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Abstract

Flow Doppler imaging has become an integral part of an echocardiographic exam. Automated 

interpretation of flow doppler imaging has so far been restricted to obtaining hemodynamic 

information from velocity-time profiles depicted in these images. In this paper we exploit the 

shape patterns in Doppler images to infer the similarity in valvular disease labels for purposes of 

automated clinical decision support. Specifically, we model the similarity in appearance of 

Doppler images from the same disease class as a constrained non-rigid translation transform of the 

velocity envelopes embedded in these images. The shape similarity between two Doppler images 

is then judged by recovering the alignment transform using a variant of dynamic shape warping. 

Results of similarity retrieval of doppler images for cardiac decision support on a large database of 

images are presented.

1. Introduction

With more and more patient records now containing multimodal imaging data, an exciting 

application of image and video retrieval is emerging in the area of clinical decision support. 

Cardiologists in particular, routinely use multiple imaging modalities including X-ray 

imaging, ultrasound imaging, and CT imaging for their decision making. However, their 

diagnosis methodology is still single sample-guided in that only the data from the given 

patient is used along with their a priori knowledge to make decisions. If content-based 

retrieval techniques could be used to retrieve similar case data and hence similar patients, it 

can enable enhanced decision making for physicians. For example, using similar case data, 

physicians can validate their current hypothesis. Further, by examining the associated 

diseases with the similar patient cases retrieved, they can check for any overlooked 

possibilities or alternate interpretations. Finally, they can learn of statistical correlations (or 

co-morbidities) between diseases, treatment and outcomes, thus paving the way for a whole 

new way of practicing medicine.
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While structured clinical information such as demographics, and vital signs is clearly 

relevant, the most challenging aspect of finding similar cases is determining similarity in 

unstructured modality data. What makes two X-ray images, or two echocardiogram videos 

similar is not their color or texture but the underlying disease they depict. Thus image and 

video retrieval methods would need to focus on disease-specific patterns for finding similar 

cases.

In this paper, we attempt to address this challenging application of clinical decision support 

using disease-specific shape-based retrieval of similar cases on flow Doppler imaging. Flow 

Doppler imaging, recorded during an echocardiographic exam, is widely used by clinicians 

to detect diseases of the valves such as Aortic Regurgitation, Aortic Stenosis, Mitral 

regurgitation, and Mitral stenosis [6]. In the continuous wave Doppler (CW) mode scan [6], 

the shape of the Doppler signal tracings convey information about the functioning of the 

various valves and arterial structures. Figure 1a shows one such velocity profile with the 

shape representing mitral stenosis. Traditionally, clinicians have manually traced such 

velocity envelopes to extract measurements such as decay time, pressure gradient, pressure 

half-time, and velocity time integral which are then matched to normal and abnormal values 

based on clinical guidelines. Automated analysis of Doppler imaging has so far been 

predominantly focused on automatic tracing of the velocity-time profiles to provide more 

accurate measurements for echo-cardiographers. The identity of the valve being depicted in 

the Doppler images is assumed to be known in such cases.

In this paper we utilize Doppler imaging in a new way to enable automated decision support. 

Specifically, we observe that different valvular diseases appear as characteristic shape 

patterns in Doppler images. By measuring the similarity in the shape pattern conveyed 
within the velocity region of two Doppler images, we can infer the similarity in their 
diagnosis labels. Figure 2 illustrates the discriminability of diseases in CW Doppler 

imaging. Figure 2ab show examples of velocity patterns from moderate and severe mitral 

stenosis. Similarly, Figure 2c–d show examples of aortic stenosis and regurgitation 

respectively. Finally, Figure 2e–f show examples of tricuspid regurgitation and pulmonary 

regurgitation. As can be seen, each of these patterns is discriminative. Further, members of 

the same disease class exhibit remarkable similarity in appearance as shown in Figure 2i–j 

which shows two instances of moderate pulmonary valve regurgitation. Thus it is plausible 

that the disease similarity can be inferred by developing a measure for capturing the visual 

similarity of the velocity region within Doppler images.

Using fully automated processing to discover similarities in Doppler images is, however, a 

challenging task. First, reliable pre-processing is needed to separate the Doppler frames 

from the rest of the frames in an echocardiogram video recording and the relevant region 

containing velocity profiles has to be isolated within these frames. Next, the detection of 

similarity should account for variations in heart rate and signal intensity. Finally, the 

similarity measure should be robust to individual inter-patient variations in the shape profile 

within the same disease class as shown in Figure 2i–j, while still being able to discriminate 

between mild, moderate and severe cases of the disease, as shown in Figure 2a–b and g–h. 
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Here Figure 2a–b, g–h show moderate and severe cases of mitral regurgitation and mild and 

moderate cases of mitral stenosis, respectively.

The rest of the paper describes our approach to finding similar Doppler images that 

addresses the above issues. It makes several novel contributions. To our knowledge, this is 

the first work to address disease recognition and retrieval from echo Doppler patterns. 

Although clinicians are implicity aware and often ‘eye ball’ such patterns, systematic 

correlation between diseases and shape patterns in Doppler velocity flows has not yet been 

documented well, even in medical text books. Secondly, the method of non-rigid shape 

matching of flow velocity envelopes is easily applicable for other time series where internal 

variations between members of a class can be modeled under a similar transform. By using 

this shape modeling approach, built-in verification is achieved as in object recognition due to 

the recovery of the registration parameters during shape similarity-based retrieval. Finally, 

unlike most medical image retrieval methods focused on theoretical evaluation on 

benchmark datasets that stop at retrieving images, we take to the next step by evaluating the 

utility of such retrieval for clinical decision support.

1.1. Background

In Doppler imaging, ultrasound waves of a known frequency are transmitted and the 

amplitude and frequency of the received signal is recorded. Due to the Doppler effect, the 

motion of blood and tissue within the heart’s chambers induces frequency shifts between the 

transmitted and received signals [6]. Since blood moves at much higher velocities than the 

surrounding heart tissue, it induces higher frequency shifts than tissue. Thus, high-pass 

filtering of the received signal eliminates the response from the surrounding tissue and 

provides information exclusively of blood-flow. While there are different modes of Doppler 

imaging, including 2D, color, PW, etc. [6], the CW Doppler has become popular due to its 

high temporal and velocity resolution as it avoids aliasing through continuous scanning. In 

the CW mode scan, the shape of the Doppler signal tracings convey information about the 

functioning of the various valves and arterial structures.

Figure 1 shows sample Doppler images taken during an echocardiogaphic exam of patients 

and illustrates the challenge these images pose both from the point of image processing and 

pattern recognition. The Doppler velocity flow pattern is captured in a box-like region in 

each of the examples in this figure. As can be seen, the location and size of the containing 

region can change based on machine and nature of exam (eg. zoom into a region). The 

Doppler flow pattern is sometimes clearly apparent as in Figure 1a with the distinctive M-

shape for mitral stenosis, while in other cases, it is difficult to even see the pattern as in 

Figure 1c. Velocity flow spreads in both directions from a baseline, which is also difficult to 

detect as seen in Figure 1b where the salient horizontal line is not necessarily the baseline. 

Finally, aliasing effects may still be present in severe cases of disease as seen in Figure 1d 

where the vertical streaks in velocity are artifacts that need to be filtered.
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2. Related Work

The medical image retrieval community has been active since the early days of content-

based retrieval [14, 5, 8] with ImageCLEF [2, 10] now offering reference X-ray collections 

for benchmarking medical retrieval algorithms. Very little of this work, however, has moved 

to clinical practice for actual decision support and has focused mainly on image 

classification [2]. For clinical decision support, similarity ranking needs to advance to the 

next step of integrating with associated disease, treatment and outcome data with patients (in 

electronic records) in order to validate diagnosis, learn about alternatives and co-morbidities. 

Treating this as a pure image classification is not sufficient since in reality patients have 

multiple diseases whose combined effect on the diagnostic image appearance can be quite 

complex and would need considerably large number of samples for training.

Much of the work on Doppler image analysis has been on automatically tracing the velocity 

time profiles. Early work attempted to extract the E-wave of the Mitral valve profile using 

neural networks [11]. The velocity curve tracing was attempted using edge detection 

algorithms for the brachial artery Doppler images in [15]. Later work applied contour 

tracing for Mitral and tricuspid valves in [13] to extract clinical parameters such as peak 

velocity, velocity-time integral, etc. In a recent work [7], the tracing of mitral valve inflow 

Doppler spectra was combined with segmentation of mitral inflow structures. Since different 

measurements are made for different valves, these approaches assume that the valve identity 

is known. Further, the approach is specific to a disease or cardiac structure under study as 

described in the work of [4, 9]. Similarly, [3] focus on diseases of the Mitral valve by 

extracting the pressure-gradient from the Doppler images and [13] focus on extraction of 

velocity envelopes in cases of atrial fibrillation. A more recent work proposed a machine 

learning algorithm for automatically tracing the envelopes of specific spectra such as the 

mitral valve inflow Doppler spectra [7]. In contrast, we present a comprehensive approach to 

extracting velocity profiles independent of the disease while performing end-to-end 

processing of actual echo studies of patients.

3. Feature extraction from Doppler images

The input in our case is a full echo study available as an echocardiogram video. From this, 

the Doppler frames need to be separated from other frames in an echocardiogram video that 

depict moving heart regions, and textual measurement-only frames. To isolate the Doppler 

frames, we build rectangular templates capturing the Doppler region through a training 

process using echo frames from various echo machines (Siemens Sequoia, Siemens Cypress, 

etc.) that capture the expected position and size of the Doppler regions in an echo video 

frame. By applying the templates, all Doppler frames in an echo video were isolated. To 

distinguish CW Doppler frames from PW and other Doppler, we applied an optical character 

recognition (OCR) engine (Tesseract) in a band above the rectangular regions isolated, to 

look for appropriate keywords such as ‘CW’ or ‘PW’. This template matching step also 

gives the Doppler containing region as shown in Figure 3b for the raw frame in Figure 3a. 

The selected region may contain measurement panels (eg. pop-up box on upper left in 

Figure 3a) that are adjacent or overlapping the Doppler signal containing region.
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3.1. Extracting velocity envelopes

To highlight the velocity profiles within the selected region, we apply a foreground 

separation from background thresholding algorithm [12]. This classic algorithm called 

Otsu’s thresholding, calculates the optimum threshold separating the foreground and 

background classes so that their combined spread (intra-class variance) is minimal using the 

shape of the histogram of pixel intensities. The algorithm however leaves salt and pepper 

noise in the resulting images as shown in Figure 3c for the selected region in Figure 3b. By 

retaining large perceivable regions (greater than 50 pixel area in this case) ensures that much 

of the velocity signal is captured as shown in Figure 3d. A morphological close step is 

applied to fill up the small holes in the bright regions to yield a clean velocity signal 

containing region as shown in Figure 3e for the image in Figure 3d. We then trace the 

boundary pixels of all white regions to get contours such as those shown in Figure 3f. As can 

be seen the velocity profile is contained in these boundaries, although the adjacent ECG 

trace from above as well as calibration axes are highlighted as well. To extract the final 

velocity envelope, we retain strong boundaries that are on either side of the baseline. This is 

the horizontal axis line shown in all images of Figure 3. As this line can be sometimes 

occluded by the measurement bars (eg. vertical bars in Figure 3b), measurement screens, or 

artifacts, simple image processing is not sufficient to detect the baseline. Our approach 

exploits the velocity unit marker on the left denoted by ‘m/s’ which is always positioned at 

the axis line. For this we build templates for the region containing the m/s symbol and use 

template matching to isolate its location in the Doppler frame. The y coordinate of this 

region is then used as an estimate of the baseline. Finally, to remove the effect of spiking 

artifacts that may be embedded within the velocity signal (eg. Figure 1d), we employ a 

temporal median filter of a window size of 3 pixels on the extracted envelopes.

Detecting heart cycles—To make the subsequent matching invariant to heart rate, we 

segment the velocity envelopes into individual heart beat cycles. Reliable estimation of heart 

rate from these imagery is difficult particularly due to measurement overlays and noise in 

Doppler region. We developed a robust technique to detect the heart rate using several 

confirmation sources. The first estimate of heart rate comes from measurement supplied by 

the echo machine itself, overlayed on the echo frame, as, for example, HR=54 bpm, in the 

right column of text in Fig. 4a. Template matching first isolates the text “HR=”, and then 

OCR is used on a bounding box just to the right to extract the heart rate in beats per minute. 

To convert the heart rate from beats per minute to actual pixel widths in the Doppler region, 

we detect the calibration markers on the top horizontal axis of the Doppler region (see 

Figure 4a). The inter-marker spacing is always 200 ms, so that estimating this distance d in 

pixels is sufficient for the transformation of time to pixel width. Here again, we employ a 

template matching approach to detect the calibration markers, and form a histogram of the 

difference in x-coordinates between all pairs of detections. The histogram is dominated by d 
and integer multiples of d, so we process the histogram to find the first significant peak. Fig. 

4 shows a raw image (a), the tick detections in red circles (b), and the x-distance histogram 

(c).
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As a second approach, we used the velocity signal region contained within the Doppler 

velocity envelope found in Section 3.1 directly for autocorrelation-based periodicity 

estimation. The Doppler envelopes are then segmented into distinct heart cycles using the 

pixel width information. To normalize for intensity and heart rate differences, all unit cycle 

envelopes are resampled to a fixed sample width. To avoid aliasing, the sample width should 

be larger than the longest time period that can be found in these images. Since the Doppler 

image size is typically 580 pixel wide, and there is at least one cycle of velocity flow 

captured, we take a uniform sampling of 500 samples.

3.2. Feature description of velocity envelopes

Important fiducial points are extracted from the upper and lower envelopes. For this, a 

simple line segment approximation of the envelope curves is achieved through a recursive 

partitioning of the curve. A threshold on minimum length = 5 pixels, and amplitude 

deviation of 0.01 of the normalized profile was found sufficient to remove much of the noise 

during tracing. The fiducial points are then chosen as corners in the line segment 

approximation where the curvature changes significantly (2 degrees–178 degrees). Each 

corner is then described using its parametric(t,f(t)) position, included angle θ, and the 

orientation of the bisector ϕ as s(t) =< t, f(t), θ, ϕ >. Using the angle of the corner ensures 

that the sharpness of the envelopes is retained as a feature. This will help discriminate 

between mild, moderate and severe cases of the disease. The orientation of the bisector, on 

the other hand, ensures that the errors due to polarity reversals in the envelope shape are 

avoided, thus improving the distinction between some regurgitation and stenosis patterns 

(where direction of the lobe is important).

4. Matching Doppler Envelopes

We now address the problem of matching Doppler images. The goal of the matching is to 

recognize the inherent shape pattern characterizing diseases (or combinations) by modeling 

the overall perceptual similarity in appearance within members of the same disease class. 

Such a matching should not only be invariant to heart rate, signal intensity, imaging artifacts, 

but also patient-specific details that cause the onset of different events within a heart cycle to 

shift in time in a non-rigid fashion. Further, even though the individual velocity envelopes 

have been segmented into single heart cycles, the start of the cycles are not necessarily 

synchronized. Thus the envelopes have to be circularly rotated to be brought into 

correspondence prior to matching. When the candidate envelope is a matching envelope, a 

simple 1D correlation can recover this time shift. The rotation of the signal, however, must 

be circular to preserve the shape.

Assuming such rotation has taken place, we model the intra-class shape variations that 

maintain the overall similarity in perceptual appearance as a constrained non-rigid 

translation transform of the parametric representation of the envelope curves. For our 

purpose, a disease class X is a 3-tuple (disease type, valve type, severity level). Let the upper 

and lower envelope curves of a single period Doppler image segment be represented by G(t) 
=< gl(t), gh(t) > corresponding to disease class X. Consider another (single period segment) 

Doppler image F(t) =< fl(t), fh(t) > that is a potential match to G(t) corresponding to the 
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same disease. We model the relation between G(t) and F(t) as a constrained non-rigid 

transform [a, b, Γ] such that

(1)

where the absolute symbol represents the distance metric that measures the difference 

between F′(t) and G(t), the simplest being the Euclidean norm and with

(2)

The term A = [a1 a2]T is a scaling transform to align the two Doppler envelopes, b is a term 

(common for both envelopes) to reflect the time scale differences due to heart rates, and Γ(t) 
is to model the non-rigid time shifts of the envelope due to differences in systolic and 

diastolic components within individual heart cycles among patients within the same disease 

class.

The parameters A and b can be solved by normalizing in amplitude and time. That is, if we 

transform F(t) and G(t) such that and

(3)

then a1 = a2 = 1. Here Gmin and Gmax are the vectors of minima in each envelope. To 

eliminate solving for b, we can normalize the time axis, so that all time instants lie in the 

range [0, 1]. Since the single period segments were already scaled to a fixed pixel width 

prior to shape matching, we already have b = 1 in our case.

Recovering Γ

We recover the non-uniform time translation Γ using a variant of dynamic time warping 

(DTW). Instead of using time and derivative of curve as a constraint for DTW, we exploit 

detailed shape information of fiducial features such as angle of turn and orientation of 

bisector. This helps anchor the warping to important fiducial points along the curve. The 

non-rigid deformation of time for all other intermediate points can be recovered through 

time interpolation. This makes DTW not only efficient (as there are fewer fiducial points) 

but also more accurate as detailed shape information is taken into account for matching.

Let there be K features extracted from  as 

 at time {t1, t2, …, tK} respectively. 

Similarly, let there be M fiducial points extracted from G(t) as 

 at time  respectively. 
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If we can find a set of N matching fiducial points , then the non-uniform 

translation transform Γ can be defined as:

(4)

and  is the highest of  and is the lowest of  that have a valid mapping in 

CΓ. Other interpolation methods besides linear (eg. spline) are also possible. Using 

Equations 1 and 5, the shape approximation error between the two Doppler signals is then 

given by:

(5)

For each G(t), we would like to select Γ such that it minimizes the approximation error in (6) 

while maximizing the size of match CΓ. This additional step allows verification of candidate 

matches returned by dynamic shape warping.

Finding the best matching Doppler image to a given image can then be formulated as finding 

the 2D envelope G(t) such that

(6)

while choosing the best Γ for each respective candidate match G(t).

Recovering correspondence of fiducial points

We recover the correspondence of fiducial points FK, GM using shape-based dynamic time 

warping. For this, we form a dynamic programming matrix H where the element H(i, j) is 

the cost of matching up to the ith and jth element in the respective multi-d curves as

(7)

with initialization as H0,0 = 0 and H0,j = ∞ and Hi,0 = ∞ for all 0 < i ≤ K, and 0 < j ≤ M. 

The shape constraints for matching are incorporated in the term d(.). Also, the first term 

represents the cost of matching the feature point  to feature point  which is low if 

the features are similar. The second term represents the choice where no match is assigned to 

Syeda-Mahmood et al. Page 8

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. Author manuscript; available in PMC 2017 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



feature . The cost function  is then given as the Euclidean distance 

between the two fiducial points using the 4 parameters as

The thresholds (λ1, λ2, λ3, λ4) are determined through a prior learning phase in which the 

expected variations per disease class is noted.

The overall shape-based similarity search algorithm works as follows. During the database 

creation stage, all cardiac echo studies are processed to separate Doppler frames. The frames 

are pre-processed as described in Section 3 to extract envelope curves and their corner shape 

features. Given any new query Doppler image, a ranked set of matching Doppler images are 

obtained using the matching metric described in Section 4 above, and those that exceed a 

threshold are retained. From the set of Doppler images retrieved, a histogram of their 

associated disease tuples (disease type, valve type, severity type) is separately constructed. 

The peaks in the histogram correspond to label values that have the most support from the 

matching images, thus increasing their probability of being the correct label values for the 

query image. Similar statistical distributions can be found for other information associated 

with the patients, such as medications and outcomes for further enhanced decision support.

5. Results

We now report on experiments that use the above approach to do shape-based similarity 

retrieval of Doppler images.

5.1. Experimental setup

A set of 2300 cardiac echo videos were collected from 1940 cardiac patients from a large 

hospital network in our area. Each echo study on the average had 20 CW Doppler frames 

giving rise to a collection of 34000 Doppler images. Of these about 200 CW Doppler frames 

were used to train the dynamic shape warping parameters of the matching metric. Each echo 

study was also associated with a clinical report that documents the findings. Specific 

diagnosis terms corresponding to ICD9 [1] codes representing over 300 cardiac diseases 

were automatically isolated from the reports using text mining techniques (keyword spotting 

in summary area of the textual report), to serve as ground truth labels for the patient. Due to 

the large number of Doppler images, obtaining the correspondence between the disease label 

of the patient and the specific Doppler image depicting the condition (eg. moderate mitral 

stenosis) was challenging. To expedite the ground truth labeling, we first assembled all 
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Doppler images from patients with a report label of a particular disease class (eg. moderate 

mitral stenosis)into one folder. By browsing through this collection, the images were 

manually divided into similar shape groups. A few representatives from each shape group 

were then examined by trained personnel (4 experts) who could identify the valve as well as 

the diseased state of the valve based on the measurements extracted from the valve. The 

images were then labeled with the disease (e.g regurgitation vs stenosis), the valve (mitral, 

aortic), and the severity (moderate, severe, etc.). In our experiments, we considered three 

disease variants, namely, normal, stenosis, regurgitation and three valve combinations, 

namely, Mitral, Aortic, and Tricuspid valves, and finally, 3 severity variants of mild, 

moderate, and severe. This gave rise to 2×3×3+1×3(normal)=21 possible combinations of 

valvular diseases.

Similarity retrieval results—We first illustrate the shape matching between two Doppler 

envelopes. Figure 5a shows a query Doppler image. Figure 5b shows its velocity envelope. 

After isolating single heart beat and amplitude normalization given by Equation 4, the upper 

and lower envelopes appear as shown in Figure 5d–e. The corner shape features used for 

matching are also indicated by red circles in these figures. A candidate matching image is 

shown in Figure 5c with its corresponding single heart cycle envelopes in Figure 5f–g. As 

can be seen, there are both missing and spurious features, as well as a global time shift. 

Using correlation to recover the global shift, and using dynamic shape warping for the 

nonrigid shape correspondence, we find the matching subset of features as indicated in 

Figure 5h–k for query and matching image respectively. As can be seen, important fiducial 

point similarity has been preserved through the non-rigid warping.

Figure 6 show results of similarity retrieval for a query Doppler image depicting Aortic 

regurgitation. All the matches retrieved show aortic regurgitation although the severity levels 

vary between moderate to mild (the third match) and the patterns and heart rate are different 

in these cases.

Disease similarity detection performance—We first evaluated the disease similarity 

detection using the conventional measures of precision and recall. To evaluate disease 

similarity detection, we noted the fraction of queries in which the top K predicted disease 

tuples DT (includes disease, valve, and severity) derived from top ranking matches included 

the manually assigned label. We also measured the precision and recall for similarity 

retrieval as follows.

(8)

(9)
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The resulting Precision-Recall plots averaging over queries of the same disease class are 

shown for 6 diseases in Figure 7. As can be seen, the precision and recall are higher for 

Mitral Stenosis and Aortic Regurgitation due to their more discriminatory patterns. Thus 

these experiments confirmed the validity of the approach of using the shape patterns 

conveyed by Doppler images to infer the valvular disease labels for decision support.

It should be noted that the lower precision indicated in the precision-recall curve of Figure 7 

for high recall is not necessarily a problem since due to co-morbidity associations (i.e. likely 

to co-occur in a population), other disease labels could be relevant. To evaluate this, we ran 

all images as queries against our image database and retained their top 20 matches. We 

found that 92.4% of the queries had all of their disease labels recovered with a maximum 

rank of 5. That is, the correct disease labels were within the top 5 matches. Among the non-

matches, nearly 50% of them were valid associations as judged by clinicians. With this, the 

utility of shape similarity retrieval for clinical decision support was demonstrated.

Valve identification—Since our matching method explicitly recovers nonrigid 

deformation between matching shapes, it is expected to perform better than conventional 

machine learning methods, even for the task of classification. To evaluate this, we compared 

our approach to two other machine learning methods for the task of valve label 

classification. For this, we retained only the valve information from the disease labels of 

matching images, and assigned the most common valve label to the query image. The valve 

prediction accuracy was recorded as:

(10)

The accuracy of valve prediction for various diseases are shown in the table in Fig. 7. As can 

be seen, mitral stenosis is easily recognizable due to its characteristics M pattern. The lower 

recognition of tricuspid stenosis is due to the small number of cases in our collection. In 

general, the similarity in the appearance of their regurgitation profiles for mitral, and 

tricuspid valves can also cause confusion.

Using the normalized envelope curves as input to a conventional machine learning classifier 

gave worse performance. In particular, we used 239 envelope curves drawn from various 

classes (disease-valve-severity) as training datasets and 466 cases for testing. A neural 

network algorithm (feedforward with backpropagation) found the average accuracy to be 

only 10.2%! Using support vector machines only improved the classification to 39.27%. 

Thus this experiment showed the value of our method for high precision disease-specific 

classification as well.

6. Conclusion

In this paper, we have explored the utility of shape based matching of Doppler images for 

disease similarity retrieval. The approach is generalizable to many disease classes and 
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cardiac structures without any training. Experiments show promising results on various 

cardiac diseases for decision support.
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Figure 1. 
Illustration of CW Doppler images. (a) M pattern in flow Doppler profile typical of Mitral 

stenosis. (b) Baseline need not be distinctive. (c) Doppler profile has visibility problems. 

The region is a zoomed-in view. (d) Aliasing artifacts alter the pattern.
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Figure 2. 
Illustration of shape patterns conveyed by Doppler images for various cardiac diseases.(a)–

(b) Mild and moderate Mitral Stenosis. (c)Aortic Stenosis. (d) Aortic regurgitation. 

(e)Tricuspid regurgitation. (f) Pulmonary regurgitation. (g)–(h) Moderate and severe Mitral 

regurgitation. (i)–(j) Moderate pulmonary regurgitation.
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Figure 3. 
Illustration of velocity envelope extraction from Doppler images. (a) Original Doppler image 

frame from an echocardiogram video sequence. (b) Doppler velocity containing regions 

retained in the original image (c) Image of (b) thresholded to separate the foreground.(d) 

Largest region retained. (e) morphological close operation to fill up holes in largest region. 

(f) Boundary pixels of the largest region. (g) velocity upper and lower envelopes.
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Figure 4. 
To estimate signal periodicity, we combine the measured heart rate using OCR with a 

parsing of the tick marks of the Doppler plot’s horizontal axis to map time to pixels. For 

original image (a), tick marks are detected (b), and a histogram (c) of the x-distance between 

all pairs of detections is computed. The inter-tick distance is the first signficant peak in the 

histogram.
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Figure 5. 
Please see text for details.
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Figure 6. 
Illustration of shape-based disease similarity retrieval using Doppler images.(a) query 

Doppler image depicting moderate Aortic regurgitation. Doppler images retrieved in order 

from left to right, top to bottom. All images retrieved depict Aortic regurgitation, although 

they vary from mild to moderate Aortic regurgitation.
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Figure 7. 
Table (top) of valve identification accuracy, and illustration (bottom) of precision versus 

recall for disease similarity retrieval using Doppler images.
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