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Abstract

We consider pixel labeling problems where the label set
forms a tree, and where the observations are also labels.
Such problems arise in feature-space analysis with a very
large label set, for instance in color image segmentation.
In this case a tree of labels can be constructed via hier-
archical clustering of the observations. This leads to an
obvious distance function between two labels, namely their
distance within the tree; such tree metrics have been exten-
sively studied outside of computer vision [14]. We provide
fast algorithms that use graph cuts to exactly minimize the
energy function for pixel labeling problems with tree met-
rics. Our work substantially improves a facility location
algorithm of Kolen [18], which is impractical for large la-
bel sets L since it requiresO(|L|) min cuts on large graphs.
Our main technical contribution is a new ordering of swap
moves that reduces the running time to the equivalent of
O(log |L|) min cuts; as a result, we can handle realistic-
sized color images in a few seconds.

1. Pixel Labeling Problems with Tree Metrics
Pixel labeling problems involve assigning a label from

some set L to each pixel in an image. These problems are
naturally phrased in terms of energy minimization, and are
closely tied to Markov Random Fields. Energy minimiza-
tion for pixel labeling has been extensively used in com-
puter vision, especially since the introduction of fast algo-
rithms a decade ago (see [27] for a recent overview). The
general energy minimization problem is known to be NP-
hard, even for a grid graph [4]. As a result, there has been
considerable interest in restricted classes of energy func-
tions where the globally optimal solution can be efficiently
computed. In this paper we introduce a new class of prob-
lems and provide very efficient algorithms for their solution.

Consider a pixel labeling problem for an image with n
pixels and label set L. A solution will be written as x =
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(x1, . . . , xn) where xi ∈ L. Many pixel labeling problems
involve minimizing an energy of the form

n∑
i=1

λiD(xi, oi) +
∑

(i,j)∈N

λijV (xi, xj). (1)

Here oi ∈ O is an observation associated with the i-th
variable. The data term, D(xi, oi), ensures that xi is con-
sistent with oi. The neighborhood system N specifies an
undirected graph over the variables. The smoothness term,
V (xi, xj), ensures that adjacent variables in this graph are
given similar labels. The weights λi, λij specify the relative
importance of an individual pixel’s observation, and of the
smoothness term for each adjacent pair of pixels.

While there are many variants of the pixel labeling prob-
lem, (1) is general enough to capture many textbook cases
such image denoising. Note that in denoising the space of
observations O is the same as L, since oi and xi are both
intensities or colors. Moreover, in denoising D and V typ-
ically have a similar form, such as f(a, b) = min((a −
b)2, const). This occurs because when the space of obser-
vations is the same as the space of labels, both D and V
compare elements in the same space.

Efficiency is a huge challenge, especially when the la-
bel space is large. The two most popular modern methods
for minimizing such energy functions, graph cuts [4] and
loopy belief propagation (LBP) [22], do not generally scale
well with |L|. The most popular graph cut algorithm com-
putes at least |L| min cuts on a graph with approximately n
nodes. Discrete LBP requires space (and time) per variable
that grows linearly in |L|.

1.1. The energy minimization problem

We consider pixel labeling problems with a particular
structure, where the both the labels and the observations are
nodes of a tree T . Formally we assume that each node in T
corresponds to a label, and that O ⊆ L. (For example, this
situation arises naturally if we use hierarchical clustering on
O to build L.) Such a tree T induces a natural distance on
two labels a, b, which is the length of the unique path in T
between a and b. We will consider trees with non-negative



edge weights we associated with each edge, so the length of
a path is the sum of the edge weights along the path. The
distance between a and b, which we will write dT (a, b), is
called a tree metric and has been extensively studied in the-
oretical computer science, as surveyed in [14]. In particular
tree metrics can be used to approximate arbitrary metrics.

In a pixel labeling problem with a tree metric, dT (a, b)
is used both to measure the similarity between observation
and labels, and the similarity between labels. Thus, the en-
ergy function we wish to minimize is

E(x1, . . . , xn) =
n∑

i=1

λidT (xi, oi)+
∑

(i,j)∈N

λijdT (xi, xj). (2)

Note that while T is a tree, the neighborhood system N is
arbitrary and can include loopy graphs such as grids. The
energy E is similar to classical image denoising formula-
tions, in that D and V have identical forms; the key differ-
ence is that we ensure tractability by requiring a tree metric.
The main contribution of our work is a very fast algorithm
to exactly minimize this energy function.

1.2. Application: spatially coherent clustering

To make this problem more concrete, we consider an ap-
plication of our algorithm for feature space analysis, a pop-
ular technique for solving early vision problems (see, for
example, [5, 23, 31]). In feature space analysis each pixel
is associated with a feature vector, and we will label each
pixel with a cluster in feature space.

Our algorithm can be applied to give a fast method for
constructing spatially coherent clusterings, which is a prob-
lem that several papers have recently addressed [32, 10, 26].
All of these methods rely on iterative techniques without
provable error bounds, while our method computes a global
minimum solution of an energy function.

If we write the feature vector associated with each pixel
p as v(p), then we can build our tree of labels T by per-
forming hierarchical clustering on these vectors. This leads
to a binary tree T , where the observations O (which are the
feature vectors v(p)) are the leaves of the tree. The internal
nodes of T are clusters of feature vectors.

Now, we can apply the labeling algorithm with T as the
underlying tree of labels. Distances along T lead to a nat-
ural measure of similarity between labels and observations.
For example, if a set of pixels S have similar feature vectors
then we expect to have a cluster C corresponding to S, and
the distance in T from C to each observation in S will be
small. In particular, if the pixels in S are neighbors of each
other the spatial smoothness terms in the energy function
will push them to select the label C over their individual
observations.

Figure 1 shows an example where we apply the algo-
rithm for clustering using color information. In this exam-

Figure 1. Left: input image, middle: hierarchical clustering of col-
ors, right: optimal labeling.

ple each pixel has one of 3 different colors: red, green and
blue. The input image (left) has 4 regions, pixels in the first
region are red, in the second are green and in the third are
blue. Pixels in the last region have a random color. The tree
T (middle) groups the 3 observed colors in a hierarchical
fashion. The final labeling (right) accurately recovers a nat-
ural clustering of the pixels. The spatial terms in the energy
function gives an advantage towards picking the same (or
similar) label for groups of nearby pixels. Pixels in the first
3 regions keep their observed colors because they are spa-
tially coherent. Pixels in the last region pick the “purple”
label because that is the “mean” of red, green and blue.

An interesting property of our method is that even though
the purple label is the parent of red and blue we have that
some pixels take the purple label while other pixels keep
the red and blue labels. Thus the tree-metric labeling algo-
rithm adaptively picks labels for each pixel, without making
hard clustering decisions. An area of the image that is very
spatially incoherent will naturally be labeled with a cluster
high-up in the hierarchy, while an area of the image that is
more coherent will be labeled with a cluster lower-down in
the hierarchy.

Note that in this application the set of observations O,
and thus L, can be very since each pixel can have a different
color. This makes it impractical to consider algorithms that
require time per pixel that grows linearly in |L|.

1.3. Summary of our results

The key tool in our approach is the swap move [4], one
of the basic algorithms in graph cuts. In a swap move, we
consider two labels a, b and restrict our attention to pixels
that currently have one of these labels. [4] showed that we
can efficiently re-allocate the pixels between these two la-
bels for a large class of energy functions. A local minimum
with respect to swap moves is a labeling whose energy can-
not be decreased by any swap move. [4] showed how to
determine the optimal (a, b)-swap move by computing the
min cut on a graph with one node per variable. The min cut
can be computed by max flow methods [17], which are very
fast in practice; we will write the running time to compute
max flow on a graph with n nodes as f(n)1, which is a low-

1AssumingN is sparse all graphs considered by our algorithms will be
sparse, so we don’t include the number of edges as a parameter.



order polynomial. We will rely on a special case of swap
moves where the two labels a, b are adjacent in the tree of
labels T . We will refer to this as an adjacent swap move.

Kolen [18] gave a method to minimize E in the con-
text of a facility location task; he proved that a local mini-
mum of E with respect to adjacent swap moves is a global
minimum, and gave an algorithm whose running time is
O(f(n)|L|), which is impractical for large label sets. We
provide much faster algorithms for minimizing E by per-
forming the swap moves in a different order; even though
we still do O(|L|) swap moves, most of them are done on
small graphs. As a result, our methods have a running time
of O(f(n) log |L|), and are extremely fast in practice.2

Our first algorithm (section 3) achieves this runtime in
the important special case of balanced binary trees. This al-
gorithm is straightforward to describe and analyze, as well
as easy to implement. Our second algorithm (section 4)
handles arbitrary trees using a divide and conquer approach.
Experimental results are presented for the first algorithm.

2. Related Work
Since the general pixel labeling problem is NP-hard [4],

a great deal of effort has been expended on finding tractable
special cases. Perhaps the best known such example is a bi-
nary labeling problem that can be exactly solved with graph
cuts [12, 11]. Special cases can be quite important in their
own right; this binary labeling problem is directly used for
important interactive segmentation tasks [2, 25]. Fast exact
methods for special cases can also be used to approximately
solve NP-hard problems; the same binary labeling problem
is the inner loop for the main graph cut algorithms of [4].

Our divide and conquer approach is related to [20]. How-
ever, the method in [19] is a heuristic with no guarantees
about the quality of the solution it finds. The key to our re-
sult is that for pixel labeling with tree metrics it is possible
to set up a binary labeling problem to decide which of two
sets contains the optimal label for each variable.

2.1. Polynomial time algorithms for pixel labeling

Another fast exact algorithm for graph cuts was origi-
nally proposed in [16], and then generalized by [15]. This
method handles more than 2 labels, but restricts the form
of V . The construction has been used by other graph cut
algorithms as well [29, 7].

[13] gives an algorithm that has logarithmic dependency
on |L| for certain kinds of problems. Within our setting
their algorithm applies when T is a path. In this sense we
generalize their results to arbitrary trees. We also note that
we use standard max-flow where [13] uses parametric max-
flow, which requires more complex algorithms.

2This bound assumes |L| is not too big such as when |L| ≤ f(n).
More generally this running time bound holds if |L| is O(f(n)).

If the neighborhood system N forms a tree we can use
dynamic programming or belief propagation to solve the
problem, independent of the form of D or V [24]. The
runtime of these methods is O(n|L|2) in general. In some
cases, such as [8, 9] dynamic programming can be made
even faster, but its still O(n|L|).

2.2. Kolen’s results on facility location in trees

Our work builds on the results of Kolen [18], who gave a
polynomial time algorithm to minimizeE in a very different
context, namely facility location on a tree. Kolen consid-
ered the “p-median problem with mutual communication”,
which in our notation is to minimize E from equation (2)
where the neighborhood system N is the complete graph.
While his motivating problem used a complete graph, his
algorithm can handle an arbitrary neighborhood system by
setting some of the λij terms to 0.

Kolen proved that a local minimum with respect to adja-
cent swap moves is also a global minimum.

Theorem 2.1 (Kolen’s optimality theorem [18]) If x∗ min-
imizesE with respect to (a, b)-swap moves for all labels a, b
that are adjacent in T , then x∗ globally minimizes E.

Kolen proposed a simple algorithm to compute x∗ by a
series of adjacent swap moves. His algorithm begins as-
signing every variable xi the label a, which is an arbitrary
leaf in T whose parent is b. He then does an (a, b)-swap
move. Kolen showed that this swap move provides infor-
mation about the global optimum: any variable that kept
the label a after this swap move has that label in the global
optimum, while any variable that adopted the label b does
not have the label a.

This procedure can the be done recursively, ignoring the
variables that are known to be labeled with a and removing
a from the tree of labels T

The running time of Kolen’s algorithm unfortunately is
O(f(n)|L|), which is impractical for large label sets. In
the worst case, after each adjacent (a, b)-swap move every
variable adopts the new label b, which means that the un-
derlying graph never shrinks.

3. The Sweep Algorithm
We now describe our sweep algorithm. We initialize the

algorithm by picking a root label, and assigning that label
to every variable. We perform a sequence of adjacent swap
moves, one for each edge in the tree of labels T . The or-
der of the swaps is such that we always perform an adjacent
(a, b)-swap move where the label a has been considered be-
fore but b has not. In this case we are simply relabeling
some variables that currently have label a with label b. The
algorithm is naturally performed by considering the labels
in T in depth-first order starting at the root label.



3.1. Proof of correctness

When we perform an adjacent (a, b)-swap move, we can
think of the tree of labels T as being divided into two trees
by removing the (a, b) edge; we will write these trees as
Ta, Tb, where a ∈ Ta, b ∈ Tb. We say two labelings x, y
are consistent with respect to (a, b) if xi and yi are both in
the same side of the edge (a, b) for all i. That is, if xi ∈
Ta ⇐⇒ yi ∈ Ta for all i, and similarly for Tb.

The main lemma we need states informally that if two
labelings are consistent with respect to (a, b) then relabeling
some pixels from b to a (or vice-versa) results in the same
change in E, whether we start with x or with y.

Lemma 3.1 Let x, y be two labelings that are consistent
with respect to the adjacent labels (a, b), and let B be an
arbitrary subset of variables that are given label b by both
x and y. Let ∆x be the change in E that results if we start
at x and give all variables in B the label a, and let ∆y be
the change that results if we start at y. Then ∆x = ∆y.

PROOF: We will show that the claimed equality holds ac-
tually for every term in E, instead of just for E itself.

First, consider a term of the form λidT (oi, xi). If the ith
variable is in B the term changes in the same way in both
labelings. If the variable is not in B the term is unchanged
in both labelings.

Second, consider a term of the form λijdT (xi, xj), and
its contribution to ∆x. If neither variable is in B there is
no contribution; this is also the case if both variables are
in B (since they both had the label b, then both acquire
the label a). In both cases there is also no contribution to
∆y. Now, w.l.o.g., suppose the first variable is not in B
while the second variable is. The contribution to ∆x is
λij(dT (xi, a) − dT (xi, b)), and the contribution to ∆y is
λij(dT (yi, a) − dT (yi, b)). Since a and b are neighbors in
T , these quantities are ±λijwab, depending on whether xi

and yi are closer to a or b. They are closer to a if they are
in Ta and closer to b if they are in Tb. Either way, since the
labelings are consistent the contributions are the same.

We prove correctness of the sweep algorithm based on
this lemma. By Kolen’s optimality theorem, all we need
to show is that the output of our algorithm is optimal with
respect to adjacent swap moves.

Let x∗ be the output of the sweep algorithm.

Theorem 3.2 The energy of x∗ cannot be decreased by
performing an adjacent swap move.

PROOF: Suppose an adjacent swap move (a, b) would de-
crease the energy of x∗. Our algorithm performed an op-
timal (a, b)-swap move at some point, and let us write the
labeling we obtained after this swap move as x̂. Observe
that x∗ and x̂ are consistent with respect to (a, b), since on

any succeeding swap move the pixels labeled with a in x̂
can only get a label in Ta, and similarly for b. Note also that
any variable labeled a or b in x∗ must have the same label in
x̂, since our swap moves will only relabel a variable with a
label that hasn’t been considered before. So by Lemma 3.1,
the (a, b)-swap move that would decrease the energy of x∗

would also decrease the energy of x̂. This contradicts the
construction of x̂ by an optimal (a, b)-swap.

3.2. Running time

At first glance it appears that the running time of our al-
gorithm is O(f(n)|L|), since we are doing one min cut per
edge in T . However, a more careful analysis reveals that the
min cuts are being computed on smaller and smaller graphs.
Now we will show that our running time is actuallyO(|L|+
f(n)k∆), where k is the depth of T and ∆ is the maximum
degree.3 For any balanced tree of bounded degree this will
give us a running time of O(|L|+ f(n) log |L|).

Let G be the graph defined by the neighborhood system
N on the variables. Note that when we do an (a, b)-swap
we are simply relabeling some nodes currently labeled a
with b. Thus we can concentrate on the subgraph on nodes
A that currently have label a. Some care must be taken due
to nodes in A that have neighbors outside of A. We can
replace them by a single node that is forced to take label a
without changing the result of the (a, b)-swap. In particular
this means that the time it takes to do the min cut computa-
tion needed for the (a, b)-swap is f(|A|).4

We also need to make sure we can set up the min cut
problem efficiently. Nodes in A can have arbitrary observa-
tions. Consider a node v with observation c. The difference
between the assignment cost when labeling this node a or b
is exactly λvwab. The assignment cost of label a is smaller
by λvwab, if c is in the subtree Ta, and the assignment cost
of label b is smaller by λvwab, if c is in the subtree Tb.
Hence we will connect v to either s or t with an edge of
cost λvwab depending on which subtree the label c is in.

To be able to set up the min cut problem efficiently, we
preprocess the tree T using Depth-First-Search, allowing us
to set up edges corresponding to assignment costs using a
simple lookup in O(1) time.

Theorem 3.3 Using DFS to preprocess the label tree T in
linear time, for any edge (a, b) of T , and any label c, we
can decide in O(1) time if c is in the subtree Ta or Tb.

PROOF: Starting at the root label, we relabel the nodes in
T by a DFS walk, i.e., the root is labeled 1, its first child
is labeled 2, etc. For each node a we record the first and

3For a rooted tree we define the degree of a node as the number of
children it has.

4The graph has 3 extra nodes, s, t and a node that was added to account
for nodes that are not in A, but this does not affect the overall runtime.



last visit made to the node during the DFS. We call these
f(a) and `(a). For example, the root r has f(r) = 1 and
`(r) = |L|, as the DFS visits the root again after visiting
all tree nodes. Note that DFS visits the subtree rooted at a
right after visiting a for any node a. Therefore, a label c is
in the subtree rooted at a if and only if f(a) ≤ f(c) ≤ `(a),
which allows us to decide if c is in the subtree rooted at a in
O(1) time. Finally, notice that for an edge (a, b) if a is the
parent of b, then Tb is exactly the subtree rooted at b.

To complete the runtime analysis we consider T one
level at a time, and show that the work done to perform
all min cuts in each level is bounded by O(f(n)).

For simplicity, let T be a binary tree whose root is the
label a with two children b, c, where we perform an (a, b)-
swap followed by an (a, c)-swap. We charge the work done
for these two swaps to label a. Note that both (a, b) and
(a, c) swaps are on graphs with at most n nodes. Usually
the second swap is on a smaller graph, unless no nodes take
label b. Even in the worst case the amount of work charged
to a is at most 2f(n).

Let nb be the number of nodes that adopt the label b and
nc be the number of nodes that adopt the label c. The two
swaps charged to b will take at most 2f(nb) work, while the
swaps charged to c will take at most 2f(nc) work. The key
to the analysis is that while one of nb or nc might be large,
nb + nc ≤ n. Because the running time of min cut f(n) is
superlinear and monotonic, f(nb) + f(nc) ≤ f(n), so the
total amount of work charged to both b and c is bounded by
2f(n). This same reasoning applies to each level of T . At
each level below the root the total work charged to all nodes
in that level is bounded by 2f(n).

This shows that for a binary tree of depth k the running
time of all min cuts isO(f(n)k). The same argument easily
generalizes to any tree of bounded degree. For a tree of max
degree ∆ the running time for all min-cuts is O(f(n)k∆)
as we perform ∆ swaps at every internal node of the tree.

4. The Divide-and-Conquer Algorithm

The sweep algorithm of the previous section works for
arbitrary trees, but the running time has anO(f(n)k∆) fac-
tor where k is the depth of the tree, and ∆ is the maximum
degree in the tree. For balanced binary trees k is O(log |L|)
and ∆ = 2, but both k and ∆ can grow linearly with |L| for
trees that are not balanced or binary.

In this section we give a divide-and-conquer algorithm
that runs inO((|L|+f(n)) log |L|) time with arbitrary trees.
We will do this in two steps. First we show that we can
assume with no loss of generality that the tree is binary, and
next we use divide and conquer to adapt the algorithm for
balanced trees to the more general case.

4.1. Making the tree of labels binary

We solve the labeling problem for arbitrary trees by a
reduction to binary trees. Here we assume T is rooted at
an arbitrary label. Consider a tree T that is not binary, and
for each node a with d children add a binary subtree with
d leaves. For a node a with d children, this procedure adds
d − 2 new nodes, which we will call a1, . . . , ad−2. We set
the weights of newly created edges to 0. Let T ′ denote the
resulting tree, and L′ denote the expanded label set. The
resulting tree T ′ is binary, and all distances between labels
in L remain the same as before. We will apply the sweep
algorithm to the new tree T ′.

Using the sweep algorithm with T ′ creates an optimal
solution, however, the resulting solution may also use the
newly added labels L′. If the labeling happens to only use
the original labels L, this solution is optimal. If some of
the newly added labels are also used, then as a final step of
the algorithm, we replace a new label ak by the correspond-
ing original label a. Note that this change in labeling does
not change the energy value of the solution, as the distance
dT ′(a, ak) = 0, so it creates an alternate optimal solution
only using the original labels L.

4.2. Re-balancing unbalanced trees

By the previous subsection, we can assume that the label
tree T is binary, but it may not be a balanced binary tree.
Rather than doing a continuous sweep of the tree, we will
process edges so as to create significantly smaller subtrees
in each step. For example, in a path we start by processing
the central edge, and then process the central edges of the
two subpaths created. It is well known that binary trees have
an edge that creates two roughly equal halves [28].

Lemma 4.1 For any binary tree with n nodes there is an
edge (a, b) such that the two subtrees created by deleting
this edge have size at most 3n/4.

The algorithm is based on a recursive divide and conquer
procedure. Let G be the graph defined by the neighborhood
system N on the variables. We find a balanced edge (a, b)
of T and temporarily label all nodes in G by a and per-
form an (a, b)-swap move. The goal of the swap move is to
create two smaller subproblems. Let Ta and Tb denote the
two subtrees created by removing edge (a, b) from T , with
a ∈ Ta and b ∈ Tb. Let A denote the nodes labeled a and
B denote the nodes labeled b. We create two independent
subproblems on two disjoint subgraphs Ga on A and Gb on
B with label sets Ta and Tb, respectively. As before, some
care must be taken due to nodes in A that have neighbors
in B. All those neighbors will get labels from Tb so we
can replace them by a single node that is forced to take la-
bel a without changing the minimal energy solution for Ga.
Analogously for Gb we add a single new node replacing all



neighbors that nodes inB have inA, and force the new node
to take label b.5

The algorithm consists of repeatedly applying the above
step of a swap move, and creating two subproblems. Note
that unlike the previous algorithm, we do not think of the
nodes inGa as labeled a or the nodes in Gb as labeled b, we
think of them taking a label from Ta and Tb respectively.

We prove correctness of this algorithm we need to show
is its output x∗ is optimal.

Theorem 4.2 The energy of x∗ is optimal.

PROOF: We proceed by induction on the size of the sub-
trees. The base case are trivial problems where we only
have a single possible label. By the induction hypothesis,
the algorithm finds the lowest energy labeling where all la-
bels in the subgraphs are selected from the corresponding
subtrees. We need to establish that there is a globally opti-
mal labeling with this property. We can do this by reduction
to the correctness of the sweep algorithm. Consider a run
of the sweep algorithm that starts with the edge (a, b). Note
that if we continue to run the sweep algorithm all the nodes
in A will eventually get labels in Ta and all the nodes in B
will get labels in Tb. This establishes that there is an opti-
mal solution that is formed by combining optimal solutions
to the subproblems.

4.3. Running time

As a first step of the algorithm, we need to replace the
original label tree T with a binary tree T ′. Note that T has
at most |L| leaves and T and T ′ have the same set of leaves.
A binary tree with k leaves has less than 2k nodes, so T ′

has size at most 2|L|.
As we have done for the sweep algorithm, we use DFS

to preprocess the tree, to allow us O(1) time lookup which
side label c falls of an edge (a, b).

Now consider one step of the algorithm, for a graph Ĝ
with n̂ nodes taking labels in T̂ . We need to select a cen-
tral edge (a, b) of T̂ , whose existence is stated in Lemma
4.1. Finding this edge can be easily done in O(|T̂ |) time.
We temporarily label all nodes in Ĝ as a, and set up the
min cut computations for an (a, b)-swap. This takes O(n̂)
time using the DFS data structure. We then solve the min
cut problem in f(n̂) time, and finally we prepare the sub-
problems, adding the two new nodes as required usingO(n̂)
time. Note that f(n) > n, so the total running time for one
step is O(|T̂ |+ f(n̂)).

The number of recursive levels will be O(log |L|) since
each iteration decreases the size of the label trees by at least
a factor of 4/3.

5This process replaces an original edge by two edges connected to spe-
cial nodes with forced labels. This will at most double the total number of
edges over time because we never need to connect special nodes together.

As was done for the sweep algorithm, we will consider
the total running time at each recursive level combined. At
a given recursive level, we have a number of subgraphs
and subtrees to consider. The sum of the sizes of the sub-
trees adds up exactly to the size of the original tree T ′, so
the part of the running time proportional to the size of the
tree T̂ will add up to O(|L|). Similarly the different sub-
graphs at one level are disjoint, and their sizes add up to
at most 2n (due to the extra nodes added). So the total
running time at one level of recursion is O(|L| + f(n)).
Since there are O(log |L|) levels we get a total runtime of
O((|L|+ f(n)) log |L|).

5. Spatially coherent clusterings
Now we consider an application of the sweep algorithm

for feature space analysis. Suppose we have an image I
with pixels P and a feature vector v(p) associated with each
pixel p ∈ P . We would like to cluster the pixels using
the information captured by the feature vectors. Classical
methods cluster the feature vectors and label each pixel p
according to the cluster that was assigned to v(p). Our ap-
proach gives a method for constructing spatially coherent
clusterings.

In this application the observations are the feature vec-
tors associated with each pixel

O = {v(p) | p ∈ P}.

We perform hierarchical clustering on O to get a tree of la-
bels T . We then apply the sweep algorithm to label each
pixel with a cluster in T . This leads to a spatially coher-
ent labeling. Note that T is typically very large since each
pixel can lead to a unique observation (these are the leafs
in the clustering). In the experiments shown here v(p) is a
3-dimensional vector of RGB color values, and we often get
label sets with over 50,000 labels.

Figure 1 showed an example where there are only 3 ob-
served colors: red, green and blue. Pixels in the first 3
columns of the image get labeled with their observation be-
cause those regions are coherent. Pixels in the fourth col-
umn get the “purple” label because that label is the closest,
in terms of dT , to the observations in that region.

For the experiments shown here we used a simple ag-
glomerative clustering heuristic to generate T . The method
is motivated by the classical agglomerative clustering algo-
rithm based on Ward’s variance criteria [30]. Usually one
would repeatedly merge the “closest” pair of clusters, where
the distance between clusters C and D reflects the increase
in variance of the feature vectors in C ∪ D relative to the
variance of C and D. However, the classical algorithm is
too slow when there are a lot of initial clusters. Our method
works in phases: in each phase we have a current set of
top-level clusters that can be merged. We use a nearest-
neighbor data structure [1] to find the k nearest neighbors



of each cluster, where distance is measured in terms of the
Euclidean distance between the mean feature vector in each
cluster. This leads to a set of candidate pairs (C,D) to be
merged. We sort the pairs according to Ward’s criteria and
greedily merge a fraction of the pairs before moving on to
the next phase.

This method fast because it relies on fast nearest neigh-
bor computation. It also generates a balanced binary tree
because the depth of the tree is bounded by the number
of phases, and each phase reduces the number of top-level
clusters by a significant factor.

Figure 2 shows some examples of the outputs we obtain
on natural images. Note that our algorithm does not gen-
erate a full-fledged image segmentation. The output could
be used to generate superpixels or as a preprocessing step
for segmentation (similar for example to mean shift filter-
ing [6]). For these examples we used λi = 1 and λij = 2,
independent of i and j. We used the standard 4-connected
neighborhood system for N .

Figures 3 and 4 show the effect of the pairwise strengths
λij . Greater values for λij lead to solutions that are more
spatially coherent. This can be clearly seen in the dock next
to the boat in Figure 3, where multiple planks are visible
with λij = 1 but are merged when λij = 3. Details such as
the red numbers in the price tags in Figure 4 are smoothed
out with λij = 3. Note that the effect is local as pixels in
other areas of that image are labeled with red colors.

We implemented the sweep algorithm and the hierarchi-
cal clustering method in C++. We used the publicly avail-
able ANN library [1] for nearest neighbor computations and
the code from [3] for computing swap moves. The exper-
iments were done on a 2.13 GHz Intel Core 2 Duo com-
puter running Mac OS X 10.5 using the GNU C compiler.
The running time to process the images in Figure 2 was be-
tween 5 and 10 seconds per image. A significant part of the
time is due to hierarchical clustering. All the images have
481 by 321 pixels and the number of colors in each image
ranges from about 20,000 to 60,000. For comparison this is
approximately the same time it takes to run mean shift [6]
under usual parameter settings.

6. Conclusions
We have described two new algorithms for finding exact

solutions for a class of pixel labeling problems defined in
terms of tree metrics. These algorithms are asymptotically
much faster than Kolen’s method, since they perform the
equivalent of O(log |L|) min cuts instead of O(|L|). Our
sweep algorithm is also very fast in practice, and can be
used for feature space analysis of color images in a few sec-
onds, even with tens of thousands of labels.

There are very few exact algorithms for solving pixel
labeling problems. While pixel labeling with tree metrics
has not been previous studied in computer vision, we are

Figure 3. Results with λij = 1 (middle) and λij = 3 (right).
Higher values for λij lead to more spatial coherence in the final
labeling. Note how more gaps in the dock are filled in on the
image on the right hand side.

Figure 4. Results with λij = 1 (middle) and λij = 3 (right).
Higher values for λij lead to more spatial coherence in the final
labeling. This causes some of the details such as the red numbers
in the price tags to “disappear” at large values of λij even though
many pixels are labeled red in other areas of the image.

hopeful that our results will lead researchers to look for new
applications. In particular, researchers have typically only
considered problems with relatively small label sets due to
computational restrictions. Our algorithms make it possible
to consider new applications that may require very large la-
bel sets. We also hope that our algorithms might be useful
as a subroutine to solve more general problems.
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