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Abstract

Without specialized sensor technology or custom, multi-

chip cameras, high dynamic range imaging typically in-

volves time-sequential capture of multiple photographs.

The obvious downside to this approach is that it cannot eas-

ily be applied to images with moving objects, especially if

the motions are complex.

In this paper, we take a novel view of HDR capture,

which is based on a computational photography approach.

We propose to first optically encode both the low dynamic

range portion of the scene and highlight information into

a low dynamic range image that can be captured with a

conventional image sensor. This step is achieved using a

cross-screen, or star filter. Second, we decode, in software,

both the low dynamic range image and the highlight infor-

mation. Lastly, these two portions can be combined to form

an image of a higher dynamic range than the regular sensor

dynamic range.

1. Introduction

Camera sensors can capture a certain maximum num-

ber of photons before they start to saturate and no longer

register additional light. Although it is possible to increase

the saturation point by increasing the capacity of the sensor

electron well, producing large sensors is excessively expen-

sive and reduces sensor resolution. Such sensors are also

hard to justify for general imaging applications because, on

average, only a small portion of a scene contains very bright

spots and thus needs high capacity sensors.

The human visual system has developed a clever mech-

anism to cope with highly saturated scene regions, such as

highlights or light sources. Like camera sensors, the pho-

toreceptors in the human retina are also prone to saturate.

However, the visual system is able to infer higher brightness

of those saturated regions from glare, which is produced by

the light that is scattered in the ocular fluid and spread over

the retina. The glare surrounding bright areas boosts their

perceived brightness, giving additional information to the
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Figure 1: Capturing a high dynamic range (HDR) image with a

cross-screen filter. Insets show bright regions at a shorter virtual

exposure. The dynamic range increase is 9.21 f-stops. The ground

truth has been constructed from a series of 16 exposures and hence

has a lower noise level compared to our single exposure result.

brain that this part of a scene is much brighter than the pho-

toreceptor saturation point [25].

In this paper we propose to use a similar approach to im-

prove camera dynamic range without resorting to custom

sensors, multi-sensor cameras, or time-sequential imaging.

Unlike the eye, we are not limited to specific optics. In-

stead, we can choose to modify the optical system in order

to the increase the information that is encoded for the satu-

rated areas. Our goal can thus be more ambitious than sim-

ply to estimate the overall brightness of the saturated image
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regions. Instead, we would like to reconstruct spatial de-

tail for the pixels in those areas. Specifically, we propose a

computational photography approach comprised of the fol-

lowing steps:

• Encoding. Details of bright image regions in a high dy-

namic range (HDR) image, such as highlights and di-

rectly visible light sources, are encoded into specially

shaped glare patterns optically added to the image.

• Capture. The encoded image is captured using a stan-

dard image sensor. Bright regions in the captured im-

age are saturated due to limited sensor dynamic range.

• Decoding. In software, we separate the glare pattern

from the low dynamic range version of the image. The

glare pattern can be used to infer the radiometric inten-

sity distributions in the saturated image regions.

We have experimented with a number of specific optical

encodings to implement this general principle. Some ob-

vious candidates are regular lens glare and defocus blur to

spread out energy from saturated image regions to other pix-

els. However, to provide enough information of the high-

light regions for detailed reconstruction, energy spread must

be significantly larger than standard lens flare. Likewise, a

defocus blur implementation would have to use very large

blur radii on the order of dozens of pixels. For such large

blur, even the most recent deconvolution algorithms in com-

bination with coded apertures fail to reconstruct high qual-

ity images [24].

In this paper, we therefore focus on the optical encoding

that we found most successful: a glare pattern that scat-

ters light in a fixed set of discrete directions. Such patterns

are produced by inexpensive photographic cross-screen fil-

ters (also known as star filters), which are mounted in front

of a camera lens. The scattering pattern of these filters is

most salient for very bright scene features since the star fil-

ters concentrate most energy in a Dirac peak rather than the

glare rays. Star filters spread the light in discrete directions,

and therefore one dimensional techniques can be applied

instead of more expensive and less stable 2D techniques.

These properties let us estimate the amount of light spread

from bright image features into several discrete directions

(from 2 to 16), and then reconstruct clipped pixels using a

tomographic reconstruction technique.

2. Related work

Multi-exposure HDR capture: Blending multiple expo-

sures [4] is the most accurate method for acquiring high

dynamic range images with conventional cameras. How-

ever, this approach is limited by ghosting and misalignment

problems [9], which are still largely unsolved for difficult

cases such as moving tree leaves or waves on the water.

There are ways of obtaining multiple simultaneous expo-

sures (e.g. [15, 16]), and to design sensors that directly sup-

port multi-exposure capture (e.g. [6]), but such cameras and

sensors are not currently widely available.

LDR to HDR enhancement: Reconstructing an HDR im-

age from a single exposure with clipped values is a chal-

lenging problem that yields only approximate solutions.

Several techniques have been developed (e.g. [3, 21, 14, 5]),

however these are merely heuristics that are used to plausi-

bly guess content that has ultimately not been captured.

Clipped signal restoration: For band limited 1D signals,

reconstruction algorithms have been proposed for situations

where the number of clipped samples is low [1], or where

a statistical model of an undistorted signal is known [17].

However, neither of these approaches can be trivially ex-

tended to images, because natural image statistics are too

weak to restore detailed texture in clipped regions. There-

fore, only special cases have been successfully solved in

the image domain, for example images where only a subset

of the color channels is clipped [26], or noisy images with

pixel values just above the clipping threshold [8].

Deconvolution: A large body of recent work has focused

on the development of new deconvolution algorithms, as

well as special, frequency-preserving convolution kernels

for both motion blur (e.g. [19, 13]) and depth-of-field blur

(e.g. [12, 27]). In principle, both motion blur and depth-of-

field blur could be used to spread energy of bright pixels in

a fashion similar to what we propose in this paper. How-

ever, a sufficiently large energy spread can only be achieved

with very large blur kernels. In our experiments, we found

that even the combination of state-of-the-art deconvolution

methods with special kernel shapes fails to recover a high

quality, sharp image for these large radii. This is consistent

with recently published results [24]. Another problem with

using convolution methods is that most recent deconvolu-

tion algorithms cannot reconstruct clipped pixels.

Our approach using a cross-screen filter avoids these

problems, since the filter produces a collection of 1D streaks

that can be detected and removed reliably, while encoding

enough information of the saturated regions to allow for de-

tailed reconstruction of clipped pixel values.

Glare removal: Over the years, a number of approaches

have been proposed for removing lens glare. Since we

rely on strong glare for obtaining information about clipped

image regions, the methods that optically suppress glare

(e.g. [23, 20, 11]) are not applicable in our setting. On the

other hand, deconvolution methods that remove the glare af-

ter the fact (e.g. [22, 7]) suffer from the same shortcomings

as the other deconvolution methods discussed above.

3. Image formation model

In the following, we outline the image formation process

for cameras with a cross-screen filter before we go into the

details of our approach.
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Figure 2: (a) An 8-point cross-screen filter. (b) A point light

source seen through it. (c) Measured point-spread functions (PSF)

for the 1D slices along glare lines for different cross-screen fil-

ters, taken from images like (b). Exponential approximations are

shown as dashed lines.
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Figure 3: The working principle of a 2-point cross-screen filter.

Top row: A single horizontal groove systematically spreads out

incoming light only vertically, yet keeps it focused horizontally.

Bottom row: Multiple parallel grooves makes the effect stronger.

A cross-screen filter is a transparent photographic fil-

ter with parallel scratch marks or grooves on its surface

(Figure 2(a)). When mounted in front of a camera lens,

the grooves disperse and diffract the light, creating a star-

shaped glare – linear streaks (Figure 3) in a number of dis-

crete directions. This glare is very faint and hence star-

shaped glare patterns are usually noticeable only around

very bright areas.

A captured image g can be expressed as a result of apply-

ing a light transport operator H describing the glare to the

latent image f , and then clipping the result to the maximum

sensor value:

g(x) = min(1,∑
y

f (y)H(x,y)+n). (1)

Here, x and y refer to two dimensional image coordinates,

and n represents noise. For simplicity, we ignore noise n

in the rest of the derivation and discuss its influence on re-

sults in the supplemental material. H can be modeled as a

combination of following components (Figure 4),

• a Dirac peak representing the light that does not hit one

of the scratches on the cross-screen filter,

• a glare function K which has been empirically found

to be both shift- and depth-invariant1, and

• a zero-mean residual waviness in glare, ρ , that is not

shift-invariant, but several orders of magnitude weaker

in intensity.

= + +

log scalelog scalelog scale linear scale

XXXX
Approximate PSF Delta function Exponential falloff Residual component

α +β α

β β 0

Figure 4: The kernel can be approximated by a sum of a Dirac

delta function and an exponential falloff. The residual component

accounts for a shift-variant wavelength-dependent response.

Thus,

H(x,y) = α δ (y−x)+β K(y−x)+ γ ρ(x,y). (2)

For the filters we used, α ≈ 1, β ≈ 10−4 and γ ≈ 10−7. The

glare function K is itself composed of 1D streaks,

K(x−y) =






p/2

∑
i=1

ki(ui · (x−y)) when vi · (x−y) = 0

0 otherwise,

(3)

with an exponential falloff ki(d) = e−m|d|. Here, ui and vi

form an orthogonal coordinate system aligned along the ith

glare direction (see Figure 2(b)). Note that the parameters

α , β , γ and m can be measured for each cross-screen filter

by capturing an (almost) point light source and measuring

these statistics. In our experiments, we have observed that

these quantities are independent of focal depth and position.

The scene dependent residual waviness function ρ is pri-

marily a function of the (unknown) spectral composition of

the scattered light. Although this function is shift-variant, it

too only distributes energy along radial lines, like K.

Figure 2(c) shows cross-sections along glare streaks of

2D PSFs for several cross-screen filters we obtained. These

measurements show that an exponential falloff model fits

the overall shape of the glare quite well. In our application,

this exponential model is sufficient for glare estimation with

sufficient precision for saturated pixel reconstruction. The

high-frequency variations captured in ρ are, however, im-

portant for removing glare from low dynamic range portion

1The glare streaks are, however, created by focusing the glare pattern

through the camera lens, and hence are subject to radial lens distortion. In

our discussion, we assume that radial distortion has been removed.
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of the image. The overall image formation model is then

given as

g = min(1,α f +β K ∗ f + γ r), (4)

where r(x) = ∑y ρ(x,y) f (y) is the result of a “convolution”

of the intrinsic image with the shift-variant residual wavi-

ness pattern.

In summary, our image formation model consists of a

Dirac part and a combination of p/2 1D functions describ-

ing both an exponential falloff and a residual waviness. In

the following, we can therefore consider the glare removal

problem as a set of independent 1D problems.

4. Decoding method

We now describe our proposed method for decoding both

the low dynamic range image and the highlight details from

a glare photograph taken with a cross-screen filter.

Considering the light transport (Equation 4), we can see

that it is not possible to directly solve for the glare-free la-

tent image, due to sensor saturation. Instead, we split the

problem by separately considering the saturated and the un-

saturated pixels in the observed image g. We define gU to

be the unsaturated pixels of g, with the values of all sat-

urated pixels set to 0. We also define gS = g− gU to be

a mask that is 1 for saturated pixels and 0 for unsaturated

ones. Similarly, we define fS = f ·gS and fU = f · (1−gS).
Finally, we define rS (rU) as only that part of the residual

from Equation 4, which is due to scattering of light from

saturated (unsaturated) pixels.

With these definitions, we can rewrite the unsaturated

component of Equation 4 as follows:

gU = α ( fU + fS)+β K ∗ ( fU + fS)+ γ (rU + rS) (5)

= α fU +(β K ∗ fU + γ rU)+(β K ∗ fS + γ rS) , (6)

since fS = 0 for unsaturated pixels. As a result, we can now

obtain the latent image by estimating and removing several

kinds of glare:

• Glare generated by unsaturated pixels that affects

other unsaturated pixels — first bracketed term of

Equation 6. This type of glare is fairly weak and does

not contain high spatial frequencies (Section 4.1). We

can further simplify this term, since rU is so small as

to be negligible.

• Glare generated by saturated pixels that affects unsat-

urated pixels can be estimated and removed through

the use of image priors (second bracketed term in the

equation above, Section 4.2). The estimated glare also

provides information about the saturated regions from

which it emerges, and can therefore be used to recon-

struct spatial detail within those regions (Section 4.3).

• Glare that contributes to already saturated pixels — ei-

ther originating from unsaturated or saturated pixels

— is not measured in the captured image and therefore

does not need to be modeled.

While in essence we do perform a 2D deconvolution, to

make the solution possible and robust, we decompose it into

an ‘easy’ 2D deconvolution (a series of 1D problems) and fi-

nally a tomographic reconstruction. The supplemental ma-

terial contains further discussion about the relationship to

deconvolution.

4.1. Glare due to unsaturated pixels

Because the Dirac peak dominates the PSF of the cross-

screen filters, the glare due to unsaturated pixels is very

weak. As mentioned above, we can further simplify the sit-

uation by neglecting the shift-variant residual rU, which is

several orders of magnitude weaker than the shift-invariant

part of the PSF. With these observations, we can remove

the glare due to unsaturated pixels using a deconvolution

approach similar to [23]:

g′(x) = g(x)−β (K ∗ fU)(x) for x ∈ U (7)

=

(
∞

∑
t=0

(
−

β

α
K

)t

∗g

)
(x) from (6), (8)

where g′ is the image with the unsaturated pixel glare re-

moved, and the operator ·t denotes t-times convolution.

4.2. Glare due to saturated pixels

The next step is to estimate and remove glare due to satu-

rated pixels. This glare component will also be used for re-

constructing saturated pixel values in Section 4.3. As men-

tioned in Section 3, we can factor this step into a number of

1D problems along directions ui, where ui,vi form a coor-

dinate frame aligned with the ith glare ray (see Figure 5). In

the following, we consider each glare direction separately,

and thus omit the i subscript for notational convenience.

Image priors. Knowing both which pixels are saturated in

the observed image, as well as the direction of the 1D glare

rays, we can determine which image pixels exhibit a glare

contribution from saturated pixels. In order to separate the

latent image information from the glare in these pixels, we

employ results from natural image statistics, specifically a

sparse gradient prior [12, 18]. We model the distribution of

gradients in the latent image using a Laplace distribution,

which is the best approximation of the heavy-tailed distri-

bution that still leads to a convex problem [2].

Glare rays cause the largest distortion of the image gradi-

ents in the direction orthogonal to the glare rays. According

to the sparse gradient prior, we obtain
∂ f
∂v
∼Laplace(0,b).

Any deviations from a zero mean in the observed image

g are attributed to glare. In the supplemental material we

show that the Maximum Likelihood (ML) estimator for the
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mean of a Laplace distribution is obtained by minimizing

the L1 norm. Therefore, we can solve for the intrinsic im-

age as follows:

argmin
f

∥∥∥∥
∂

∂v

(
g′−β K ∗ fS − γ rS

)∥∥∥∥
1

+R, (9)

where R gives constraints on rS (see supplemental material,

Section 2.2 for details):

R =

(
λ1 ‖rS‖2 +λ2

∥∥∥∥
∂

∂v
rS

∥∥∥∥
1

+λ3

∥∥∥∥
∂

∂u
rS

∥∥∥∥
1

)
. (10)
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Figure 5: Cross-section of the glare due to saturated pixels, form-

ing between a pair of saturated regions L and R. The cross-section

is extracted from a single line of pixels along the glare direction

(u-axis in the inset). The glare can be split into two components

with an exponential slope in the opposite directions.

Optimization. To actually apply the image prior in the

glare estimation, we consider a single continuous segment

M of unsaturated pixels along a glare direction u. M is

bounded by two sets of saturated pixels L and R on the left

and on the right, as shown in the inset of Figure 5.

We can now use the exponential nature of the 1D glare

streaks (from Equation 3), and expand the convolution op-

erator in Equation 9:

(k ∗ fSv
)(u,v) = ℓL e−mu + ℓR emu for u ∈ M, (11)

where

ℓL = ∑
i∈L

emi f (i,v), ℓR = ∑
i∈R

e−mi f (i,v). (12)

Note that ℓL and ℓR have the same value for all unsaturated

pixels u ∈ M, and therefore all pixels in M can be used to

robustly estimate these two quantities.

Also note that ℓL and ℓR represent the amount of energy

present in the glare from the saturated pixels to the left and

to the right of M. These quantities, which we refer to as

line integrals will be useful for reconstructing detail in the

saturated regions in Section 4.3.

Now we can reformulate the glare estimator in terms of

line integrals ℓL and ℓR rather than saturated pixel values.

From Equations 9, 11 and 12 we obtain

argmin
ℓL,ℓR,r

∑
u∈M

∥∥∥∥∥
∂

∂v
g′(u)−β

∂

∂v

(
ℓL e−mu + ℓR emu

)
(13)

−γ
∂

∂v
rS(u)

∥∥∥∥∥
1

+R.

This equation allows us to efficiently optimize on each seg-

ment M independently. However, to solve for ℓL and ℓR, the

partial derivatives
∂ℓL

∂v
and

∂ℓR

∂v
must be found for all seg-

ments and then integrated. To solve the minimization prob-

lem efficiently, we use several EM iterations. We initially

set γ ∂ r
∂v

= 0. Since γ ≪ β , this provides a reasonable ini-

tial estimate of exponential glare component, but enhances

color artifacts when this monochromatic glare is removed.

In the E-step, we solve for ℓL and ℓR, and in the M-step we

refine the estimate of r. Minimizing Equation 13 is suffi-

cient to remove most of the glare (Figure 6).

(a) (b) (c)

Figure 6: The glare left by a cross-screen filter is not monochro-

matic due to diffraction and dispersion effects. (a) Although the

color artifacts seem to be very faint in captured images, (b) they

are strongly enhanced after removing achromatic exponential glare

because it boosts chromatic contrast. (c) Estimating wavelength-

dependent variations can remove most of the color artifacts.

Finally, we prepare line integral estimates for the energy

contributed by individual, continuous regions of saturated

pixels, which will be used in the next section. Each value

ℓL and ℓR can contain contributions from multiple saturated

segments on the left and right of M (not shown in Figure 5).

However, isolating glare due to each saturated region is triv-

ial since there are exactly as many line integrals as there are

regions M along a glare line, and therefore the contributions

for each region can be found with a simple linear system.

For convenience, we shift the origin of (u, v) to the leftmost

or rightmost pixel of each segment M to get isolated line

integrals ℓ̂L and ℓ̂R.

4.3. Reconstruction of saturated pixels

So far, we have decoded the values of the intrinsic image

f for the previously unsaturated pixels only; the values of
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Figure 7: (a) Glare along discrete directions give different “pro-

jections” of the saturated region. (b) Bilinear sampling along these

directions relates line integrals to saturated pixels in (14) and (15).

the saturated pixels are still unknown. However, glare re-

moval procedure from Section 4.2 also yields line integrals

along p discrete directions, as shown in Figure 7(a). In the

final step of the decoding procedure, we use this informa-

tion to reconstruct the saturated region. To this end, we

need to find saturated pixel values that can produce the line

integrals matching the observations. This requires solving a

standard tomographic reconstruction problem [10].

Unlike the glare estimation, the tomographic reconstruc-

tion is inherently a 2D problem. We gather the estimated

line integrals along all p directions in a linear system that

describes the relationship between line integrals and satu-

rated pixels f . We therefore use a one-index representation

for all line integrals contributing to a given region: ℓ̂i. This

relationship is then expressed as

ℓ̂i = ∑
j

wi j f j, (14)

where the weight term wi j for line integral i and an unknown

pixel j is the product of exponential falloff and a bilinear

resampling weight ai j, as shown in Figure 7(b):

wi j = ai j e−m|ui−u j |. (15)

Here, ui is the reference location used while computing ℓ̂i.

The absolute value consolidates different signs for glare

falloffs to the left and right.

We solve this tomography problem using Simultaneous

Iterative Reconstruction [10, pp 284]. We start with an ini-

tial guess, f (0) = 0. Then, in each iteration t, the residual

error in the current estimate of line integrals,

∆ℓ̂i = ℓ̂i −∑
j

wi j f
(t)
j , (16)

is backprojected over the participating unknown pixels re-

gardless of distance from the reference location, i.e., energy

distribution is proportional to resampling weight (a) only,

f
(t+1)
j = f

(t)
j −∆ℓ̂i

ai j

∑k ai k

. (17)

Using a uniform distribution for the backprojected residual,

independent of any falloff, is a standard procedure in to-

mography. One should think of this as a (weak) prior on the

intensity distribution within the unknown region. We em-

ploy a simple two-scale approach which solves the problem

for a low resolution image first. Since we know that actual

values at the saturated pixels are larger than the saturation

threshold for the camera, we enforce this simple constraint

during backprojection.

5. Results

Figure 8 shows a number of examples of HDR images,

decoded from single images captured as RAW images with

a Canon 40D DSLR camera using 8- and 16-point cross-

screen filters, and Canon lenses ranging from 50mm to

100mm. In this figure, the first two columns represent two

exposures of the 12-bit input image, while the right two

columns represent two virtual exposures of our reconstruc-

tions. Saturated regions are reconstructed, and glare pro-

duced by the filter is removed. For color images, we run our

algorithm separately and independently on each color chan-

nel. Radial lens distortion was removed in a preprocessing

step. Insets in the right column show ground-truth com-

parisons for some of the results, i.e. short exposure images

taken without the filter, using the same camera and lens.

Note that the geometric and photometric alignment may not

be perfect due to the changes in the acquisition setup. These

results demonstrate a number of points:

Glare estimation: Accurate estimation of glare is neces-

sary not only to correctly reconstruct saturated regions, but

also to remove glare. Our sparse-gradient prior was robust

enough to estimate glare both for a multitude of small light

sources (Figure 8a), as well as relatively large saturated ar-

eas (Figure 8c). The main requirement for successful glare

estimation is that saturated regions be both bright and large

enough (i.e. sufficient cumulative energy) to produce glare

above the camera noise level.

Highlight reconstruction: Given only 8–16 directional

line integrals, tomographic reconstruction is a challenging

task. Even so, the results demonstrate that our method can

estimate the total energy of the saturated regions as well as

the approximate values of the saturated pixels. This is in

contrast to the previous single-image methods, which could

achieve neither of these two goals. Our method can also

easily distinguish between very bright light sources and dif-

fuse surfaces that are just above the clipping level, thus

making complicated classification methods for the LDR-to-

HDR enhancement unnecessary [5].

Figure 8(a) also demonstrates that the multi-exposure

HDR can exhibit some artifacts due to alignment issues,

particularly at the outline of the light sources. Ours being a

single exposure method, does not show any such artifacts.
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5.1. Limitations

Our method is not suitable for scenes with large satu-

rated regions, such as a sky, because large saturated regions

do not leave enough unsaturated pixels to register glare pat-

terns, and the gradient distortions too hard to detect. The

method can conceptually handle scenes with light sources

outside the image frame, but we found that the accuracy of

glare estimation is often not sufficient in such cases.

Finally, our method is also likely to fail if a scene con-

tains color gradients oriented the same way as the glare pat-

terns. It breaks the assumption of a zero-mean gradient dis-

tribution, and results in mis-estimates of the glare. It is usu-

ally possible to avoid such problems by rotating the filter out

of alignment with image gradients. A synthetic example of

this scenario is analyzed in the supplemental material.

6. Conclusion and future work

The distinctive feature of our proposed single-image

HDR capture method is that the information lost in clipped

pixels is encoded in the remaining portions of an image.

This approach is very different from existing HDR capture

methods, which attempt to register HDR information within

each pixel or a group of closely located pixels. Unlike the

LDR to HDR methods that only enhance clipped pixels, the

proposed method can restore a close approximation of their

original values. Our method does all that without requir-

ing specialized sensor or invasive camera modifications, as

it needs only a cross-screen filter mounted on top of a lens.

Our reconstruction method contains several technical

contributions, including the use of natural image priors to

separate encoded information (glare) from image content.

We also propose a novel application of tomographic recon-

struction.

In the future, we would like to design cross-screen filters

that produce easily detectable patterns benefitting from re-

dundancy and sparsity of information in natural images. A

promising application of our method is HDR video capture,

which could be further improved by combining information

from several frames to better reconstruct clipped pixels.
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Figure 8: Results of reconstruction from images captured by a camera with an 8-point cross-screen filter. The first column shows the single-

exposure images captured with the filter (input to the proposed algorithm). The second column shows the saturated pixels by marking them

in green and artificially shortening the exposure. The third column shows a long virtual exposure of the recovered HDR image. Note

that most of the glare present in the first column was removed. The numbers in the top-left corner indicate the dynamic range increase in

f-stops. The last column shows the short exposure of the same reconstructed image. The insets show the reference image captured with the

multi-exposure method and the corresponding regions are marked with a red frame. We were not able to capture multi-exposure reference

images for rows (d) and (f) because of the moving objects.
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