
Detecting and Sketching the Common

Shai Bagon Ori Brostovski Meirav Galun Michal Irani
Dept. of Computer Science and Applied Mathematics

The Weizmann Institute of Science
Rehovot 76100, Israel

Abstract

Given very few images containing a common object of
interest under severe variations in appearance, we detect
the common object and provide a compact visual repre-
sentation of that object, depicted by a binary sketch. Our
algorithm is composed of two stages: (i) Detect a mutu-
ally common (yet non-trivial) ensemble of ‘self-similarity
descriptors’ shared by all the input images. (ii) Having
found such a mutually common ensemble, ‘invert’ it to gen-
erate a compact sketch which best represents this ensemble.
This provides a simple and compact visual representation of
the common object, while eliminating the background clut-
ter of the query images. It can be obtained from very few
query images. Such clean sketches may be useful for detec-
tion, retrieval, recognition, co-segmentation, and for artis-
tic graphical purposes.

1. Introduction
Given very few images (e.g., 3-5) containing a com-

mon object of interest, possibly under severe appearance
changes, we detect the common object and provide a sim-
ple and compact visual representation of that object, de-
picted by a binary sketch (see Fig. 1). The input images
may contain additional distracting objects and clutter, the
object of interest is at unknown image locations, and its ap-
pearance may significantly vary across the images (differ-
ent colors, different textures, and small non-rigid deforma-
tions). We do assume, however, that the different instances
of the object share a very rough common geometric shape,
of roughly the same scale (±20%) and orientation (±15◦).
Our output sketch captures this rough common shape.

The need to extract the common of very few images oc-
curs in various application areas, including: (i) object de-
tection in large digital libraries. For example, a user may
provide very few (e.g., 3) example images containing an
object of interest with varying appearances, and wants to
retrieve new images containing this object from a database,
or from the web. (ii) Co-segmentation of a few images.
(iii) Artistic graphical uses.

(a) (b)
Figure 1. Detecting and sketching the common: (a) The 4 input
images provided to the algorithm. (b) The least trivial common
part (the heart) is detected and sketched by the algorithm.

Our method is based on densely computed Local Self-
Similarity Descriptors [14]. Our algorithm is composed of
two main steps: (i) Identify the common object by detect-
ing a similar (yet “non-trivial”) ensemble of self-similarity
descriptors, that is shared by all the input images. Corre-
sponding descriptors of the common object across the dif-
ferent images should be similar in their descriptor values,
as well as in their relative positions within the ensemble.
(ii) Having found such a mutually common ensemble of
descriptors, our method “inverts” it to generate a compact
binary sketch which best represents this ensemble.

It was shown in [14] that given a single query image of
an object of interest (with very little background clutter), it
is possible to detect other instances of that object in other
images by densely computing and matching their local self-
similarity descriptors. The query image can be a real or
synthetic image, or even a hand-drawn sketch of the object.

In this paper we extend the method of [14] to handle mul-
tiple query images. Moreover, in our case those images are
not centered around the object of interest (its position is un-
known), and may contain also other objects and significant
background clutter. Our goal is to detect the “least triv-
ial” common part in those query images, and generate as
clean as possible (region-based) sketch of it, while elimi-
nating the background clutter of the query images. Such
clean sketches can be obtained from very few query images,



and may be useful for detection, retrieval, recognition, and
for artistic graphical purposes. Some of these applications
are illustrated in our experiments.

Moreover, while [14] received as an input a clean hand-
drawn sketch of the object of interest (and used it for detect-
ing other instances of that object), we produce a sketch as
one of our outputs, thereby also solving the “inverse” prob-
lem, namely: Given several images of an object, we can
generate its sketch using the self-similarity descriptor.

A closely related research area to the problem we ad-
dress is that of ’learning appearance models’ of an object
category, an area which has recently received growing at-
tention (e.g., [4, 3, 5, 15, 8, 9, 12, 16, 18], to name just a
few). The goal of these methods is to discover common ob-
ject shapes within collections of images. Some methods as-
sume a single object category (e.g., [4, 5, 8, 15, 12, 16, 18]),
while others assume multiple object categories (e.g., [3, 9]).
These methods, which rely on weakly supervised learning
(WSL) techniques, typically require tens of images in or-
der to learn, detect and represent an object category. What
is unique to the problem we pose and to our method is the
ability to depict the common object from very few images,
despite the large variability in its appearance. This is a sce-
nario no WSL method (nor any other method, to our best
knowledge) is able to address. Such a small number of
images (e.g., 3) does not provide enough ’statistical sam-
ples’ for WSL methods. While our method cannot compete
with the performance of WSL methods when many (e.g.,
tens) of example images are provided, it outperforms ex-
isting methods when only few images with large variabil-
ity are available. We attribute the strength of our method to
the use of densely computed region-based information (cap-
tured by the local self-similarity descriptors), as opposed to
commonly used sparse and spurious edge-based informa-
tion (e.g., gradient-based features, SIFT descriptors, etc.)
Moreover, the sketching step in our algorithm provides an
additional global constraint.

Another closely related research area to the problem ad-
dressed here is ‘co-segmentation’ (e.g., [13, 1, 11]). The
aim of co-segmentation is to segment out an object com-
mon to a few images (2 or more), by seeking segments in
the different images that share common properties (colors,
textures, etc.) These common properties are not shared by
the remaining backgrounds in the different images. While
co-segmentation methods extract the common object from
very few images, they usually assume a much higher degree
of similarity in appearance between the different instances
of the object than that assumed here (e.g., they usually as-
sume similar color distributions, similar textures, etc.)

The rest of the paper is organized as follows: Sec. 2 for-
mulates the problem and gives an overview of our approach.
Sec. 3 describes the component of our algorithm which de-
tects the ‘least trivial’ common part in a collection of im-
ages, whereas Sec. 4 describes the sketching component of
our algorithm. Experimental results are presented in Sec. 5.

Figure 2. The Local Self Similarity Descriptor: (Figure taken
from [14].) The self-similarity descriptor for any given point (e.g.,
the green point in the left image), is computed by measuring the
similarity of a 5 × 5 patch around the point with the surrounding
60×60 image region. This results in a ‘correlation’ surface (mid-
dle image). The correlation surface is quantized into a compact
log-polar representation of 45 bins (15 angles, 3 radial intervals)
to achieve invariance against small local affine and non-rigid de-
formations. The maximum value in each bin constitutes the value
at the corresponding descriptor entry (right most image).

2. Problem Formulation
Let I1, ..., IK be K input images containing a com-

mon object under widely different appearances. The ob-
ject may appear in different colors, different textures, and
under small non-rigid deformations. The backgrounds are
arbitrary and contain distracting clutter. The images may be
of different sizes, and the image locations of the common
object are unknown. We do assume, however, that the dif-
ferent instances of the object share a very rough common
geometric shape, of roughly the same scale and orientation.
Our output sketch captures this rough common shape.

Our approach is thus based on detecting ’common re-
gions’ (as opposed to ’common edges’), using densely com-
puted Local Self-Similarity Descriptors [14]. This descrip-
tor (illustrated in Fig. 2) captures local shape information
in the image vicinity where it is computed, while being in-
variant to its photometric properties (color, texture, etc.) Its
log-polar representation makes this descriptor insensitive to
small affine and non-rigid deformations (up to ±20% in
scale, and ±15◦). It was further shown by [7] that the lo-
cal self-similarity descriptor has a strong descriptive power
(outperforming SIFT). The use of local self-similarity de-
scriptors allows our method to handle much stronger varia-
tions in appearance (and in much fewer images) than those
handled by previous methods. We densely compute the
Self-Similarity descriptor in images I1, ..., IK (at every 5-th
pixel). ‘Common’ image parts across the images will have
similar arrangements of self similarity descriptors.

Let c1, ..., cK denote the unknown locations of the com-
mon object in theK images. Let Ick

k denote a w×h subim-
age of Ik centered at ck, containing the common object
(k = 1, ...,K) (need not be tight). For short, we will denote
it by Ĩk. The sketch we seek is a binary image S of size
w × h which best captures the rough characteristic shape



(a) (b)
Figure 3. Sketching: (a) Five input images. (b) Their joint sketch.

of the common object shared by Ĩ1, ..., ĨK . More formally,
we seek a binary image S whose local self-similarity de-
scriptors match as best as possible the local self-similarity
descriptors of Ĩ1, ..., ĨK . The descriptors should match in
their descriptor values, as well as in their relative positions
with respect to the centers {ck}:

Score(S|Ĩ1, ..., ĨK) =
K∑

k=1

match(S, Ĩk) (1)

=
K∑

k=1

w·h∑
i=1

sim
(
dS

i , d
k
i

)
where dS

i is the i-th self-similarity descriptor computed at
image location li in the sketch image S, dk

i is the self-
similarity descriptor computed at the same relative posi-
tion li (up to small shifts) in the w × h subimage Ĩk, and
sim(d1, d2) = − ‖ d1 − d2 ‖p measures how similar two
descriptor vectors are (we experimented with Lp norms for
p = 1, 2). Thus, the binary sketch we seek is:

Ŝ = argmax{Score(S|Ĩ1, ..., ĨK)} s.t. S(l) ∈ {−1, 1}
(2)

where S(l) is the value of S at pixel l. This process is de-
scribed in detail in Sec. 4, and results in a sketch of the type
shown in Fig 3.

While edge-based detection and/or sketching [9, 18, 5]
requires many input images, our region-based detection and
sketching can be recovered from very few images. Edges
tend to be very spurious, and are very prone to clutter (even
sophisticated edge detectors like [10] – see Fig. 4.b). Edge-
based approaches thus require a considerable number of im-
ages, to allow for the consistent edge/gradient features of
the object to stand out from the inconsistent background
clutter. In contrast, region-based information is much less
sparse (area vs. line-contour), less affected by clutter or by
misalignments, and is not as sensitive to the existence of
strong clear boundaries. Much larger image offsets are re-
quired to push two corresponding regions out of alignment
than to misalign two thin edges. Thus, region-based cues
require fewer images to detect and represent the common
object. Indeed, our method can provide good sketches from
as few as 3 images. In fact, in some cases our method pro-
duces a meaningful sketch even from a single image, where

(a) (b) (c)
Figure 4. Regions vs. Edges: (a) a single input image. (b) The
edge map generated by the method of [10]. (c) The binary sketch
generated by our method when applied to the single input image
(using all the self-similarity descriptors densely computed in that
image). This illustrates the concept that region-based information
is much richer than sparse edge-based information, and therefore
appears to be more powerful for detection and for sketching.

edge-based sketching is impossible to interpret – see exam-
ple in Fig. 4.

In the general case, however, the locations c1, ..., cK of
the object within the input images I1, ..., IK , are unknown.
We seek a binary image S which sketches the ‘least triv-
ial’ object (or image part) that is ‘most common’ to all
those images. The ‘most common’ constraint is obvious:
in each image Ik there should be a location ck for which
match (S, Ick

k ) is high (where Ĩk = Ick

k is the subimage
centered at ck). However, there are many image regions
that are trivially shared by many natural images. For exam-
ple, uniform regions (of uniform color or uniform texture)
occur abundantly in natural images. Such regions share
similar self-similarity descriptors, even if the underlying
textures or colors are different (due to the invariance proper-
ties of the self-similarity descriptor). Similarly, strong ver-
tical or horizontal edges (e.g., at boundaries between two
different uniformly colored/textured regions) occur abun-
dantly in images. We do not wish to identify such trivial
(insignificant) common regions in the images as the ‘com-
mon object’.

Luckily, since such regions have good image matches in
lots of locations, the statistical significance of their good
matches tends to be low (when measured by how many
standard deviations its peak match values are away from its
mean match value in the collection of images). In contrast, a
non-trivial common part (with non-trivial structure) should
have at least one good match in each input image (could
also have a few matches in an image), but these matches
would be ‘statistically significant’ (i.e., this part would not
be found ‘at random’ in the collection of images).

Thus, in the general case, we seek a binary sketch S and
locations c1, ..., cK in images I1, ..., IK , such that:
(i) S is ‘most common’, in the sense that it maximizes
Score(S|Ic1

1 , .., I
cK

K ) =
∑K

k=1match(S, I
ck

k ) of Eq. (1).
(ii) S is ‘least trivial’, in the sense that its matches at
c1, ..., cK are statistically significant, i.e., it maximizes∑K

k=1 StatSignificance (match(S, Ick

k )), where the sig-
nificance of a match of S is measured by how many stan-
dard deviations it is away from the mean match value of S.

Our optimization algorithm may iterate between these



two constraints: (i) Detect the locations {ck}Kk=1 of
the least trivial common image part in {Ik}Kk=1 (Sec. 3).
(ii) Sketch the common object given those image locations
(Sec. 4). The overall process results in a sketch image,
which provides a simple compact visual representation of
the common object of interest in a set of query images,
while eliminating any distracting background clutter found
in those images.

3. Detecting the Common
We wish to detect image locations c1, ..., cK in

I1, ..., IK , such that corresponding subimages centered at
those locations, Ick

k , share as many self-similarity descrip-
tors with each other as possible, yet their matches to each
other are non-trivial (significant). The final sketch S will
then be obtained from those subimages (Sec. 4).

Let us first assume that the dimension w × h of the
subimages is given. We will later relax this assumption. Let
Ĩ be a w × h image segment (this could be the final sketch
S, or a subimage extracted from one of the K input images
in the iterative process). We wish to check if Ĩ has a good
match in each of the input images I1, ..., IK , and also check
the statistical significance of its matches. We ‘correlate’ Ĩ
against all the input images (by measuring the similarity of
its underlying self-similarity descriptors1). In each image
Ik we find the highest match value of Ĩ: maxMatch(Ĩ , Ik).
The higher the value, the stronger the match. However,
not every high match value is statistically significant. The
statistical significance of maxMatch(Ĩ , Ik) is measured
by how many standard deviations it is away from the mean
match value of Ĩ in the entire collection of images, i.e.,:(
maxMatch(Ĩ , Ik)− avgMatch(Ĩ)

)
/stdMatch(Ĩ),

where avgMatch(Ĩ) is the mean of all match values of
Ĩ in the collection I1, ..., IK , and stdMatch(Ĩ) is their
standard deviation. We thus define the ‘Significance’
of a subimage Ĩ as: Significance(Ĩ|I1, ..., IK) =
1
K

∑K
k=1 StatSignificance

(
maxMatch(Ĩ , Ik)

)
.

Initially, we have no candidate sketch S. However, we
can measure how ‘significantly common’ is each w × h
subimage of I1, ..., IK , when matched against all locations
in all the other K − 1 images. We can assign a signifi-
cance score to each pixel p ∈ Ik (k = 1, ..,K), according
to the ‘Significance’ of its surrounding w × h subimage:
Significance(Ip

k |I1, ..., IK).
We set ck to be the pixel location with the

highest significance score in image Ik, i.e., ck =
argmaxp∈Ik

{Significance(Ip
k |I1, ..., IK)}.

The resulting K points (one per image), c1, ..., cK , pro-

1We use the same algorithm employed by [14] to match ensembles of
self-similarity descriptors, which is a modified version of the efficient “en-
semble matching” algorithm of [2]. This algorithm employs a simple prob-
abilistic “star graph” model to capture the relative geometric relations of a
large number of local descriptors, up to small non-rigid deformations.

Figure 5. Iterations of Detection & Sketching: Left: The 4 in-
put images. Right: The first iteration of the detection algorithm
results in 4 detected image regions, of which 3 are correct and
one is an outlier (marked by red). The resulting sketch produced
from these regions is reasonably good (due to the robustness of
the sketching to outliers – see Secs. 4 and 5), and is used for re-
fining the detection in the input images. This results in 4 correct
detections in the second iteration, and an improved sketch.

Figure 6. Detecting and sketching the common: (Left) The input
images. (Upper-Right) The detected image regions of the common
object, including one outlier. (Lower-Right) The resulting sketch.

vide the centers for K candidates of ‘non-trivial’ common
image parts. We generate a sketch S from these image parts
(using the algorithm of Sec. 4).

We repeat the above process, this time for Ĩ = S, to
detect its best matches in I1, ..., IK . This should lead to
improved detection and localization of the common object
(c1, ..., cK), and accordingly to an improved sketch S. This
algorithm can be iterated several times. In practice, in all
our experiments a good sketch S was recovered already in



the first iteration. An additional iteration was sometimes
useful for improving the detection. Fig. 5 shows two itera-
tions of this process, applied to 4 input images. More results
of the detection can be seen in Fig. 6.
Handling unknown w× h: In principle, whenw×h is un-
known, we can run the above algorithm “exhaustively” for a
variety of w = wmin, .., wmax and h = hmin, .., hmax, and
choose “the best” w× h (with maximal significance score).
In practice, this is implemented more efficiently using “inte-
gral images”, by integrating the contributions of individual
self-similarity descriptors into varying window sizes w×h.
Computational Complexity: The detection algorithm is
implemented coarse-to-fine. The first step of the algorithm
described above is quadratic in the size of the input images.
However, since the number of images is typically small
(e.g., 3 − 5), and since the quadratic step occurs only in
the coarsest/smallest resolutions of the images, this results
in a computationally efficient algorithm.

4. Sketching the Common

Let Ĩ1, . . . , ĨK be the w × h subimages centered around
the common object (detected and extracted from the input
images using the algorithm of Sec. 3). The goal of the
sketching process is to produce a binary image S, which
best captures the rough characteristic shape of the object
shared by Ĩ1, ..., ĨK , as posed by Eq. (2). Namely, find S
whose ensemble of self-similarity descriptors is as similar
as possible to the ensembles of descriptors extracted from
Ĩ1, . . . , ĨK . If we were to neglect the binary constraint
S(l) ∈ {−1, 1} in Eq. (2), and the requirement for con-
sistency between descriptors of an image, then the optimal
solution for the collection of self-similarity descriptors of
S, {di}w·hi=1, could be explicitly computed as:

di = mediank{dk
i } if L1-norm (3)

di = meank{dk
i } if L2-norm

We use the L1-norm to generate these ‘combined’ descrip-
tors {di}w·hi=1, because of the inherent robustness of the me-
dian operator to outliers in the descriptors (also confirmed
by our empirical evaluations in Sec 5). Having recovered
such a collection of descriptors for S, we proceed and solve
the “inverse” problem – i.e., to generate the image S from
which these descriptors emanated. However, the collection
of descriptors {di}w·hi=1 generated via a ‘median’ or ‘aver-
age’ operations is no longer guaranteed to be a valid collec-
tion of self-similarity descriptors of any real image (binary
or not). We thus proceed to recover the simplest possible
image S whose self-similarity descriptors best approximate
the ‘combined’ descriptors {di}w·hi=1 obtained by Eq. (3).

Self-similarity descriptors cover large image regions,
with high overlaps. As such, the similarity and dissimilar-
ity between two image locations (pixels) of S are implicitly
captured by multiple self-similarity descriptors and in dif-
ferent descriptor entries. The self-similarity descriptor as

Figure 7. Computing attrac-
tion/repulsion matrix W : The
log-polar self-similarity descriptor
di is located at li (red cross). White
bins signify image areas of high
similarity to the central patch, dark bins signify image areas of
dissimilarity to the central patch. The point lj (blue cross), which
is the center of descriptor dj (not drawn), falls in a white bin of
descriptor di (i.e., 0 < di(lj) ≤ 1). The entry wij in the matrix
W is determined accordingly: wij = αij (di(lj) + dj(li)) /2,
where αij (the certainty assigned to this entry), is inversely
proportional to the distance ‖ li − lj ‖ (the distance between the
red and blue crosses). Similarly, the point lk (green cross), which
is the center of another descriptor dk (also not drawn), falls in a
dark bin of descriptor di, i.e., −1 ≤ di(lk) < 0, and αik < αij

(because the green cross falls farther away from the center of di,
hence lower certainty).

(a) (b)
Figure 8. Detecting and sketching the common: (a) Five input
images. (b) The resulting sketch.

defined in [14] has values in the range [0, 1], where 1 indi-
cates high resemblance of the central patch to the patches
in the corresponding log-polar bin, while 0 indicates high
dissimilarity of the central patch to the corresponding log-
polar bin. For our purposes, we stretch the descriptor values
to the range [−1, 1], where 1 signifies “attraction” and −1
signifies “repulsion” between two image locations.

Let W be a wh × wh matrix capturing the attrac-
tion/repulsion between every two image locations, as in-
duced by the collection of the ‘combined’ self-similarity
descriptors {di}w·hi=1 of Eq. (3). Entry wij in the matrix is
the degree of attraction/repulsion between image locations
li and lj , determined by the self-similarity descriptors di

and dj centered at those points. di(lj) is the value of the
bin containing location lj in descriptor di (see Fig. 7). Sim-
ilarly, dj(li) is the value of the bin containing location li in
descriptor dj . The entry wij gets the following value:

wij = αij (di(lj) + dj(li)) /2 (4)

where αij = αji is inversely proportional to the distance
‖ li− lj ‖ between the two image locations (we give higher
weight to bins that are closer to the center of the descriptor,
since they contain more accurate/reliable information).

Note that a ‘pure’ attraction/repulsion matrix W of a



true binary image S contains only 3 types of values wij :
−1, 0, 1. If li and lj belong to the same region in S (i.e.,
both in foreground or both in background), then wij = 1; if
li and lj belong to different regions in S, then wij = −1,
and if the points are distant (out of descriptor range), then
wij = 0. In the general case, however, the entries span
the range [−1, 1], where 1 stands for “strong” attraction,
−1 for “strong” repulsion and 0 means “don’t care”. The
closer the value ofwij to 0, the lower its attraction/repulsion
confidence; the closer it is to ±1, the higher the attrac-
tion/repulsion confidence.

Note that W is different from the classical affinity ma-
trix used in spectral clustering or in min-cut, which use
non-negative affinities, and their value 0 is ambiguous – it
signifies both high-dissimilarity as well as low-confidence.
The distinction between ‘attraction’, ‘repulsion’, and ‘low-
confidence’ is critical in our case, thus we cannot resort
to the max-flow algorithm or to spectral clustering in or-
der to solve our problem. An affinity matrix with positive
and negative values was used by [17] in the context of the
normalized-cut functional. However, their functional is not
appropriate for our problem (and indeed did not yield good
results for S when applied to our W ). We therefore define a
different functional and optimization algorithm in order to
solve for the binary sketch S.

The binary image S which best approximates the attrac-
tion/repulsion relations captured by W , will minimize the
following functional:

min
S

∑
i,j

wij(S(li)− S(lj))2 subject to S(l) ∈ {−1, 1}

(5)
where S(l) is the value of S at pixel l. Note that for a bi-
nary image, the term (S(li) − S(lj))2 can obtain only one
of two values: 0 (if both pixels belong to foreground, or
both belong to background), or 4 (if one belongs to the
foreground, and one to the background). Thus, when wij is
positive (attraction), S(li) and S(lj) should have the same
value (both 1 or both −1), in order to minimize that term
wij(S(li) − S(lj))2. The larger wij (stronger confidence),
the stronger the incentive for S(li) and S(lj) to be the same.
Similarly, a negativewij (repulsion) pushes apart the values
S(li) and S(lj). Thus, S(li) and S(lj) should have opposite
signs in order to minimize that term wij(S(li) − S(lj))2.
When wij ≈ 0 (low confidence), the value of the func-
tional will not be affected by the values S(li) and S(lj) (i.e.,
“don’t care”). It can be shown that in the ‘ideal’ case, i.e.,
when W is generated from a binary image S, the global
minimum of Eq. (5) is obtained at S.
Solving the constrained optimization problem: The min-
cut problem where only non-negative values of wij are al-
lowed can be solved by the max-flow algorithm in polyno-
mial time. However, the weights wij in the functional of
Eq. (5) can obtain both positive and negative values, turn-
ing our ‘cut’ problem as posed above into an NP-hard prob-

(a) (b)
Figure 9. Detecting and sketching the common: (a) The input
images. (b) The resulting sketch.

lem. We therefore approximate Eq. (5) by reposing it as a
quadratic programming problem, while relaxing the binary
constraints.

Let D be a diagonal matrix with Dii =
∑

j wij , and
let L = D − W be the graph Laplacian of W . Then
1
2

∑
i,j wij(S(li) − S(lj))2 = STLS. Thus, our objec-

tive function is a quadratic expression in terms of S. The
set of binary constrains are relaxed to the following set of
linear constraints−1 ≤ S(l) ≤ 1, resulting in the following
quadratic programming problem:

Ŝ = arg min
S
STLS s.t. − 1 ≤ S(l) ≤ 1 (6)

Since L is not necessarily positive semi-definite, we do not
have a guarantee regarding the approximation quality (i.e.,
how far is the achieved numerical solution from the optimal
solution). Still, our empirical tests demonstrate good perfor-
mance of this approximation. We use Matlab’s optimization
toolbox (quadprog) to solve this optimization problem and
obtain a sketch Ŝ. In principle, this does not yield a binary
image. However, in practise, the resulting sketches look
very close to binary images, and capture well the rough ge-
ometric shape of the common objects.

The above sketching algorithm is quite robust to out-
liers (see Sec. 5), and obtains good sketches from very
few images. Moreover, if when constructing the attrac-
tion/repulsion matrixW we replace the ‘combined’ descrip-
tors of Eq. (3) with the self-similarity descriptors of a sin-
gle image, our algorithm will produce ‘binary’ sketches of
a single image (although these may not always be visually
meaningful). An example of a sketch obtained from a single
image (using all its self-similarity descriptors) can be found
in Fig. 4.



Input images
Output
sketch Input images

Output
sketch

Figure 10. Sample results on ETHZ shapes [6] dataset: Detection and sketching using only 3 images (left), and using 6 images (right).

5. Experimental Results

Figs. 1,3,6,8,9,10 show qualitative results on various im-
age sets. In all of these examples the number of input im-
ages was very small (3 − 7), with large variability in ap-
pearance and background clutter. Our algorithm was able
to detect and produce a compact representation (a sketch)
of the common content.

We further conducted empirical evaluations of the algo-
rithm using ETHZ shape dataset [6]. This dataset consists
of five object categories with large variability in appearance:
Applelogos, Bottles, Giraffes, Mugs and Swans (example
images can be seen in Fig. 10). There are around 50 im-
ages in each set, with ground-truth information regarding
the location of the object in each image, along with a single
hand-drawn ground truth shape for each category. In order
to assess the quality of our algorithm (which is currently
not scale invariant, although it can handle up to±20% scale
variation, and±15◦ rotations), we scaled the images in each
dataset to have roughly the same object size (but we have
not rotated the images, nor changed their aspect ratios).
Sketch quality score: Because our sketch S is contin-
uous in the range [−1, 1], we stretch the values of the
ground-truth sketch SGT also to this range, and multi-
ply the two sketches pixel-wise. Our sketch quality score

is: Quality(S) = < S, SGT >/(# of pixels). In places
where both sketches agree in their sign (either white re-
gions or black) the pixel-wise product is positive, while in
places where the sketches disagree, the product is negative.
This produces a sketch quality score with values ranging
between −1 (lowest quality) to +1 (highest quality). Note
that even if our sketch displays a perfect shape, its quality
will be smaller than 1, because it is not a perfect binary im-
age. From our experience, sketch quality ≥ 0.8 are usually
excellent-looking sketches.

We first assessed the quality of our algorithm to iden-
tify and sketch the common object correctly, as a function
of the number of input images K (K = 2, 3, .., 10). We
randomly sampled K images out of an object category set,
applied our detection and sketching algorithm to that sub-
set, and compared the resulting sketch S to the ground-truth
SGT . We repeated this experiment 15 times for each K,
and computed mean sketch quality scores. Fig. 11 displays
plots of the mean quality score for the 5 categories. It can
be seen that from relatively few images (K = 3) we al-
ready achieve sketches of good quality, even for challenging
sets such as the giraffes (although, with the increased num-
ber of example images, its legs tend to disappear from the
sketch because of their non-rigid deformations). Examples
for sketching results for some of these experiments can be



Figure 11. Evaluating sketch
quality: Mean values of
Quality(S) as a function
of the number of input im-
ages (K = 2, ..., 10) ran-
domly sampled from each set
of ETHZ shape dataset [6].

Figure 12. Sketching in pres-
ence of outliers: We “cor-
rupt” a set of 10 “inlier” with
n randomly chosen natural
images. Graph shows mean
values of Quality(S) as a
function of the percent of out-
lier images in the input set,
i.e., n/(10 + n).

Figure 13. Detection in new
images: We empirically eval-
uated how well the sketch
generated form very few im-
ages (K = 2, ..10) per-
forms in detecting the com-
mon shape in new images.

seen in Fig. 10.
We next evaluated the robustness of the sketching com-

ponent of our algorithm to outliers. Such robustness is im-
portant, since the detection algorithm often produces out-
lier detections (see Fig. 5). We used 10 “inlier” images
which alone generate a good sketch with high sketch quality
score. We then added to them n = 1, ..., 30 outlier images
(cropped at random from natural images). For every such
10 + n image set we generated a sketch, and compared it to
the ground-truth. Each experiment was repeated 15 times.
Fig. 12 displays plots of sketch quality vs. percent of out-
liers n/(10 + n). Our sketching method is relatively robust
to outliers, and performs quite well even in presence of 50%
outliers (as expected due to the median operation in Eq. (3)).

In addition to sketch quality evaluation we tested the per-
formance of our algorithm in the scenario described in the
Introduction: given a very small number of example im-
ages, how useful is the output of our automatical detection
& sketching algorithm for successfully detecting that object
in new images. For K = 2, 3, ..., 10, we randomly sampled
K images out of an object category set, applied our detec-
tion & sketching algorithm to that subset, and used the re-
sulting sketch to detect the object in the remaining 50−K
images of that category set. We consider an object in im-
age In as “detected” if the location of maxMatch(S, In)
(the detected center cn of the object) falls no farther away
than 1/4 of the width or height of the bounding-box from
the ground-truth center. We repeated each experiment 40

times and plotted the average detection rates in Fig. 13. For
the Apples, Bottles, and Swans we get high detection rates
(for as few as K = 3 example images; a scenario no WSL
method can handle to the best of our knowledge). However,
our detection rates are not as good in the Giraffe set, since
the giraffes undergo strong non-rigid deformations (they
sometimes tilt their necks down, and their legs change po-
sitions). Our current algorithm cannot handle such strong
non-rigid deformations.

Acknowledgment: This work was funded in part by the Is-
rael Science Foundation and Israeli Ministry of Science.

References
[1] S. Bagon, O. Boiman, and M. Irani. What is a good im-

age segment? A unified approach to segment extraction. In
ECCV, 2008.

[2] O. Boiman and M. Irani. Detecting irregularities in images
and in video. IJCV, 2007.

[3] O. Chum, M. Perdoch, and J. Matas. Geometric min-
hashing: Finding a (thick) needle in a haystack. In CVPR,
2009.

[4] O. Chum and A. Zisserman. An exemplar model for learning
object classes. In CVPR, 2007.

[5] V. Ferrari, F. Jurie, , and C. Schmid. From images to shape
models for object detection. IJCV, 2009.

[6] V. Ferrari, T. Tuytelaars, and L. Van Gool. Object detection
by contour segment networks. In ECCV, 2006.

[7] E. Hörster, T. Greif, R. Lienhart, and M. Slaney. Compar-
ing local feature descriptors in plsa-based image models. In
DAGM, 2008.

[8] L. Karlinsky, M. Dinerstein, D. Levi, and S. Ullman. Unsu-
pervised classification and part localization by consistency
amplification. In ECCV, 2008.

[9] Y. J. Lee and K. Grauman. Shape discovery from unlabeled
image collections. In CVPR, 2009.

[10] M. Maire, P. Arbelaez, C. Fowlkes, and J. Malik. Using con-
tours to detect and localize junctions in natural images. In
CVPR, 2008.

[11] L. Mukherjee, V. Singh, and C. Dyer. Half-integrality based
algorithms for cosegmentation of images. In CVPR, 2009.

[12] M. H. Nguyen, L. Torresani, F. de la Torre, and C. Rother.
Weakly supervised discriminative localization and classifi-
cation: a joint learning process. In ICCV, 2009.

[13] C. Rother, V. Kolmogorov, T. Minka, and A. Blake.
Cosegmentation of image pairs by histogram matching-
incorporating a global constraint into MRFs. In CVPR, 2004.

[14] E. Shechtman and M. Irani. Matching local self-similarities
across images and videos. In CVPR, 2007.

[15] J. Winn and N. Jojic. LOCUS: Learning object classes with
unsupervised segmentation. In ICCV, 2005.

[16] Y. N. Wu, Z. Si, H. Gong, and S.-C. Zhu. Learning active ba-
sis model for object detection and recognition. IJCV, 2009.

[17] S. X. Yu and J. Shi. Understanding popout through repulsion.
In CVPR, 2001.

[18] L. Zhu, C. Lin, H. Huang, Y. Chen, and A. Yuille. Unsuper-
vised structure learning: hierarchical recursive composition,
suspicious coincidence and competitive exclusion. In ECCV,
2008.


