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Abstract

We present an approach to jointly solve the segmenta-
tion and recognition problem using a multiple segmentation
framework. We formulate the problem as segment selection
from a pool of segments, assigning each selected segment
a class label. Previous multiple segmentation approaches
used local appearance matching to select segments in a
greedy manner. In contrast, our approach formulates a
cost function based on contextual information in conjunc-
tion with appearance matching. This relaxed cost func-
tion formulation is minimized using an efficient quadratic
programming solver and an approximate solution is ob-
tained by discretizing the relaxed solution. Our approach
improves labeling performance compared to other segmen-
tation based recognition approaches.

1. Introduction
We describe an approach that jointly segments and la-

bels the principal objects in an image. Consider the image
in figure 1. Our goal is to locate and pixel-wise label the
principal objects such as car, building, road and sidewalk.
One approach is to first segment the image, then perform
recognition using appearance and context. However, there
are generally no reliable algorithms for segmentation. For
example, for the image shown in Figure 1, segmentation al-
gorithms will generally not combine the roof and the body
of the car into one segment due to differences in appear-
ances. Therefore, there has been a recent trend to simulta-
neously address segmentation and recognition.

For example, some recent approaches construct the seg-
ments by selectively merging superpixels while simultane-
ously labeling these elements. However, at the superpixel
level global image features such as shape cannot be easily
employed. So, while these approaches show high perfor-
mance for “stuff”-like objects such as grass - they often fail
to identify objects which require shape cues for identifica-
tion. To harness shape features, approaches such as [5, 14]
have instead started with an initial segmentation and then
refined these segments iteratively. However, the modifica-

tions are generally local in nature and tend to get stuck in
local minima.

To overcome these problems, recent approaches have ad-
vocated the use of multiple segmentations [7, 20]. Recog-
nition, then, involves selecting the best segments. These
methods use only appearance features to select segments
and the best overall labeling is constructed in a greedy man-
ner. They ignore context, which is important for accurate
segment selection and labeling. For example, the window
of the car is labeled as “airplane” because the context from
other scene elements such as road, sidewalk and building
are ignored.

We propose an approach to select the best segmentation
and labeling in a single optimization procedure that utilizes
context to perform segment selection and labeling coher-
ently. To overcome the fragmentation problem, we allow
connected segments to be merged based on local color, tex-
ture and edge properties. We also include mid-level cues
to constrain the solution space - for example, the segment
merging step leads to overlapping segments, and we restrict
global solutions to exclude overlapping segments (avoiding
the possibility of multiple labeling for pixels). By incor-
porating contextual relations between region pairs, we find
the subset of segments that best explains the image. For ex-
ample, in Figure 1, our approach correctly selects the com-
bined region of window and body segments and labels it as
“car”. The labeling of the window segment as “airplane”
is not chosen due to contextual constraints from sidewalk,
road and building.

The contributions of our paper are: (a) An approach to
incorporate contextual information in a multiple segmenta-
tion framework, and (b) Increasing the spatial support1 of
image labeling by constructing additional segments from a
base pool, at the cost of only a small increase in segment
pool size.

1Spatial support measures the quality of pool of segments as compared
to ground truth. The score is higher if the segments in the ground-truth find
segments in the pool with high overlap.
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Figure 1. Comparison of our approach to fixed and multiple segmentation algorithms. Our approach solves the problem of segmentation
and recognition jointly using appearance and context. The figure shows how global contextual relations help to select the whole car segment
subset over other fragmented pieces of car, as their association does not satisfy context.

2. Related Work

The problem of image parsing has a long history in
computer vision dating back to the 1970’s. Unlike Marr’s
sequential processing pipeline, where segmentation from
bottom-up cues preceded recognition, Tenenbaum and
Barrow proposed Interpretation-Guided Segmentation [27]
which labeled image regions using constraint propagation to
arrive at a globally consistent scene interpretation. This was
followed by development of complete scene understanding
systems such as ACRONYM [1] and VISONS [8]. During
the last decade, researchers in visual recognition have made
significant advances in object recognition due to better ap-
pearance modeling techniques and visual context. These
approaches can be broadly categorized into three categories
based on how interactions between segmentation and recog-
nition are modeled:

Pixel Based Approaches: These approaches model the
problem of visual recognition at the pixel level [9, 25, 26,
29] and therefore the problem of segmentation is solved im-
plicitly (neighboring pixels belonging to different class rep-
resent boundary pixels). One of the major shortcomings of
pixel-based approaches is that many objects (such as cars)
are defined in large part by their shape and therefore cate-
gorization at the pixel-level using local appearances without
global shape analysis performs poorly.

Fixed Segmentation Approaches: These approaches
classify individual regions in some fixed image segmenta-
tion based on region color, texture and shape [6, 4, 11].

However, obtaining semantically meaningful segmentations
without top-down control is well beyond the state of the art.

Image Parsing (Joint Segmentation and Recogni-
tion): These approaches jointly solve segmentation and
recognition. Approaches such as [23, 20] obtain multi-
ple segmentations of the image and model the problem of
segmentation and recognition as the selection of segments
based on their matches to semantic classes. On the other
hand, approaches such as [5, 14, 18] start from an im-
perfect segmentation and then refine it iteratively by opti-
mizing a cost function defined on segments and appearance
matchings. One of the shortcomings of these approaches is
that they tend to get stuck in local minima due to local re-
finement. [16, 15] proposed super pixel based approaches
where the class labels are inferred based on local appear-
ance and context using CRFs. Such approaches fail to incor-
porate higher level shape information; additionally learning
CRF’s parameters has proven to be difficult. In [28] seg-
mentation was combined with the responses of sliding win-
dow object detectors for image labeling to avoid fragility of
segmentation.

3. Overview

Multiple segmentation approaches construct a pool of
initial segments by varying the controlling parameters of
a segmentation algorithm or by starting from a coarse
segmentation and iteratively refining the segmentation by
merging or further segmenting initial segments. They gen-
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erally assume that each object will be well segmented at
some parameter setting or level. [19] pointed out that merg-
ing small connected subsets (pairs and triples) of base seg-
ments improves recognition performance. However, the al-
gorithm in [19] employed manually choosing the segments
to merge. One could simply join all possible pairs and
triples of connected segments but this would lead to an ex-
plosion in the segment pool size. In contrast, we construct a
“good” set of mergings using a classifier which rejects com-
bination which are unlikely to correspond to “complete” ob-
jects (section 4).

We organize these segments into a hierarchical segment
graph for recognition. The graph structure allows us to im-
pose constraints that reduce the combinatorics of the search
process - for example, that a solution cannot include over-
lapping segments, since this could lead to pixels being given
multiple labels.

Given the segment graph, we compute pairwise and
higher-order constraints on selection of segments. We then
formulate a cost function which accounts for local appear-
ance and enforces pair-wise contextual relationship consis-
tency (such as sky above water, road below car, etc). Di-
rectly optimizing this cost function is NP hard so the cost
function is approximately minimized by first relaxing the
selection problem. The relaxed problem can be solved effi-
ciently by quadratic programming (QP). The relaxed solu-
tion is then discretized to obtain the final labeled segmen-
tation (section 5). Finally, we evaluate the performance of
our approach with previously reported methods (section 6).

4. Constructing the Segment Graph
Obtaining the Initial Segment Pool: We use the hier-

archical segmentation algorithm from [24] to construct the
segment pool. To increase the robustness of the segmenta-
tion algorithm, we use the stability based clustering analysis
of [22]. Stability analysis selects segments which are stable
under small perturbations (noise) to the image.

In the first step, image is segmented and the segments
in the first hierarchical level are added to the segment pool.
Then each of these segments is iteratively segmented and
the smaller segments are added to the segment pool until
any of the following conditions are met. (1) The segment
size is too small (< 2% of total image pixels). (2) The
integrated edge strength along the boundary of the segment
(obtained by Berkeley edge detector [21]) is below a thresh-
old. (3) The number of leaf nodes in the segment subgraph
rooted at the original segment exceeds a threshold.

This procedure gives us initial segment pool over which
we will perform segment selection.

Merging Segments: The base segmentation algorithm
seldom produces segments that directly correspond to the
objects in the image. Hence, we merge small (2 and 3) con-
nected sets of segments from the segment pool to obtain a

better collection of segments. But allowing all possible seg-
ment merges would explode the size of the pool. To limit
the number of pairs and triples merged, we learn a function
that scores these small subsets from a training set of fully
labeled images.

A Support Vector Regression (SVR) [2] model using ra-
dial basis functions is learned from the training images to
score potential merges. We compute color, texture and edge
features similar to those used by Hoiem et. al. [10] for each
segment of an object. Based on these features, the SVR pre-
dicts whether the segments should be merged or not. Train-
ing images are segmented using the segmentation algorithm
described above and a segment pool is obtained for each
image. Objects which are broken into multiple segments
are determined using the ground truth segmentation. These
fragmented objects provide positive examples and the neg-
ative examples are obtained using random samplings from
the training data. For a testing image, each adjacent pair and
connected triple2 of segments is evaluated for merging us-
ing the regression model learned, providing a score for each
merging. The pairs and triples with scores above a threshold
are added to the segment pool.

We evaluated the merging scheme on the 256 test im-
ages in the MSRC dataset. Figure 2 shows the spatial sup-
port in the pool with increasing pool size. The pool size is
increased by lowering the threshold at which mergings are
accepted. To demonstrate that the SVR learns an informa-
tive merging function, we compare the spatial support met-
ric when the segment pool is enlarged using random merges
(red curve in Figure 2). Although spatial support increases
(which it obviously must), it does so at a much slower rate
than the SVR.

Construction of the Segment Graph: The pool of seg-
ments are then arranged in a hierarchical graph structure to
which our inference algorithm will subsequently be applied.
The graph structure is constructed as follows: The root node
is assigned to the whole image. A segment Si is a child of
segment Sj if segment Si ⊂ Sj . If two segments Si and Sj

are subsets of a Sk then both the segments are children of
segment Sk. The segments which have no smaller segment
subsets are leaf nodes.

5. Piecing together the Segments
Our goal is to select a set of segments from the pool such

that each segment has high overlap with a ground-truth seg-
ment and is assigned its correct label.

We formulate a cost function which evaluates any possi-
ble selection and labeling of segments from the pool. Each
segment, Si in the pool is associated with a binary variable
Xi which represents whether or not the segment is selected.

2triples of segments are constructed by evaluating mergings of a seg-
ment from the initial pool with an adjacent segment formed from the pair-
wise merging step.
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Figure 3. Our approach: We first create a pool of segments using multiple segmentations of an image and merging some of the connected
pairs and triples of these segments. These segments are arranged in a graph structure where path constraints are used to obtain selection
constraints. An example of a path constraint is shown using green edges: only one segment amongst all the segments in the path can be
selected. The magenta arrow shows that two segments which overlap cannot be selected simultaneously. Finally, the QP framework is used
to find the set of segments, together with their labels, which minimizes the cost function given the constraints

With each selected segment we also associate a set of C bi-
nary variables, (Xi

1...X
i
C), which indicates the label asso-

ciated with the segment. Xi
j = 1 represents that segment i

is labeled with class j. Our goal is to choose Xi such that
the cost-function J is minimized, where J is defined as:

J =
∑
i,j

−w1AijX
i
j−
∑
i

w2SiX
i+
∑
i,j

∑
k,l

w3X
i
jPijklX

k
l

(1)
The cost function consist of three terms. The first term

uses an appearance based classifier to match the appear-
ance of selected segments with their assigned labels. The
second term is the explanation reward term which rewards
the selection of segments proportional to their size. The
third term is a context satisfaction term which penalizes as-
signments which do not satisfy the contextual relationships
learned from the training data. We discuss each of these
terms below. The weight w1,w2,w3 are obtained by cross

validation on a small dataset and for our experiments we
use 1, 1.5 and 0.5 respectively.

5.1. Constraints on Segment Selection

While there are 2NS possible selections (whereNS is the
number of segments in the pool), not all subsets represent
valid selections. For example, if segment i is selected and
assigned label j, then other segments which overlap with
segment i should not be selected to avoid multiple label-
ing of pixels. Figure 3 shows the overlap constraint by a
magenta arrow where the two car segments which overlap
cannot be chosen simultaneously. Similarly, two segments
along a path from the root to any leaf node cannot be se-
lected together. Figure 3 shows one such path constraint in
green, where selection of the car and its subset segments
simultaneously is prohibited.

These constraints are represented as follows:

0 ≤ Xi +Xk ≤ 1 ∀(i, k) ∈ O (2)
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Figure 2. Graph on top shows the improvement in spatial support
with increase in pool size. Image below the graph shows the in-
stances where SVR model correctly merged fragmented segments
of objects in the pool to complete the object segment.

0 ≤ Xp1 +Xp2 ....Xpm ≤ 1 ∀p ∈ P (3)

where O represents the set of pairs of regions in the
graph that overlap spatially andP represents the set of paths
from the root to the leaves in the segment graph. Addi-
tional constraints that are enforced while minimizing the
cost function J include:

0 ≤ Xi ≤ 1 (4)∑
j

Xi
j = Xi (5)

These constraints allow only one label to be assigned to
each selected segment.

5.2. Cost Function

We now explain the individual terms in the cost function.
Appearance Cost: The first term in the cost function

evaluates how well the appearance of the selected segment
i associated with label j matches the appearance model for
class j. For computing Aij , we learn an appearance model
from training images using a discriminative classifier over
visual features. We use the appearance features from [10]

and learn a discriminative probabilistic-KNN model as in
[13, 12] for classification.

Explanation Reward: This term rewards selecting a
segment proportional to its size, represented by Si. This
term avoids the trivial solution where no segment gets se-
lected by the algorithm.

Contextual Cost: The third term evaluates the satis-
faction of contextual relationships for a given selection of
segments and their label assignment. We model context
by pair-wise spatial and contextual relationships as in [6].
If segment i is assigned to class j and segment k is as-
signed to class l, Pijkl measures the contextual compatibil-
ity based on co-occurrence statistics of classes j and l. We
also evaluate spatial contextual compatibility by extracting
the pairwise-differential features as in [6] for segments i
and k and comparing them with a learned model of differ-
ential features for labels (j, l). For example, if the labeling
is such that sky occurs below water then the penalty term is
kept high and vice-versa. The penalty term is defined as:

Pijkl = C1 exp(
(di,k − µj,l)

2

2σ2
j,l

) + C2 exp(−αMj,l) (6)

where C1, C2 and α are constants. di,k is the dif-
ferential feature between segment i and segment k. µj,l

is the mean differential feature obtained from training
between class labels j and l. The term Mj,l repre-
sents the co-occurrence of classes j and l, also ob-
tained from training. We employ eight differential fea-
tures - ∆x,∆y,∆µred,∆µgreen,∆µblue,∆µbrighter, adja-
cency and overlap.

5.3. Optimization

For optimizing the cost function, we relax the binary
variables Xi and Xi

j to lie in [0, 1]. We use the Integer
Projected Fixed Point (IPFP) algorithm [17] to minimize
the cost function. The solution generally converges in 5-10
steps, which makes it very efficient, while outperforming
current state-of-the-art methods for inference. IPFP solves
quadratic optimization functions of the form:

x′∗ = argmax(x′TMx′) s.t.Ax′ = 1, x′ ≥ 0 (7)

To use the IPFP algorithm, we transform the original
equation 1 into 7 through the following substitution: x′ =

( 1
X ) and M =

(
0 (A+S)T /2

(A+S)/2 −P

)
. The path constraints

discussed in section 5.1 are incorporated as constraints in a
linear solver during step 2 of the optimization algorithm.

6. Experiments
We evaluated the performance of our algorithm on three

standard dataset: Label Me subset (used in [11]), PASCAL
VOC 2009 [3] and MSRC [26].
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Figure 4. PASCAL VOC’09 labeling results. Columns (a) and (d) - original images. Columns (b) and (e) show the performance of
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Table 1. Performance comparison of our algorithm against previous approaches on PASCAL VOC09 dataset.
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Hierarchical CRF [15] 77.7 38.3 9.6 24.0 35.8 31.0 59.2 36.5 21.2 8.3 1.7 22.7 14.3 17.0 26.7 21.1 15.5 16.3 14.6 48.5 33.1 27.3
Hierarchical CRF with CO [15] 82.3 49.3 11.8 19.3 37.7 30.8 63.2 46.0 23.7 10.0 0.5 23.1 14.1 22.4 33.9 35.7 18.4 12.1 22.5 53.1 37.5 30.8
Ours (w/o Context,w/ Merging) 76.4 25.6 8.0 14.2 47.3 8.1 30.5 53.7 50.1 18.6 9.1 48.5 10.9 15.8 33.8 47.3 10.2 15.7 11.2 48.6 35.2 29.5
Ours (w/ Context, w/o Merging) 61.2 37.3 5.5 20.6 36.0 14.6 30.8 55.3 46.8 10.6 4.2 40.2 11.3 17.3 29.0 36.1 9.1 29.3 12.8 47.4 38.2 28.3

Ours (Context, w/ Merging) 85.8 39.8 7.6 18.4 45.0 8.4 44.6 66.1 54.2 11.2 10.3 52.7 15.2 23.5 39.2 50.8 11.5 31.5 19.8 40.4 48.9 34.5

LABEL-ME: [11] used a subset of LABEL ME contain-
ing 350 images - 250 training and 100 testing. The dataset
contains 19 classes. Performance is measured using the two
standard measures from [11]. For comparison, we also eval-
uate four approaches in addition to those compared in [11]
(1) Our multiple segmentation framework, but without con-
textual information. (2) A fully connected MRF-model sim-
ilar to [4], which performs recognition using context on a
fixed segmentation obtained using stability analysis. (3) A
Texton-boost approach 3 without the CRF model, and 4) our
method applied to the initial segment pool, but without the
SVR merged segments.

Figure 5 shows a few qualitative examples of our ap-
proach. When context is not utilized many small segments
are mislabeled and matched to wrong object classes. How-
ever, when context is added many of these errors are elimi-
nated.

3http://jamie.shotton.org/work/code/

Table 2 shows the quantitative performance of our ap-
proach compared with these four methods and [11] us-
ing the two standard evaluation metrics. Our approach has
a pixel-wise accuracy of 75.6%; when only appearance is
used the performance falls to 65.23%. This shows that con-
textual information is critical not only for recognition but
also for segment selection. As expected, the fixed segmen-
tation MRF model has a low pixel-wise accuracy of 54.2%.
The publicly available version of Texton-boost achieves just
49% pixel-wise accuracy. This is because Texton-boost re-
lies on pixel-based appearance models. These are adequate
for modeling regions like ‘grass’ and ‘sky’ but perform
poorly for objects whose recognition requires cues such as
shape.

PASCAL VOC 2009: The PASCAL VOC 2009
dataset [3] consists of 1499 images which is split into 749
images for training and 750 images for validation. We fol-
low the protocol used by [15] to compare against the state
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Table 2. Performance comparison of our algorithm against other approaches on LabelMe dataset.

Texton-boost MRF based Jain et. al. [11] Ours (no Context, Merging) Ours (Context, no Merging) Ours (Context,Merging)
pixel wise 49.75 54.2 59.0 65.23 71.9 75.6
class wise 20 30.2 – 38.5 43.5 45
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Figure 5. LabelMe dataset results - columns 1, 3 and 5 show the original image with object labels obtained by our algorithm and columns
2, 4 and 6 show the corresponding image segmentation.

of the art, and use the same evaluation metric as [15]. Ta-
ble 1 shows the class wise performance of our approach
compared with the other approaches. Our approach outper-
forms previous approaches on many classes which shows
that it generalizes to a large number of object classes. Our
better performance on classes like Car, Cat, Horse, Sheep,
Cow, Monitor, Dog and Person supports our contention that
a multiple segmentation approach performs better on ob-
ject classes for which shape is important. Table 1 also
shows that both context and merging improves recognition
by choosing segments which have better spatial support.

Figure 4 shows some qualitative results on VOC 2009.
Columns (b) and (e) show the labeling performance of our
algorithm solely based on appearance. The algorithm us-
ing only appearance leads to a variety of errors such as the
wing of the aeroplane being labeled as boat, the ground in
the horse image as dining table, and the painting above the
sofa as a person. Columns (c) and (f) show the performance
of our approach with context. Figure 6 compares qualita-
tive results of our algorithm with and without mergings and
elucidates the importance of merging for better recognition.
For example, in the sign image, the parts of the sign board
are labeled as water and building but after merging them, it
is correctly labeled as sign board.

MSRC dataset: Our algorithm achieved 75% (pixel-
wise) and 68.7%(classwise) on the MSRC dataset, which

is comparable to state-of-the-art results except [15]. MSRC
is relatively simple and does not significantly benefit from
the use of multiple segmentations. Our approach performs
better than [15] for classes like bird, car and cow, where
multiple segmentation and merging helps by creating seg-
ments whose shapes are closer to class models, but performs
poorer on “stuff” classes such as grass and sky.

7. Conclusion

We described an approach for simultaneous segmenta-
tion and labeling of images using appearance and context.
The optimization criteria developed was solved by relax-
ing the discrete constraints and employing a quadratic pro-
gramming method. The relaxed solution was then dis-
cretized (and additional constraints were introduced) us-
ing a greedy algorithm. Experiments on three well studied
datasets demonstrated the advantages of the method.
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