Upsampling Range Data in Dynamic Environments

Jennifer Dolson Jongmin Baek

Christian Plagemann

Sebastian Thrun

Dept. of Computer Science
Stanford University

Abstract

We present a flexible method for fusing information from
optical and range sensors based on an accelerated high-
dimensional filtering approach. Our system takes as input a
sequence of monocular camera images as well as a stream
of sparse range measurements as obtained from a laser or
other sensor system. In contrast with existing approaches,
we do not assume that the depth and color data streams
have the same data rates or that the observed scene is fully
static. Our method produces a dense, high-resolution depth
map of the scene, automatically generating confidence val-
ues for every interpolated depth point. We describe how to
integrate priors on object motion and appearance and how
to achieve an efficient implementation using parallel pro-
cessing hardware such as GPUS.

1. Introduction

High resolution depth images are useful in computer vi-
sion applications. For example, a depth map at the reso-
lution of a camera image simplifies image segmentation,
a first step for many tracking, classification, and recogni-
tion algorithms. Depth information can also be helpful for
scene exploration and visualization of image data. Cur-
rently, there are many active and passive sources of depth
information. We focus on scanning laser rangefinders, since
they are the only viable sensors for high-resolution range
sensing in outdoor environments. Other classes of active
sensors like flash lidars do not work in bright sunlight, or at
long range. Passive sources of depth information, such as
stereo vision, have made impressive progress, but at practi-
cal camera resolutions and baselines they do not yet provide
the necessary depth accuracy at long ranges.

Although scanning laser rangefinders have become
prevalent in ranging tasks, dense depth recovery at an arbi-
trary point in time, such as when a given camera frame was
recorded, is an unsolved problem in dynamic environments.
First, laser range measurements are inherently sparse. Sec-
ond, the data acquisition rate is usually less than that of an
optical camera. Figures 1 and 2 illustrate the problem of

camera image

range data at frame

Figure 1. For any given camera frame, we can recover an accu-
rate, dense depth map. The depth map shown in the lower panel
corresponds to a single camera frame from a sequence of highway
images, recorded from a mobile platform. Intensity in this visual-
ization is proportional to the magnitude of depth at each pixel lo-
cation. We can generate a depth map for an arbitrary camera frame
even if the coincident depth data is sparse, or missing, as shown in
the second panel, using depth data from neighboring frames.

pairing a camera and a scanning laser. If the scene is not
static, laser returns recorded at time ¢ + A are hard to cor-
respond to image pixels at time ¢, which leads to inaccu-
racies in a naively-constructed depth map. Prior work in
creation of depth maps assumes the data acquisition time
for the range device is negligible and/or the scene is static.
We present a Gaussian framework that treats data as an
input stream, more accurately reflecting different data rates
of different sensors. Our method projects depth and im-
age data into a high-dimensional space, and processes the
data using accelerated Gaussian interpolation. Sensors may
have their own, unrelated data acquisition rates, as long as
data from each sensor is timestamped with a common clock.
The use of our framework enables the upsampling of infor-
mation spatially and temporally, potentially matching the



(a) Spatio-temporal Sampling

time A range
measurements
"
o

= o images I I ¢ |

o Rt

(b) Static Scene Correspondences

time

o (c) Dynamic Scene Correspondences
29, i.
o. °

o e - 1/60 sec. gy PR i
NN

<
<«<TTrrrrrrrrrrror» E
) o

30 0 -30°

time

Figure 2. The fusion of image and range information is difficult be-
cause different parts of the scene are observed at different points
in time. Diagram (a) visualizes the spatio-temporal sampling be-
havior of cameras and typical range scanning devices. The ob-
servation angle relative to the sensor is represented by the x-axis,
the y-axis denotes time. Diagram (b) shows that correspondences
between measurements are easy to establish for static scenes and
diagram (c) shows that this is not the case for dynamic scenes,
since a measured object may have moved in space.

higher resolution of a camera in both space and time while
allowing for motion of the sensor platform and/or objects in
the scene.

Our framework can easily be adapted to handle depth
data from any input source. In this paper, we focus on the
case of pairing a scanning laser with a camera. Algorith-
mically, other sources of range data, such as time-of-flight
cameras, are easier to deal with, since they provide time-
synchronous arrays of range measurements. Our approach
is developed for the general case in which every individual
laser beam has its own unique timestamp.

Our method can interpolate depth information with a
level of accuracy based on the density of the input infor-
mation; through use of our framework it is possible to gen-
erate depth maps with respect to camera frames that contain
sparse depth data, or even no depth data, or were not per-
fectly aligned with existing depth and camera data. Each in-
terpolated depth value is also automatically assigned a con-
fidence value, based on the availability of spatio-temporally
proximate data. We can use this confidence value to thresh-
old the information returned by a query, avoiding artifacts
from extrapolation in areas of sparse input data.

Once our framework is constructed, all queries are data-
parallel, making implementation in parallel both sensible
and advantageous. The work of Adams et al. [1, 2] has
shown that the speedups offered through GPU implementa-
tion of d-dimensional filters allow for high-resolution data
processing at interactive rates. Greater control over the
quality of data provided by a camera/range system can en-
able the use of such a system for real-world, mobile vision
applications. We evaluate our algorithm in Sec. 5 on both
real-world and synthetic data.

2. Background

Our Gaussian framework can be thought of as a d-
dimensional extension of the 2D joint bilateral filter,
first described by Eisemann and Durand et al. [10],
Petschnigg et al. [16] and Kopf et al. [14], and then dis-
cussed in a d-dimensional context by Adams et al. [2].
Specifically, we alter the data structures of [1, 2], which
have only been evaluated in denoising, for use in an inter-
polation/upsampling domain.

Prior work has shown that high-resolution depth infor-
mation can be produced through various methods: prior-
based estimation with respect to a monocular image, the
implementation of stereo vision algorithms using a physi-
cal or temporal baseline, or through the pairing of a cam-
era and a non-passive sensor, such as a laser rangefinder or
depth camera. In the following paragraphs, we compare our
algorithm to related work and discuss the limitations and
assumptions implicit in each method.

In traditional stereo camera systems, range error in-
creases quadratically with depth. Techniques exist to bound
error [12], but accuracy is still limited in applications with
constraints on the temporal or spatial stereo baseline.

The first successful attempt to upsample laser-generated
depth values to match the resolution of a camera image was
based on Markov Random Fields (MRFs) that used color
information from a camera image, and depth information
where available [8]. An inherent assumption of the method
is that objects in the scene are not moving within the time
it takes to complete a scan of the frame with a sweeping
laser rangefinder. The terms of the MRF energy function
attempt to enforce depth smoothness, but allow for depth
discontinuities across color borders. The belief underlying
the method is that areas of constant color are most likely
areas of constant depth. Therefore, the depth at any given
pixel is likely similar to that of its neighbors that are within
the same color boundary.

A follow-up paper [3] compares five different interpo-
lation methods with the original MRF method [8]. Again,
the underlying assumptions are that proximity and color de-
termine likelihood of a depth value at any pixel location,
though their methods also do not incorporate motion or
time.

The work of Yang et al. [19] compares a non-accelerated,
iterative bilateral-filtering method with the MRF approach,
showing that a bilateral filtering method allows for sub-
pixel accuracy, in contrast with a potentially blocky MRF
result. Chan et al. [6] extend the bilateral filtering approach
to include the noise model of their specific depth sensor,
constraining data in noisy regions. Both methods also show
that a bilateral filtering-based approach enables a greater in-
crease in spatial resolution than an MRF-based approach.
Neither method is widely applicable to all laser types, as
their algorithms assume temporally and spatially aligned



depth data at every upsampling reference frame, and do not
account for the possibility of a data rate mismatch between
the two sensors.

In contrast with other recent methods for high-resolution
depth acquisition, our method does not require a strong
prior on the geometry of the environment, such as in the
work of Furukawa et al. [11]. Our only assumption is that
motion is piecewise linear at the time scale we are consid-
ering; although this assumption does not technically hold in
perspective views, it is a decent approximation, especially
over short time intervals.

Schuon et al. [17] recover dense, denoised depth in-
formation without the use of a camera reference image.
Their approach requires multiple aligned scans and there-
fore works only on static scenes.

A distinct feature of our approach and its GPU-
accelerated implementation is its time efficiency. Previ-
ously, Chan et al. [6] upsampled on the order of 25 000 input
depth points to the resolution of their camera, 48 000 pixels,
averaging 49 ms per frame. The running time of their al-
gorithm represented up to 5x empirical improvement over
other iterative methods [8, 19] (also implemented on the
GPU, for fair comparison). Their method focused only on
the case of one sensor, however, acquiring depth informa-
tion from a time-of-flight camera. Our algorithm runs ap-
proximately 2.3x faster than their algorithm (running time
normalized by number of pixels processed), as detailed in
Sec. 4.

3. The Gaussian Framework

In this section we present an overview of our proposed
algorithm. We will discuss the general framework for d-
dimensional filtering and show how it applies to the creation
of high resolution depth maps or color-depth images.

All methods for upsampling range data using camera in-
formation, as mentioned in Sec. 2, rely to some degree on
the assumption that areas of similar color or appearance in
the camera image will have similar depth values. We also
rely on this assumption, but, as discussed in Sec. 3.2, our
method is general and can use any prior on depth values
that can be encoded as Euclidean distance between vectors.

3.1. d-dimensional Filtering

Many image operators such as blurring, bilateral fil-
tering, non-local means denoising [5] or denoising of im-
age volumes [4] can be grouped into a general class of d-
dimensional filters, formalized as

@iZZf(|Pi—PjD'Uj- ey
j=1

Here, each color value v; in the input is replaced by v;, a
weighted combination of neighboring color values v;. Each

weight is determined by a function f, considering the differ-
ence between position in some d-dimensional space of the
point whose value will be replaced, p;, and the neighbor’s
position p;. In the most general case, f can be any kernel.
The function most commonly used in the case of denoising
is f(z) = e~121°/20” 4 Gaussian with standard deviation o.

Recently, many algorithms [1, 2, 15] have accelerated
filters based on the general formulation above through
explicitly representing data in the d-dimensional position
space, where d is the dimensionality of the position vec-
tors, and approximating a Gaussian kernel through a three-
stage weighted resampling process. Before filtering, a d-
dimensional data structure is constructed. Data in the origi-
nal image manifold is then sampled at the resolution of the
data structure, and the value at each node in the data struc-
ture is set to a weighted sum of nearby input values. The
value at each node is then blurred with values at neighbor-
ing nodes. Finally, the data structure is queried at locations
along the original manifold in position-space, and an out-
put image is constructed based on the weighted averages of
values stored at nodes proximate to the query.

This pipeline greatly accelerates a naive bilateral fil-
ter, for example, if one sets each position vector p; to the
(r,9,b,u,v) values at each point; u and v represent a pixel’s
position in 2D image space. For non-local means, position
vectors become (p, u, v), where p is a vector encoding a de-
scription of an image patch around a given pixel.

Adams et al. [2], show that a 5D representation is more
accurate than other accelerations [7, 18] that treat bilateral
filtering as a 3D volume and only consider distance in lumi-
nance. Also, in other proposed data structures [1, 2], space
is represented only along the 2D data manifold to increase
the memory efficiency with respect to approaches that main-
tain a dense grid [15]. The computational and memory ef-
ficiency of such sparse data structures makes blurring with
respect to d-dimensional feature vectors tractable.

3.2. Joint d-dimensional Interpolation

Instead of blurring and/or denoising, our goal is interpo-
lation in a dynamic system where both depth information
and camera information may be available. In cases where
depth data comes from a laser rangefinder, we assume that
the extrinsic parameters of both the camera and laser are
known (though in practice we have found that these val-
ues can be slightly incorrect, and our method still performs
well).

Consider the laser and the camera as both sampling a
4D time-space volume, each sensor with a different sam-
pling rate and density. Taking a perspective transform of the
scene for every time ¢ results in a 3D (u, v, t) volume, repre-
senting a continuous space of camera images that could be
returned from the scene, given the perspective of the cam-
era. This 3D image-time volume is sampled at discrete time



intervals dictated by the camera’s frame rate. Applying the
same perspective transform to the laser returns (after correc-
tion for the physical offset of the two sensors), results in the
projection of range values into the 3D image-time volume.
After this projection, some depth values might be outside
the camera image plane. For the full version of our algo-
rithm that uses (p, u, v,t) values as position vectors, these
range values should be discarded, as each depth value at
position (u, v, t) cannot reliably be assigned p, an image-
based descriptor.

To create a high-resolution depth map, the general d-
dimensional filtering formulation given in Eq. 1 remains the
same, but v; and v; represent depth values instead of color
values. We also constrain our position vectors to be of the
form (p, u, v, t), where p represents a descriptor based on
color information from the camera, v and v represent the
2D position of the descriptor on the image plane, and ¢ is
the time the data was captured. Should camera information
not be available, the position vector for each depth point can
reduce to (u,v,t). Whereas Adams et al. [2] illustrated the
utility of adding ¢ to the position vector for temporal co-
herence in video or image burst denoising, we rely on time
measurements to constrain the temporal interpolation that
allows us to construct a depth map for an arbitrary camera
frame, possibly taken at a time when no depth information
was available. If the scene is static, our method still works
reliably, though ¢ can be dropped from the position vector,
as it is irrelevant (equivalently, the temporal dimension of
the Gaussian can be given infinite extent).

3.3. Data Processing and Motion Priors

Selection of useful data points in the data stream and de-
termination of motion priors are important steps in initializ-
ing our framework and selecting the correct parameters for
Gaussian interpolation. In this section we detail the tech-
nique for selecting input data and motion priors in the scan-
ning laser/camera case.

Referring again to Figure 2, we see that for each frame in
a scanning laser/camera system only certain points returned
by the laser can be considered coincident with pixels in a
camera frame. Here we define “coincident” in terms of the
difference between a camera frame timestamp and a laser
return timestamp, At, and the location of the laser return
after it is projected into image space. In Sec. 3.2, we dis-
cussed discarding points that do not fall on the image plane;
now, we also consider whether the amount of object motion
in the scene relative to the image plane during At could ex-
ceed the spatial extent of an image pixel. Coincident depth
points can be assigned a descriptor using information from
the camera frame, creating a (p, u, v, t) point, while non-
coincident points cannot, and will be discarded under the
full version of our algorithm.

To set the Gaussian standard deviations that constrain in-

highway1 highway2 avenuel avenue2 synthetic1 synthetic2 synthetic3 synthetic4

0.03,

0.02

0.01

0 Confidence interval

Confidence interval

Figure 3. Each plot above shows how the prediction error corre-
lates with the confidence values. For each data set, the recon-
structed depth values were binned according to their correspond-
ing confidence values, and the average prediction error was calcu-
lated for each bin. As the plots show, higher confidence estimates
lead to lower actual prediction errors on average.

terpolation, we must calculate the maximum bound on the
distances we expect objects to move between observations.
If the field of view of a camera is 6, an object moves relative
to the camera with a velocity s, and s,, is the component of
velocity parallel to the image plane, the maximum bound
on the lateral distance p*, in pixels, that an object can move
during At is

Tu

(2d) atan(g) ’

where r,, is the resolution of the sensor in the horizontal
dimension, and d is the minimum distance from the camera
to the object plane. Setting the standard deviation in the u
dimension proportional to p*, where At is the time interval
between camera frames, is a principled way to constrain in-
terpolation of depth values. One could similarly solve for
p* in the v dimension, should expected vertical velocity be
different from horizontal in a given application.

Given a perfect descriptor p, however, the above u and
v dimension constraints would not be necessary since re-
lated points across time would have exact correspondence
in the p dimension of the position vector. Choosing the cor-
rect descriptor for a specific application and computing the
descriptor efficiently is still an area of active research, and
beyond the scope of this work. We have found that setting
the u and v standard deviations as discussed above and set-
ting p = (r,g,b) leads to accurate depth reconstructions
for most natural scenes. In our experiments, we selected
the standard deviations for our descriptor p based on grid
search across non-test data sets.

For memory and processor efficiency, the window of
time considered by the algorithm should also be con-
strained. The standard deviation in time and the the size
of the input buffer to the algorithm should depend on the
data rate of the sensor providing depth information. In Sec.
5 we provide a concrete example of how to set these param-
eters.

*

p* = (54 At) - 2)

3.4. Confidence Weighting

With each query to our d-dimensional data structure,
we calculate a weighted average of the values stored at



Figure 4. In this visualization, each camera frame is overlaid with
laser data that was recorded within 0.02 seconds of the frame cap-
ture, i.e. laser returns that can be assigned a color with minimal
uncertainty. We hold out frame 3, and wish to reconstruct a depth
map using only the data available from the row above. The bot-
tom, right image illustrates the weights returned by our algorithm
at each (u, v) location of the (r, g, b, u, v, t) query for every pixel
of frame 3. We have zero confidence in areas with no data (black
regions), very low confidence in areas with sparse data (white re-
gions), and highest confidence in areas of proximate data (blue
regions).

nodes within three standard deviations of our query point,
as shown in Equation 1, where f is a Gaussian kernel. The
weights returned at each query point are a good indicator
of the density and proximity of values relative to the query
point. Figure 4 visualizes the confidence value at each pixel,
which is equal to the sum of weights returned from a query
at that pixel.

We also evaluated the ability of these confidence values
to predict interpolation error. Figure 3 shows a graph of
confidence values vs. average relative error. We evaluated
the error at each frame containing ground truth in each of
our data sets (which will be discussed in Sec. 5 ), using our
full algorithm with color information.

4. GPU Implementation

We implemented our d-dimensional Gaussian frame-
work on the GPU using the filtering algorithm of [1]. In
this work, space is represented by an (d 4 1)-dimensional
lattice called the permutohedral lattice. The nodes of the
data structure correspond to the vertices of this lattice, and
the vertices are allocated lazily as the data in the original
d-dimensional manifold is sampled. One important feature
of this data structure is that the nodes have predictable, de-
terministic locations, making it fully data-parallel. Conse-
quently, querying points in the d-dimensional space is ideal
for the GPU. In comparison, the other state-of-the-art d-
dimensional bilateral filter [2] has comparatively more ex-
pensive queries, as they require multiple traversals of a KD-
tree. As opposed to applying a bilateral filter on an im-
age, in which the number of points used to construct the
d-dimensional data structure equals the number of queries
afterwards, our task of upsampling is naturally dominated
by the querying stage, since our input depth information is

sparse compared to our high-resolution output. Therefore,
the importance of efficient queries makes the permutohedral
lattice an ideal choice.

The GPU algorithm operates on a stream of color im-
ages each of which is coupled with a its relevant, sparse
depth information. For each pair, the GPU algorithm con-
structs a d-dimensional data structure using the pair itself
and two previous and two subsequent pairs, for a total of
five pairs. It then blurs the d-dimensional space and makes
a query for each pixel of the color image. For our data sets,
this amounts to roughly 27 000 depth points available in our
buffer and 1024x768 queries made per frame (the resolu-
tion of our image; one query per pixel). Assuming that the
data is prepared with zero latency on the CPU, copying the
data onto the graphics card device memory' and applying
the GPU algorithm runs at 29.2 fps.

With respect to the fields of view of the specific camera
and laser that we use for our error analysis in Sec. 5, slicing
a full 1024x768 frame is inefficient, as we do not return
depth information for most of the camera image (e.g. in the
sky). Therefore, one could optimize to the specific case of
a given camera and sensor by only querying at image points
corresponding to the field of view of the sensor. In our case,
this optimization increases the frame rate to 43.3 fps.

5. Evaluation

We evaluated our algorithm on eight data sets. Our
data sets span the range of noisy and imperfect data with
shadows and lighting changes, to perfect ground truth with
no lighting changes. Our goal was to select a variety of
practically relevant situations where long-range depth is
important, including highway and city scenes. Four data
sets are synthetically generated, such that we have ground
truth depth at every frame. The remaining data sets were
recorded from a moving vehicle using a camera and a scan-
ning laser: two are highway scenes and two scenes are
recorded in a downtown main-street setting. All data sets
are available online (as well as source code) [9]. The non-
synthetic data sets were collected using a Velodyne HDL-
64E scanning lidar sensor and a Ladybug2 video camera.
Note that uncertainties in timestamping and differences in
field of view led to slight misalignment of depth and color
information in some frames.

We evaluated accuracy only on frames which have full
coverage of depth points, such as frames 1, 4, and 7 in Fig-
ure 5. To evaluate the errors introduced by each method,
we leave out the depth points that are coincident with the
frame at which we generate a depth map, so that we can
cross-validate the depth estimates using the omitted points.
See Figure 5 for a visualization of our input buffer. Our
camera and laser frame rates are approximately 30Hz and

'We use a desktop graphics card: NVIDIA GTX260 Core 216



Time —

Figure 5. Here we show the input buffer used in our non-synthetic evaluations. The white points indicate pixels where both depth and color
information is available. We hold out depth information from frame 4, bordered in red, and use only the surrounding depth information to
generate a depth map at that frame. The depth information actually recorded at the time frame 4 was captured is then used to evaluate the
quality of our generated depth map.

highway2 avenuel
0.15 0.2, "

2o s :
’ & """"" o

0.09 0.09
0.1 0.03]
- == Gaussian upsampling (u,v) 0.06
0.02] Joint bilateral upsampling (u,v,r,g,b) 0.02] 0.02)
— Spatio-temporal upsampling (u,v,t) 0.03
0.01 — Spatio-temporal upsampling with color (u,v.t,r,g,b) .

50% 100% 8% 50% 100% 8% 50% 100% 8% 50% 100% 8% 50% 100% 8% 50% 100% 8% 50% 100% 8% 50% 100%
Percentage of available depth data used in reconstruction

0.0

0.05{\"

0.03|

0.01 0.01 0.02

RMS of Relative Prediction Error
g
3

KX
B

Figure 6. In this figure we show the RMS of relative prediction error for our generated depth maps for four methods: Gaussian upsampling,
joint bilateral upsampling, spatio-temporal upsampling, and spatio-temporal upsampling using color information. The x-axis of each plot
represents the percentage of available input data used to generate the depth map, as discussed in the text below. In the first two methods,
we use only depth data from the previous full-coverage frame, approximating prior work that expects full depth coverage of static scenes.

10Hz respectively, and given the 72 degree field of view of ods of upsampling our sparse depth data. The first method

our camera, we expect full coverage® of a camera frame by is a naive bilinear interpolation on the nearest full depth
depth values at approximately every 3 camera frames. In information upsampled with respect to the current frame.
practice, this means that we could interpolate using a buffer The second method approximates the various prior work;
of 2 camera frames worth of depth points on either side of we perform a joint bilateral upsample using the nearest full
our query time. However, since we wish to cross-validate depth frame as input and (r, g, b) color values of the cur-
our method by leaving out frames with full depth coverage, rent frame to constrain the interpolation (see the discussion
we expand our buffer to include depth points corresponding in Sec. 2). The third method is our algorithm with posi-
to 3 adjacent camera frames in either direction. tion vectors set to (u,v,t), i.e. spatio-temporal interpola-

Given the sparse ground truth information in the se- tion without camera information. The fourth method is the
quences described above, we also wanted to test our al- full algorithm, with position vectors (r, g, b, u,v,t). The
gorithm in a fully-controllable setting free of noise. We standard deviations of the Gaussians were fixed across all
created our set of four synthetic data sets by rendering dy- methods.
namic street scenes using OpenGL, in the same format as To produce the curves in Figure 6, we selected four eval-
above, with a color image, depth map, and timestamp at uation frames from each test sequence which coincided with
each frame. Unlike the static scenes of the Middlebury data full range coverage (e.g. Frame 4 visualized in Figure 5)
sets [13], commonly used for benchmarking depth map gen- and removed those from the sequence. The task was then
eration, our data sets are sequences in which objects and the to match the held-out range values given the surrounding
sensing platform are moving. frames and range measurements.

Figure 6 shows the average RMS relative error across We show the convergence behavior of the different algo-
different input data densities. We compare 4 different meth- rithms with respect to available range measurement densi-

Zby “full,” we mean depth values are distributed across the horizontal ties by ad,dltlonally subsampling the range meas.u remen,ts'
extent of the frame, though the resolution of the HDL-64E sensor is much Range points were randomly sampled from a uniform dis-
less than the camera as shown in Figure 1 tribution. The horizontal axes of the diagrams in Figure 6



Image

-

Figure 7. This figure compares depth maps generated by our algorithm with color information and without. We zoom in on the area of the
depth map near the closest car; the first two columns show the depth map in that area, and the second two are 3D visualizations where each
image pixel is offset by its corresponding value in the depth map. Without color information, blending occurs across depth discontinuities.

Ground truth

Input depth data at 5% of pixels

Input depth data at 10% of pixels

Figure 8. In this figure, we compare the depth maps generated by
our algorithm with the dense ground truth depth for the synthetic
data sets. In our evaluation, we leave out all depth information
at the current frame and use only a small fraction of depth data
from neighboring frames. The second and third columns show the
result of using 5% and 10%, respectively, of the depth data from
two preceding and two subsequent frames. Note that some holes
appear in the second column depth maps due to the inadequate
density of depth data in some places, given our selected Gaussian
standard deviations.

Figure 9. Color is not a good descriptor when shadows and spec-
ular highlights cause depth information to blend into regions that
do not belong to the object.

give the amount of range measurements visible to the algo-
rithms. Note that even a value of 1, that is, the case in which
all range measurements are available, means that only 5%
of all image pixels were within one pixel of a range mea-
surement. The experiments were run 10 times for each se-
quence and the average relative RMS prediction errors are
plotted in Figure 6. The standard deviations of the errors
over the 10 trials were between 1% and 5% of each average,
assuring that the average error shown is indicative of the
performance of a typical execution. Error bars were omit-
ted for better readability of the graphs. Also, in scenes with
very high relative RMS (L-2 norm) error, the error measure-
ment is significantly affected by outliers, belying the quality
of the resulting depth map; the average relative error (L-1
norm) is 2-4%.

Figures 7 and 9 analyze the use of color information
from the camera frame in constraining interpolation. An
area of constant color is usually a good indication of an
area of constant depth; however, that assumption is some-
times violated, as shown in Figure 9. Bright lighting and
dark shadows in our avenue 1 and 2 sequences most likely
account for the decrease in performance of the algorithm
when using color information. Another factor is alignment
of the camera and laser, in terms of field of view and extrin-
sic calibration. The avenue datasets illustrate the effect of
slight misalignment, lighting, and appearance changes. In
cases of gross misalignment (due to inaccuracies in time-
stamping, vibration, or other factors) and differences in oc-
clusion boundaries, depth points are assigned an erroneous
color value, possibly leading to artifacts and errors in in-
terpolated depth. With worse alignment, parallax due to
perspective differences between the sensors, and more vari-
ation in lighting, performance of all evaluated algorithms
declines.

When the scene does not contain much motion relative
to the total amount of pixels in an image, static joint bilat-
eral upsampling outperforms temporal interpolation with-
out color, as it better preserves object boundaries. Preserv-
ing object boundaries is especially important in terms of er-
ror evaluation in our synthetic data sets where we have full



ground truth depth along all object edges. In our data sets,
whenever the scene is one in which color is a useful indi-
cation of depth boundaries, and the scene contains motion,
using the full (r, g, b, u,v,t) descriptor always produces a
more accurate depth map than static bilateral upsampling,
given depth data at greater than 2.5% of camera pixels.
The quality of the reconstructed depth map is dictated
by the density of available depth data, and depending on
the standard deviations of the d-dimensional blur, regions
of the image in which there are no depth data available will
result in holes, as shown in Figure 8. The holes can be
removed either by having more depth data available to our
algorithm, by increasing the Gaussian standard deviations,
or by using multi-scale techniques. Using large standard
deviations to fill areas, however, constitutes a tradeoff of
accuracy for continuity of interpolated information.

6. Conclusions and Future Work

Sensor systems typically differ significantly in their spa-
tial and/or temporal resolution. Previous upsampling algo-
rithms were limited to static scenes, and possibly limited
in scope to a single sensor. Our framework is flexible and
can generate depth maps at increased spatial and temporal
resolution for both static and dynamic scenes.

Use of our method could enable the generation of depth
maps at the spatial and temporal resolution of a camera,
even if given camera frames have no coincident data. Depth
maps at every camera frame provide good input to many
tracking and classification algorithms. One could perform
unsupervised segmentation of video sequences given sparse
depth information, for example.

Through the study of depth upsampling, we also hope
to have illustrated the applicability of a d-dimensional de-
noising framework to general d-dimensional joint filtering
tasks. Because our framework is general, one could also
interpolate multiple values concurrently; for example, lidar
intensity returns could be added and upsampled in addition
to depth values. In the future we would like to explore use of
this data structure to automatically assign labels and confi-
dence values derived from depths values, or possibly hand-
labeled semantic data, for a semi-supervised way of labeling
image data.

Acknowledgements

This work was supported by an NDSEG Graduate Fel-
lowship from the United States Department of Defense.
Thanks to Andrew Adams for helpful discussions, and Mike
Sokolsky for assistance with data collection.

References

[1] A. Adams, J. Baek, and M. A. Davis. Fast high-dimensional
filtering using the permutohedral lattice. Computer Graphics

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]
(12]
(13]

(14]

[15]

(16]

(17]

(18]

(19]

Forum (EG 2010 Proceedings), 29(2), 2010.

A. Adams, N. Gelfand, J. Dolson, and M. Levoy. Gaus-
sian kd-trees for fast high-dimensional filtering. ACM Trans-
actions on Graphics (Proc. SIGGRAPH 2009), 28(3):1-12,
20009.

H. Andreasson, R. Triebel, and A. J. Lilienthal. Non-
iterative Vision-based Interpolation of 3D Laser Scans, vol-
ume 76 of Studies in Computational Intelligence, pages 83—
90. Springer, Germany, Aug 14 2007.

E. P. Bennett and L. McMillan. Video enhancement using
per-pixel virtual exposures. ACM Transactions on Graphics
(Proc. SIGGRAPH 2005), 2005.

A. Buades, B. Coll, and J.-M. Morel. Nonlocal image and
movie denoising. International Journal of Computer Vision,
76(2):123-139, 2008.

D. Chan, H. Buisman, C. Theobalt, and S. Thrun. A noise-
aware filter for real-time depth upsampling. In Workshop
on Multi-camera and Multi-modal Sensor Fusion Algorithms
and Applications, 2008.

J. Chen, S. Paris, and F. Durand. Real-time edge-aware im-
age processing with the bilateral grid. In ACM Transac-
tions on Graphics (Proceedings of SIGGRAPH 2007). ACM,
2007.

J. Diebel and S. Thrun. An application of markov random
fields to range sensing. In Proceedings of Conference on
Neural Information Processing Systems (NIPS), Cambridge,
MA, 2005. MIT Press.

J. Dolson, J. Baek, C. Plagemann, and S. Thrun. Data
sets and source code available on the project website
http://graphics.stanford.edu/papers/upsampling_cvpr10.

E. Eisemann and F. Durand. Flash photography enhance-
ment via intrinsic relighting. ACM Transactions on Graph-
ics, 23(3):673-678, 2004.

Y. Furukawa, B. Curless, S. Seitz,

Manhattan-world stereo. In CVPR, 2009.
D. Gallup, J.-M. Frahm, P. Mordohai, and M. Pollefeys.
Variable baseline/resolution stereo. In CVPR, 2008.

H. Hirschmiiller and D. Scharstein. Evaluation of cost func-
tions for stereo matching. In CVPR, 2007.

J. Kopf, M. Cohen, D. Lischinski, and M. Uyttendaele. Joint
bilateral upsampling. ACM Transactions on Graphics (Proc.
of SIGGRAPH 2007), 26(3), 2007.

S. Paris and F. Durand. A fast approximation of the bilat-
eral filter using a signal processing approach. International
Journal of Computer Vision, 81:24-52, 2009.

G. Petschnigg, R. Szeliski, M. Agrawala, M. F. Cohen,
H. Hoppe, and K. Toyama. Digital photography with flash
and no-flash image pairs. ACM Transactions on Graphics,
23(3):664—672, 2004.

S. Schuon, C. Theobalt, J. Davis, and S. Thrun. High-quality
scanning using time-of-flight depth superresolution. In Time
of Flight Camera based Computer Vision, 2008.

Q. Yang, K.-H. Tan, and N. Ahuja. Real-time o(1) bilateral
filtering. In CVPR, 2009.

Q. Yang, R. Yang, J. Davis, and D. Nistér. Spatial-depth
super resolution for range images. In CVPR, 2007.

and R. Szeliski.



