correspon-
dent features from different sets to be close to each other.
In that sense, clustering can be used to in the embedding
space to obtain matching features. In this paper we applied
k-means clustering in the embedding coordinate to find the
The constrainy DY = I removes the arbitrary scal- feature groups. Other clustering techniques can be used.
ing. Minimizing this objective function is a straight forwh The problem can also be formulated as a Multi-partite graph
generalized eigenvector problefny = ADy. The optimal matching in the embedding space.
solution can be obtained by the bott@monzero eigenvec-
tors. The requiredv embedding point¥™ are stacked in the
d vectors in such a way that the embedding of the points of
the first point set will be the firstv; rows followed by the
N5 points of the second point set, and so on.
The objective function in EQ is general. We can eas- 4.2. Matching Criterion
ily see that matching algorithms that use only spatial con-
straints are a special case by replacing the off-diagonal The embedding coordinates achieved by solving the ob-
blocks in the affinity matrixA by an identity block. On the jective functionl guarantees that the Euclidean distances
other hand, matching algorithms that use the feature simi-between the embedded points reflect both the spatial and
larity constraints only is a special case by replacing the di descriptor constraints. Therefore, the matching probkem r
agonal blocks in the affinity matriA by an identity block. duces to solving a bipartite matching problem in the embed-
Notice that the size of the matrik is linear in the num-  ding space. This can be solved by many approaches such as
ber of input points, i.e., for the case of matching two sets, the Hungarian algorithmi[/] and others. However, in par-
Aisan(N; + Ny) x (N7 + No) matrix. In contrast, other ticular we used the Scott and Longuet-Higgins (SLH) al-

1 12 2 K K 1T
Y = [yla'"aleayla"'ayNQa"'yl a"'ayNK]

In Sec.6.2 we show the results obtained by applying
these three settings on the well known ‘Hotel’ sequnece.

approaches that enforces pairwise consisteAcy,[L1, 27] gorithm [1L9] as matching criterion in the embedding space.

use a consistency matrix that is quadratic in ShzeV, x The conditions required for the Scott and Longuet-Higgins

N1 Ns. Such quadratic order hinders the scalability of such matching are satisfied by the embedding since all the points

matching techniques. are lying on the same plane and there are no large rotation.
We compute anV; x Ny Ecuildian distance based weight

4. Feature Matching matrix W in the embedding space using a Gaussian kernel
and then we compute an orthonormal maffix in a way

4.1. Matching Settings similar to Eq.5. We decide a match if the elemeRt; is

maximum in its row and its column. In addition we add the
condition that the second largest element in its row and its
column is far by threshold ratio as done if].[

The embedding achieved through minimizing the objec-
tive function Eq2 represents a Euclidean “Feature” space
encoding both the descriptors’ similarity and the local-spa
tial structures. Solving for matching will be a straight-for The main reason we chose the SLH algorithm over the
ward task in such space. We present three settings in whictHungarian algorithm as a matching criterion is its ability
our framework can be used depending on the application. to reject false matches. The Hungarian algorithm finds a
Pairwise Matching (PW): Given two sets of features, the matching for each feature even though that match might not
matching reduces to solving a bipartite graph matching be good, which is not a desired characteristic.



5. Feature and Spatial Affinities The permutation matrix constraint can be relaxed into an
. . orthonormal matrix constraint on the mat@x Therefore,

5.1. Spatial Structure Weights the goal is to find optimal an orthonormal mat@X such
The spatial structure weight matt¢ should reflect the  that

spatial arrangement of the features in eachkseln gen- C*=arg max tr(CTG) 5)

eral, it is desired that the spatial weight kernel be invéria ot.CTe=1

to geometric transformations. However, this is not always

achievable. In this paper we used two different kinds of C* — UEVT

spatial weights: 1) Euclidean-based weights: the weights

are based on the Euclidean distances between features devhere the SVD decomposition & = USVT andE is

fined in each image coordinate system. Such weights areobtained by replacing the singular values on the diagonal of

invariant to translation and rotations. 2) Affine invariant S by ones. The orthonormal matr@* are used as the fea-

based weights: any three non-colinear points in an imageture weightsUr? = U after setting the negative values

defines basis for an affine invariant coordinate system. Weto 0.

use three matches between two images to obtain an affine

parameterization of all the other features in each images.g, Experiments

Alternatively, subspace invariancet] can be used to ob-

tain an affine invariant Coordinate System' In th|S SectiOI’l we ShOW bOth quantitative and qualitative
Several kernels can be used to obtain the spatial weightdesults on different data set. Despite that our focus is on

based on either the Euclidean coordinates or the affine conon-rigid matching, we also show results on rigid matches

ordinates including the Gaussian kernel definedss= for quantitative and comparative evaluation

of —ak||* /202 i i . .
| I K aknd the Double egponenual kernel defined ¢ 4 Non-Rigid Matching
asst = e ll*"==31/> Our evaluation shows that both the

Gaussian and double exponential gives comparable results. Fig. 2 shows some matching results on nonrigid motions.
We used sequences from the KTH dataSetFig. 2-top

5.2. Feature Weights shows the results of our pairwise matchiRy\ setting) us-

ing SIFT features on four frames of a walking motias,,

6 pairs. Our approach boosted the matches obtained to dou-
ble of the original SIFT matches. Fig-bottom shows the
result of the multiset settindC) applied on 13 frames of a
half cycle of hand waving. Due to the low resolution in the

It was shown in 9] that the optimal solution fob is

@7|

The feature weight matriXJ?? should reflect the fea-
ture to feature similarity in the descriptor space between
the p-th and ¢-th sets. A seemingly obvious choice is
the widely used affinity based on a Gaussian kernel on

the squared Euclidean distance in the feature space, i.e.

e - 20 Sequence, a small number of features are detected (around
G = e given a scaler. However, such 25 features per frame). Enforcing the global matching with
choice is not suitable for the purpose of the objective func- the spatial constraints boosted the number of matches to
tion in Eq 1. This is mainly because such weights do not from 44 to 73 and correct matches can be found on the mov-
satisfy the exclusion principle. One feature from an image ing parts for all the 13 frames.

close to each other in the embedding space which might vi-images and used the Multiset Pairwais?) to match all
olate the spatial arrangement. pairs. In these experiments we used affine kernels and Geo-

The feature weights should reflect the feature similarity metric Blur [7] features.
and, in the same time, should satisfy the exclusion princi-

ple. On the other hand, we should avoid making any hard6.2. Comparative Evaluation: 3D Motion (Wide
decision on the matching from the feature similarity alone, Baseline Matching)

i.e., a zero-one permutation matrix is not a suitable featur , ) , .
Goal: This experiment aims at evaluating our proposed

weight matrix. In other words, the feature weights should ¢ K q h £ th q
be soft correspondence weights. To achieve this we solve ramework compared to the state of the art reported re-

for the feature weights in a way similar to the Scott and sults including linear and quadratic assignment based ap-
Longuet-Higgins algorithm1[9]. proaches, 3, 22, 25, 10, €] .

Given the feature affinityc between features in sets Data \INle busl_e thefC3l\éIllJ ';;Otel kseqye;nce W'i[h th de same
and ¢, we need to solve for a permutation matfix that manual labeling o andmark points employed 8. [

permutes the rows d& in order to maximize its trace, i.e., 3To the best of our knowledge there is no available non-rigithset
with ground-truth matches.
¥(C) = tr(CTG) “http://www.nada.kth.se/cvap/actions/
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Figure 2. Top: Results on non rigid walking sequence (matgiarwise). Bottom: Sample results on hand waving sequeratehed on
a 13 frames in one shot (multiset). Shown is the first imagehest with the consequtive odd frames in the 13 frames

Figure 3. Sample results on Caltech 101 images. Best seefoin 8ample pairs are shown here, all pairs are shown inupglementary
materials )

This dataset has been used i) 2] to compare the perfor-  wise PW), Multiset pairwise MPW) and Multiset with
mance of graph matching methods. The sequence containslustering MC). We used a Euclidean double exponential
101 frames that shows a 3D motion of the ‘Hotel’ object. kernel to encode the spatial structure, and Gaussian kernel

The experiment is done using the same settinggs]: 15 on thesameshape context descriptor for descriptor similar-
frames are sampled (every 7 frames), that gives 105 pairs ofty. 4) Dual Decomposition approach proposedifi[ This
images to match. is a quadratic assignment approach that uses an iterative so

lution. 5) Results reported ir?f], which are state of the
Competitive Approaches: In all cases we used the Shape art algorithms using quadratic optimizations. That inelsid
context [I] as the feature descriptor (except for KPCA). We [5] a spectral relaxation of the graduated assignméft ]
compared the following: 1)The KPCA matchingd] isan  and max-product belief propagation on a quadratic pseudo-
example of an algorithm that only uses the spatial structure phoolean optimization47]. 6) Results reported in3] after
2) Descriptor-only linear assignment: we used the Hungar-|earning on another sequence (CMU ‘House’ sequence) us-
ian algorithm applied to the shape context descriptor.i th  ing both quadratic and linear assignment with learning.
case only feature similarity is used. We used the histogram
distances as our metric as it was introduced ih B) Our Evaluation: Evaluation is based on the mismatch ratio and
approaches: The three settings described in4SecPair- the complexity of the problem. Tableshows that our basic



i T Dataset(Effect) SIFT SVD on SIFT Our Our Affine 157 Image
Algorlthm Error Rate PrOblem CompleXIty Matching [L3] Matching [5] Approach Approach Feature Count
54

KPCA [25] 35.5% Linear Graf (ViewPoin) a7 66 67 264

. . . Boat (Zoom&Rotation) 99 87 108 108 467
Linear Assign. W/SC17] 11.81% Linear Bark (Zoom&Rotation) 49 a7 55 55 392
Our Approach PW 9.24% Linear e St A W e e s
Our Approach MPW 4.44% Linear giress((%?sr[ii"ngg)) o 22 v o o0
Our Approach MC 0.0% Linear Table 2. Average number of correct matches for each dataset f
SMAC [5] 15.97% Quadratic INRIA datasets
Fusion [LO] 13.05% Quadratic
COMPOSE §] 4.51% Quadratic
Belief Propagation 7] 0.06% Quadratic Goal: We use the INRIA data set to evaluate the robust-
Dual Decomposition 7] 0.19% Quadratic ness of the pairwise matching version of our framework
Learning(LA) [3] 12-17% Linear to the various imaging effect in a dataset with ground
Learning(GA) ] 10-14% Quadratic truth. We also evaluate the behavior of the matching un-

Table 1. State of the art results on the ‘Hotel” Sequence der strong affine transformation using both the Euclidean

and the affine invariant kernels. This set demonstrates the
scalability of our approach to handle a very large number
of feature points ( from 130 to 1250 SIFT features per im-
age). That shows the value of our approach compared to the
guadratic assignment approaches, which typically can only
handle a number of features limited to around 100. We use
the ground truttHomographymatrices just for evaluating
the resulting matches, since our approach does not assum-
ing any geometric transformation prior.
Competitive Approaches:in this experiment we compare
1) The basic SIFT matchedd] as a baseline. 2) SVD-
SIFT [6]: This approach uses SVD decomposition on a
Gaussian proximity matrix in the SIFT descriptor space.
Figure 4. Matches obtained in 15 frames of the ‘Hotel’ segeen  3) Our Pairwise matching approach with both a Euclidean
using one-shot multiset matching Gaussian spatial kernel and an affine invariant kernel.lIn al
cases we are using the same set of SIFT descriptors.

] . Results: Table 2 shows that for all the datasets, our ap-
PW outperforms all approaches that use linear complexity hroach with either kernels gives the highest number of cor-
and outperforms some of the state of the art quadratic al-ract matches. The last column gives the number of features
gorithms, e.g.,, 1. Using our multiseMPW andMC in the first image for each dataset. This result shows that
we reach 95.56% and 100% accuracy, which is not reachedynforcing the spatial consistency improves the descriptor
by any of the competing algorithms. It is very important maiches. Fig5 shows the number of matches as a func-
to notice that the size of our affinity matriz in the case  {jon of the viewpoint change or the blurrihgThe results
of the multiset of 15 frames is jusb0 x 450 and for the  ghqyy that the Euclidean kerel gives comparable results to
case of the pairwise matching @ x 60, where the size  h affine invariant kernel even under a very large viewpoint
for one edge compatibility matrix for any of the quadratic hange. We selected the scale for the spatial kernel as a
assignment approachesfgo x 900. Tablel shows the  qnstant-multiple of the maximum distance between feature
complexity of the problem and the mismatch ratio. Big  pgints in each image. In general, we found that selecting
shows the matches obtained from all the 15 frames usingy gcgle large enough for the Euclidean kerels would give

our multiset approach. results comparable to affine invariant kernels, this is wns
tent with what was stated i f]. Matching results between
6.3. Robustness: INRIA datasets images can be seen in the supplemental materials.

Data: In this experiment we use the INRIA datasets, which .
has been used byl{] for comparing descriptors. This /- Conclusion and Future Work
dataset contains seven subsets that covers several effects This paper shows that we can enforce spatial consistency

such as viewpoint change, zooming, rotation, blurring and for matching high-dimensional local appearance features i

lighting change. Each of the seven datasets hgs a groun%n efficient and scalable way. The embedding formulation
truthHomographymatrix computed between the firstimage troduced encodes both the inter sets feature similanity a
in each set and the other images in same dataset. Overa”1

there are 36 matching problems given their ground truth. 5 more plots can be seen in the supplementary materials
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the intra sets spacial structure in a unified space. This com- [9] S. Gold and A. Rangarajan. A graduated assignment algo-
bination of constraints is shown to be enough to achieve
consistent matching. Since spacial structure is only mea-[10]
sured within each set, there is no need to for quadratic
edge consistency constraints. Therefore, the approach is

linear and can scale to deal with large numbers of fea- [

tures. Pairwise matching based on the proposed framework
was shown to give comparable and even better results thailZ]
guadratic assignment approaches. The framework can b
directly applied to match multiple sets, which was shown

to outperform all the reported state of the art results. The
approach can match multiple sets by solving a single eigen-13)
value problem on matrix which size is linear in the number

of features. The experiments also shows that the approacii4]

always has a very low false matching raties, it is biased

towards getting high certainty matches. Further theaaktic

[15]

and empirical studies are needed to understand how to con-
trol the matching to be biased towards enforcing rigidity vs [16]

enforcing descriptor similarity.
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