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Abstract

We propose a novel approach to associate objects across
multiple PTZ cameras that can be used to perform cam-
era handoff in wide-area surveillance scenarios. While
previous approaches relied on geometric, appearance, or
correlation-based information for establishing correspon-
dences between static cameras, they each have well-known
limitations and are not extendable to wide-area settings
with PTZ cameras. In our approach, the slave camera only
passively follows the target (by loose registration with the
master) and bootstraps itself from its own incoming im-
agery, thus effectively circumventing the problems faced by
previous approaches and avoiding the need to perform any
model transfer. Towards this goal, we also propose a novel
Multiple Instance Learning (MIL) formulation for the prob-
lem based on the logistic softmax function of covariance-
based region features within a MAP estimation framework.
We demonstrate our approach with multiple PTZ camera se-
quences in typical outdoor surveillance settings and show a
comparison with state-of-the-art approaches.

1. Introduction

Multiple PTZ cameras are commonly used in wide-area
surveillance applications. While these cameras can detect
and track objects individually and independently, in order
to further exploit the “networked” nature of these systems it
is necessary to establish correspondences between them to
enable them to function in an integrated setting. To achieve
this, one needs to address problems such as camera calibra-
tion, registration (to establish overlapping zones), and ob-
ject association across multiple cameras. In this paper we
address the problem of associating objects across cameras
in a novel manner.

There are two main approaches towards establish-
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ing object correspondences across multiple cameras:
Geometry-based and Appearance-based. Geometry-based
approaches [4, 6, 12] work by using 3D camera geome-
try and calibration information and also exploit homogra-
phy constraints to establish correspondences between pix-
els in the different views without looking at the appearance
information. Alternative approaches such as [9, 14] learn
correspondences between views without explicitly perform-
ing calibration, but by instead modeling the correlations
between activity levels at pixel locations across multiple
views. Appearance-based approaches [8, 18] try to learn
the inter-camera color calibration to effectively transfer the
appearance models between different views so as to reliably
handoff the object model. These are mutually exclusive ap-
proaches and a complete system would need to employ an
effective combination of these techniques to achieve robust
association across cameras.

While appearance-based approaches have seen some
success in constrained settings (with static cameras), in
case of PTZ camera systems, robustly transferring appear-
ance information and learning brightness transfer functions
across them for the whole field-of-coverage is a very chal-
lenging task. This is primarily due to two reasons (i) non-
uniform appearance nature of targets - different poses of the
same target can have very different appearances. (ii) two
cameras looking at the same target can have widely differ-
ing viewpoints (top vs. side). Such common cases demon-
strate the practical challenges with PTZ camera systems and
reveal the lack of useful appearance information that can be
transferred between cameras. We therefore adopt a novel
approach to learn object associations across PTZ views in a
master-slave configuration.

In a typical surveillance setting, an intuitive way for the
security operator (controlling a PTZ camera with a joy-
stick) to automatically initialize a target tracker would be
to loosely follow the person of interest and and then have
the system automatically learn the intended target, and then
continue tracking the target. Since the system now has a
robust model that has been automatically learned using the
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target’s persistent appearance features, it can use this model
to reliably track the target in future frames. Extending this
idea to a master-slave camera configuration where the mas-
ter camera actively tracks the target, the slave camera can
follow the same target by using a registration mechanism
(to roughly point to the same region as the master) to ob-
tain a view of the same target, and then use these frames to
learn a robust target model. Since it only passively follows
the target and bootstraps itself from its own incoming im-
agery, this effectively circumvents the need to perform any
transferring of appearance information across cameras. To
passively learn the target model from this setup, we design
a novel logistic-based MIL algorithm based on the softmax
combining function and derive the gradient-based formula-
tion for it. This algorithm uses covariance features to model
image regions and we further develop this within a Gaussian
MAP (maximum a-posteriori) estimation framework to ob-
tain a robust, regularized estimate of the target model.

2. Related Work
Appearance-based association of objects across views

have been popular since the work of [13] and [7] where
they used color histograms to match people and cars,
and [16, 11] who used Gaussian-based color models for
matching. Improving upon these, an inter-camera color cal-
ibration approach was proposed by [18] in which a Bright-
ness Transfer Function (BTF) is learned to transfer appear-
ance histograms across views since different color and il-
lumination distributions are observed across cameras (espe-
cially enhanced in outdoor scenes). However, these BTFs
are typically not robust in real settings and are affected by
parameters of scene geometry, exposure, focal length, and
aperture size. An improvement to this approach is proposed
by [8] by learning a subspace of these BTFs from train-
ing data, but this technique is still specific to world point
surface material properties by assuming that the same 3D
point is viewable from multiple views. For multiple rea-
sons as explained before, this need not be the case with
PTZ camera systems. In order to overcome these issues, the
proposed algorithm takes a novel approach for performing
camera handoff by using the slave camera to automatically
learn the intended target models.

In the area of Multiple Instance Learning, since the orig-
inal work of [5], there have been various algorithms pro-
posed such as Diverse Density (DD) [15] and SVM tech-
niques [1]. MIL has also been demonstrated for use in
object tracking in [2, 17]. The state-of-the-art MIL-based
tracking algorithm [2] uses an online boosting framework
similar to [24] by choosing a succession of weak classifiers
using Haar-like features to build an additive strong clas-
sifier. This approach requires a manual initialization and
they demonstrate their tracking with indoor datasets. While
Haar-like features are popularly used in typical object de-

tection problems, in our approach we use covariance de-
scriptors [19] to model regions, since they have been shown
to be robust for outdoor pedestrian tracking scenarios typi-
cal in surveillance settings. More recently, in a comparison
study of MIL algorithms, Multiple instance logistic regres-
sion [22] has been shown to be empirically superior, espe-
cially for image retrieval tasks. In this work, we propose a
novel logistic-based MIL approach using the softmax com-
bining function and derive a gradient based optimization
framework.

3. MIL Framework
In this section we develop the theoretical framework

used in our approach based on Multiple Instance Learning.
In our problem formulation, we model images contain-

ing the target of interest as bags, and patches within the im-
ages as instances. In order to learn the target model from
this sequence of images and localize the target of inter-
est within a new image, we wish to build a discriminative
classifier which can output the probability p(y = 1|x) in-
dicating the posterior probability that the target is present
(y = 1) in the image patch x. In a MIL framework, the input
data is obtained in the form of positive bags (B+) and neg-
ative bags (B−) containing instances. More formally, the
input data D = {(X1, y1), (X2, y2), ..., (Xn, yn)} where
Xi = {xi1, xi2, ..., ximi} denotes bag i containing mi in-
stances and has a corresponding bag label yi ∈ {0, 1}. Each
instance xij is a feature vector calculated for an image patch
j from bag i. Using the definition of [5], a bag is labeled
positive if it contains at least one positive instance, and neg-
ative if it contains all negative instances.

Using a likelihood formulation, the correct bag classi-
fier/labeler will maximize the log likelihood of labels over
all the bags (given the MIL constraints)

logL =

n∑
i

log p(yi|Xi) (1)

where p(yi|Xi) is the probability of the bag i (given its in-
stances) having label yi. Since the above likelihood formu-
lation is expressed in terms of bag probabilities and what
we want is to learn an instance-level classifier (for an in-
stance/patch x), we will use a combining function to assem-
ble instance-level probabilities into a bag probability. This
is done using the softmax combining function as follows.

From the definition of positive and negative bags, we can
formally express the notion of bag label in terms of its in-
stance labels as yi = maxj(yij) which states that the la-
bel of a bag is the label of the instance within it which has
the highest label. Here, we incorporate a probabilistic ap-
proximation of the max operator called softmax, in order to
combine these instance probabilities in a smoother way, so
as to allow all instances to contribute to the bag label. This
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softmax function is generically defined as

softmax(a1, ..., am) =

m∑
j=1

aj exp(αaj)

m∑
j=1

exp(αaj)
(2)

where α is a constant that controls the weighting within
the softmax function such that softmax calculates the mean
when α=0 and max when α→∞. Since this softmax func-
tion is also differentiable (as opposed to the max operator),
this allows us to incorporate it into a gradient-based opti-
mization framework.

The bag-level probabilities for positive and negative bags
are now defined as: pi=p(yi=1|Xi) =softmax(si1, ..., simi)
and p(yi=0|Xi) =1 − p(yi=1|Xi), where sij=p(yij=1|xij)
are the instance level probabilities being combined to ob-
tain the bag probabilities p(yi|Xi). Thus, if one of the in-
stances is very likely to be positive, the nature of the soft-
max combining function is such that its estimate of the bag’s
“positive-ness” will be very high, since it gives an exponen-
tially higher weight to such an instance, and consequently
the weighted average of all the instances will also be high.
Here, α controls the proportion of instances in the bag that
influence the bag label. Therefore, if one has an estimate of
the proportion of positive to negative instances in the posi-
tive bags (noise-level), one can appropriately tune α to re-
flect this.

Next, to model these instance-level probabilities sij , we
employ a logistic formulation given as

sij = p(yij = 1|xij) =
1

1 + exp(−w · xij)
(3)

where the parameter vector w (to be learned) models the
target of interest, so that the probability p(yij = 1|xij) cal-
culated with Eqn. 3 would be high for an image patch xij
that contains the target, and low for a patch that does not
contain the target.

3.1. Maximum a-Posteriori Estimation

Using Eqn. 3 and the bag-level probabilities in Eqn. 1,
we can express a maximum likelihood formulation (in terms
of the parameter vector w to be learned) as

ŵML = argmax
w

log p(D|w) (4)

with the log likelihood term p(D|w) given by

log p(D|w) =
∑
i∈B+

log


mi∑
j=1

sijtij

mi∑
j=1

tij

+
∑

i∈B−

log

1−

mi∑
j=1

sijtij

mi∑
j=1

tij


(5)

where sij and tij = exp(α · sij) are functions of w. By
incorporating the bag labels yi, this can be written as

log p(D|w) =

n∑
i=1

yi log pi + (1− yi) log(1− pi) (6)

The maximum likelihood estimate ŵML can be found by
optimizing the above equation. However, in order to avoid
overfitting of w and obtain a more regularized estimate, we
can impose a prior on w. We assume a Gaussian prior with
zero mean w ∼ N (0,Λ−1) and the covariance matrix Λ
is a diagonal matrix which controls the individual weight
values.

Employing this prior into the ML formulation, we can
obtain the Maximum a-posteriori (MAP) estimate of w us-
ing Bayes rule as

ŵ = argmax
w

(log p(D|w) + log p(w)) (7)

In terms of the likelihood and prior information, this
function to be optimized can be written as

F(w) =

n∑
i=1

yi log pi+(1−yi) log(1−pi)−
wTΛw

2
(8)

which can be solved using gradient descent so that the
weight vector update is performed as wnew = wold −
u(∇FTu)/(uTHu), where u = −H−1∇F is used as the
search direction for line searches. The gradient for this ob-
jective is calculated as

∇F(w) =

n∑
i=1

∂pi
∂w

(
yi
pi

+
yi − 1

1− pi

)
−Λw (9)

where the partial derivative term ∂pi

∂w is obtained as

∂pi
∂w

=
1

(
mi∑
j=1

tij)2

mi∑
j=1

tij

mi∑
j=1

sij∂(tij) + tij∂(sij)



−
mi∑
j=1

∂(tij)

mi∑
j=1

sijtij


(10)

and the partial derivatives of sij and tij are given as (see
Appendix for proofs),

∂(sij) = sij · (1− sij) · xij (11)
∂(tij) = α · tij · sij · (1− sij) · xij (12)

and the Hessian H can be calculated by differentiating the
gradient ∇F w.r.t w. However, since calculating the Hes-
sian at every iteration and inverting it for the update step
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is computationally slow, based on the work of [3], the
changing Hessian can be approximated by a fixed Hessian
H̃ = − 1

kXXT −Λ that needs to be inverted only once, and
convergence is guaranteed as long as k is picked suitably so
that H̃ ≤ H. In our experiments, we set k = 10.

3.2. Optimization of Prior Parameters Λ

To select the optimal parameters Λ for the Gaussian prior
on w, we perform type-II maximum likelihood estimation
and maximize the marginal likelihood of p(D|Λ) as

Λ̂ = argmax
Λ

p(D|Λ) = argmax
Λ

∫
p(D|w)p(w|Λ)dw

= argmax
Λ

∫
exp(φ(w))dw (13)

where φ(w) = log p(D|w)+ log p(w|Λ). Using a second-
order Taylor series approximation of φ, we express this as

φ(w) ≈ φ(ŵ) +
1

2
(w − ŵ)H(ŵ,Λ)(w − ŵ)T (14)

Using this and the Gaussian prior on p(w|Λ), the log of
the marginal likelihood from Eqn. 13 can be written as

log p(D|Λ)

≈ log
(
p(D|ŵ)p(ŵ|Λ)(2π)d/2| −H−1(ŵ,Λ)|1/2

)
≈ log p(D|ŵ)− 1

2

(
ŵTΛŵ − log |Λ|+ log | −H(ŵ,Λ)|

)
(15)

Now, to obtain the parameters Λ we optimize this log
likelihood using gradient descent, the gradient for which is
calculated as follows

∂p(D|Λ)

∂Λ
= −1

2

(
ŵŵT −Λ−1 + H−1(ŵ,Λ)

)
∂p(D|Λ)

∂λi
= −1

2

(
ŵ2

i − λi
−1 +H−1

ii

)
(16)

where diag(Λ) = (λ1, ..., λd). Setting this gradient to zero,
we get an update rule for updating the parameters in the kth
iteration as follows

λk+1
i = 1/(wk

i

2
+H−1

ii

k
) (17)

This idea of using nested optimization iterations (one for
updating the weights w and one for the parameters of Λ)
is inspired by the Sparse Learning work of [23]. There-
fore, when presented with a set of training image bags, with
patches within it forming instances, the parameter vector ŵ
obtained from the final optimization algorithm represents
the learned target model. Further, when presented with a
new image, the probability that an image patch within it
(with feature vector x) contains the learned target can be
calculated from Eqn. 3 using ŵ. The complete MIL based
optimization framework is summarized in Algorithm 1.

Input: {Xi, yi}n1 are the bags where {xij ∈ Rd}mi
j=1

are the instances in bag i

Initialize λi=1 and wi=0 for i = 1, ..., d.

repeat iterate k
Calculate Hessian Matrix H
Find MAP estimate of w using Λk

repeat iterate l
Compute gradient∇F(w)
Find direction of line search u = −H−1∇F
Update w← w − u(∇FTu)/(uTHu)

until maxi |wl
i − w

l−1
i | < ε1;

Update Λ parameters using
λki = 1/(wk

i
2
+H−1

ii

k
)

until maxi | log λki − log λk−1
i | < ε2;

Output: Weight vector ŵ representing the learned
target model

Algorithm 1: The proposed MIL optimization framework

3.3. Covariance Features

We adopt a variation of covariance matrix features to ob-
tain a feature vector xij for each image patch instance in our
formulation (though other features could also be used). Co-
variance features have been shown to be robust appearance-
based descriptors for modeling image regions [19]. The co-
variance matrix representation CR for a given image patch
R of size W ×H in our framework is calculated as

CR =
1

WH

WH∑
k=1

(fk − µR)(fk − µR)
T (18)

where fk = [x y r g b Ix Iy] is a 7 dimensional feature
vector using a combination of position, color, and gradient
values at each pixel location in the image patch R, and µR

is the mean feature vector within the image patch.
We require a Euclidean distance based feature represen-

tation for Eqn. 3 whereas distances between covariance ma-
trices are based on their eigenvalues [19]. Therefore, we use
the property from [10] that eigenvalues of matrix logarithm
of a covariance matrix CR are equal to logarithms of eigen-
values of CR. Therefore, the covariance matrix descriptor
can be transformed to a feature vector representation by first
calculating the matrix logarithm ofCR to obtainCl and then
stringing out the elements of the matrix Cl to obtain a vec-
tor Cv [10]. Moreover, since the matrix logarithm Cl is a
symmetric matrix, it is fully specified by its bottom triangu-
lar part. Therefore, the feature vector Cv only needs to have
the bottom triangular part of Cl, with the off-diagonal ele-
ments scaled by

√
2 to compensate for their double presence
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in the matrix. In our case, the 7x7 dimensional covariance
matrix reduces to a 28 dimensional feature vector. We then
use these log covariance features to model the instances xij
corresponding to each image patch.

4. Association Algorithm
While a master camera actively tracks a target, the slave

camera uses the registration technique from [21] to point to
the same area (we also introduce artificial pan-tilt jitter to
demonstrate the applicability of our approach without accu-
rate calibration). We then use these incoming frames from
the slave camera to build image “bags” for MIL.

The first step in this approach is to extract image patch
instances from these images and use them to construct posi-
tive and negative bags. To do this, we first detect regions of
motion in each image by standard frame differencing (with
the assumption that the target is moving). For each image,
we then extract image patches from a reasonably large sam-
ple of the pixel locations marked as belonging to the mo-
tion region (the patch size can be predetermined or multiple
sizes/aspect-ratios can be used). We construct a positive bag
for this image using these instances since it is guaranteed to
have at least one instance patch containing the desired tar-
get. Note that with this technique, instances corresponding
to other parts of the scene in motion (trees, cars, noise pix-
els, etc.) would also be added, but that is acceptable since a
positive bag can contain negative instances.

At the same time, we sample a similarly large number
of pixel locations from the (non-moving) background and
extract image patches from these locations to construct the
corresponding negative bag. This method ensures that no
instance in this bag will contain the target. We similarly
repeat this process for each of the input frames. This way
it is guaranteed that at least one instance corresponding to
the desired target is present in each of the positive bags and
at the same time, absent from all the negative bags, thus
satisfying the Multiple Instance assumption. Once the pos-
itive and negative bags are constructed, we train the MIL
classifier using Algorithm 1 to learn the target concept (rep-
resented by the weight vector ŵ).
Online Update: An important aspect of the proposed learn-
ing approach is that the learned target concept can be up-
dated in an online manner with each new incoming frame
instead of having to retrain the classifier using all the bags
collected from the beginning. We use the assumption that
the target appearance does not change much with the new
frame and hence would result in only a small change in
the target model. Once we receive a new incoming frame,
we create a positive and negative bag using the method de-
scribed above and run Algorithm 1, but this time with the
weight vector w initialized to the previously learned target
model. Once the algorithm converges, we obtain the new
weight vector reflecting the updated target model.

Figure 1. Top row - Image sequence input to MIL. Bottom row -
Probability surfaces overlaid on new frames showing learned tar-
get (best viewed in color).

Multiple Targets: It could be the case that more than one
target is present across all input frames. Therefore, the
proposed approach tests for multiple targets by using the
first learned concept to remove all corresponding target in-
stances from the positive bags, and then retrains to learn the
next strongest concept, and so on for each remaining target.
More specifically, once the algorithm converges and learns
the first target model, it then uses Eqn. 3 with this model for
every instance from every positive bag to calculate its prob-
ability of being the target. It then classifies each instance as
positive (target) if this probability lies above a fixed thresh-
old σ. We then update every positive bag by removing from
it all the instances classified as being positive. This ensures
that none of the positive bags contain even a single instance
corresponding to the learned target.

It is important that the threshold σ be set conservatively
so as to eliminate every true positive instance, even at the
cost of eliminating a few false positives if necessary (we set
σ=0.75). Since all instances corresponding to the first target
have now been removed, re-running the optimization algo-
rithm learns the next strongest target concept (if such a valid
target is present). This process is repeated until all valid
target concepts have been learned. To test whether a valid
target concept has been learned or not, we calculate the log
likelihood of the learned model on the input set of positive
and negative bags. An extremely low value of the combined
likelihood over all the bags indicates that the learned model
is degenerate and there was no target concept left to learn.

5. Experiments

In this section, we present multiple experiments to evalu-
ate the proposed approach in different settings and compare
its performance with other techniques.

5.1. Extracting a Persistent Target

We first performed an experiment to demonstrate the
proposed algorithm by extracting a target that is persistent
across all frames of an input sequence in a single camera
scenario. This setting is similar to standard MIL-based
problems such as image retrieval, where one attempts to

3437



Master Cam Slave Cam

Figure 2. Probability surfaces overlaid on incoming frames showing target localized by slave camera for handoff for 3 different sequences.

learn models for objects (car, waterfall, etc.) that are com-
mon across the entire input dataset. In our case, given a
sequence of input images, we first constructed a set of posi-
tive and negative bags according to the technique described
in Sect. 4 with patch size of 75x25 pixels. We then ran our
MIL algorithm to learn a concept corresponding to a tar-
get that was common across all positive bags and absent in
each of the negative bags. The parameters of the learning
algorithm were set as α=3, ε1,2=10−5. The validity of the
learned target concept was checked by calculating the like-
lihood of the learned model across all input bags.

Next, we tested additional new frames. The target model
was evaluated against each new input image at every possi-
ble location. This results in a probability surface in each
new frame indicating the probability of the target being
present at each particular location. After this, a new pair of
positive and negative bags was created for the new frame,
the target model was updated using the online update tech-
nique described in Sect. 4, and the updated model then was
used to evaluate the next incoming frame. This process was
repeated with every new frame.

Figure 1(a) shows the sequence of input frames used to
learn a target model. Figure 1(b) shows the probability
“heatmap” overlaid on new frames, representing the proba-
bility surface p(y = 1|x) for each patch x across the im-
age. As seen in the figure, the target present across all
training images was detected by the algorithm. Figure 1(b)
shows the results of target localization using model update
in the new frames. Notice also that the other person was not
learned by the algorithm since that person was not present
in all of the frames, thus not satisfying the MIL constraints.

5.2. Associating Targets for Handoff

The next set of experiments were performed to demon-
strate and evaluate the proposed approach to perform cam-
era handoff with multiple PTZ camera settings. Our system
consisted of a master PTZ camera actively tracking a target
and a slave camera (also PTZ) passively following the same
target by roughly pointing to the same area. The proposed

algorithm was then run on the incoming frames from the
slave camera to identify and learn the target being tracked,
so that the system could then handoff to the slave camera
which could then take over the active tracking.

While the geo-registration of the cameras can be used to
drive the slave PTZ camera to accurately orient and point to
the intended target being tracked by the master, to demon-
strate that our approach does not require accurate geometric
calibration of the cameras, we artificially added Gaussian
jitter to the pan-tilt motor control of the slave camera so
that the target could be present anywhere in the scene (not
necessarily at the image center). The results with differ-
ent jitter levels for three different sequences are shown in
Fig. 2. In each case, it was observed that the target model
was successfully learned from the input frames thus provid-
ing the active tracker the ability to perform handoff to the
slave camera.

The online update capability of the algorithm allows the
system to continue updating all the target models (if there
are multiple targets present in the scene satisfying the MIL
criterion), and continue this process until a unique target is
detected in the scene. This is possible because the objective
function evaluation from the optimization algorithm can be
used to identify the number of target models learned. Thus,
we can exploit this feature to continuously update multiple
target models until only the single most persistent target re-
mains in the scene and then use that model for active track-
ing. We demonstrate this capability in an experiment with
the next sequence.

As seen in Fig. 4(top row), there were 2 targets present
in the scene satisfying the MIL criterion. Therefore, the
algorithm learned 2 corresponding target models and these
were then used for localization with the incoming frames
from the slave camera as shown in Fig. 4(bottom) (note that
a probability surface corresponding to each learned model
is obtained separately, but they are shown here overlaid on
the same image). Further, with each new incoming frame,
the target models were updated online and eventually, when
incorporating a frame where one of the targets is no longer
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Figure 3. Comparison of target tracking accuracy between the proposed approach and MILTrack for 6 different sequences.
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Figure 4. Target localization with multiple targets in the scene.

present, the MIL criterion is violated and consequently the
only single remaining target model was updated, as shown
in the last two frames in Fig. 4. Once this happens, the slave
camera can take over control and use the learned model to
bootstrap its active tracking. Note that even if the other tar-
get later re-enters the scene, they will not be localized, as
the MIL criterion requires the target object to be persistent
across all frames from the beginning (or is manually reset).

5.3. Quantitative Evaluation

We next evaluated the proposed approach quantitatively
based on accuracy of target localization and compared its
approach with MILTrack [2] on 6 PTZ tracking sequences.
We also experimented with other trackers such as IVT [20],
but it was difficult to compare performance directly since
they require parameter tuning for every video sequence as
noted in [2].

For MILTrack, we use a search radius s of 100 pixels and
extract positives instances from the slave camera frames us-
ing a positive radius r of size 5 pixels. Note that while MIL-
Track requires a manual initialization of the target, the pro-
posed approach learns this automatically from an initial set
input frames. Therefore, in all the experiments, we fixed the
number frames used to initialize and learn the target model
at 25. The frame immediately following this is considered
frame 0 and also the one used to initialize MILTrack man-
ually. The target localization results are compared using all
the following frames.

A comparison of the accuracy of the tracking for 6 dif-
ferent sequences is shown in Fig. 3. As noted before, MIL-
Track has mostly been evaluated with indoor sequences so
its performance in typical surveillance videos is not well
known. Note that MILTrack always starts with a tracking er-
ror of 0 in the first frame due to manual initialization, which

Table 1. Comparison of tracking accuracy in (µ± σ) pixel error

Sequence Proposed MILTrack
1 11.6 ± 3.2 31.1 ± 10.8
2 15.5 ± 3.6 23.5 ± 6.1
3 8.4 ± 2.2 19.9 ± 7.3
4 8.6 ± 1.2 12.4 ± 4.3
5 9.8 ± 3.0 16.1 ± 8.6
6 10.8 ± 2.8 15.2 ± 4.4

is not the case with the proposed approach. As seen from
the overall results, the tracking results from the proposed
approach performs better overall compared to the state-of-
the-art MIL-based approach. Table 1 shows a comparison
the mean and standard deviation values for the tracking er-
ror between the two approaches. We observed that the pro-
posed approached performed approximately 30− 40% bet-
ter than MILTrack. We also observed that in most of the
sequences, the proposed approach maintains a fairly con-
stant tracking accuracy (low values of σ) and does not seem
to deteriorate with the number of frames, in contrast with
MILTrack.
Bootstrapping performance: The proposed approach
works by using an initial set of frames to bootstrap and learn
the target model, and then uses an online strategy to update
the model with every new frame. Since the quality of model
learned would depend on the training set of frames, we next
performed a set of experiments to evaluate the tracking per-
formance with respect to the number of initial frames used
for bootstrapping the approach.

For each of our sequences, we ran the proposed approach
multiple times, each time with an increasing number of ini-
tial frames. Once the target model was learned, we then
used the online update and localized the target in each new
frame. The tracking errors were noted and compared for
different number of initial frames used for bootstrapping.
The results are shown in Fig. 5. For the sake of clarity, we
show the results for 4 of the 6 sequences which spanned
the range of errors observed. The results for the other 2
were within this error range. As expected, we observed that
for each of the sequences, on average the tracking error re-
duces with the number of initial frames used to learn the tar-
get model, although not monotonically (remains constant in
some cases). Also as seen in Fig. 5, it was observed that the
tracking error flattens out for ≥50 initial frames (without
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Figure 5. Comparison of tracking performance with increasing
number of frames used for bootstrapping.

a significant improvement in performance). This analysis
would be useful to tune the proposed approach for accuracy
requirements in varying tracking scenarios.

6. Summary and Future Work

We proposed a novel approach to the problem of es-
tablishing object correspondences and target modeling for
common tasks such as camera handoff in wide-area surveil-
lance settings. In our approach, the slave PTZ camera pas-
sively follows the target and bootstraps itself from its in-
coming imagery. This problem is set in a Multiple Instance
Learning framework where the input image frames are used
to build positive and negative bags and the intended target
model is learned by exploiting the idea of “commonality”
across all input frames. To achieve this, we developed a
novel MIL-based formulation based on the logistic model
and used the softmax function to combine instance proba-
bilities to bag probabilities. We employed covariance-based
region features to model instances and learned target mod-
els using a MAP estimation framework. We evaluated our
approach with multiple PTZ camera sequences in outdoor
surveillance settings and showed promising results in com-
parison with the state-of-the-art MIL-based approach. In fu-
ture work, we plan to study trajectory analysis and also ex-
plore other interesting applications for our theoretical work.
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Appendix

∂sij
∂w

=
∂

∂w

(
1

1 + exp(−w · xij)

)
=

exp(−w · xij)
(1 + exp(−w · xij))2

· xij

= sij · (1− sij) · xij

∂tij
∂w

=
∂

∂w
(exp(α · sij))

= α · exp(α · sij) · ∂sij
= α · exp(α · sij) · sij · (1− sij) · xij
= α · tij · sij · (1− sij) · xij

References
[1] S. Andrews and T. Hofmann. Support vector machines for multiple

instance learning. In Proc. NIPS, 2003. 3434
[2] B. Babenko, M. Yang, and S. Belongie. Visual tracking with online

multiple instance learning. In CVPR, 2009. 3434, 3439
[3] D. Bohning. The lower bound method in probit regression. In Com-

putational Statistics and Data Analysis, 1999. 3436
[4] Q. Cai and J. Aggarwal. Tracking human motion in structured envi-

ronments using a distributed camera system. In TPAMI, 1999. 3433
[5] T. Dietterich and T. Lozano-Perez. Solving the multiple-instance

problem with axis-parallel rectangles. In Artificial Intelligence, 1997.
3434

[6] W. Hu, M. Hu, X. Zhou, T. Tan, J. Lou, and S. Maybank. Princi-
pal axis-based correspondence between multiple cameras for people
tracking. In TPAMI, 2006. 3433

[7] T. Huang and S. Russell. Object identification in a bayesian context.
In Proc. IJCAI, 1997. 3434

[8] O. Javed, K. Shafique, and M. Shah. Appearance modeling for track-
ing in multiple non-overlapping cameras. In CVPR, 2005. 3433,
3434

[9] Y. Jo and J. Han. A new approach to camera hand-off without camera
calibration for the general scene with non-planar ground. In ACM
Multimendia Wkshp. on VSSN, 2006. 3433

[10] J. Jost. Riemannian geometry and geometric analysis,. In Berlin:
Springer-Verlag, 2002. 3436

[11] J. Kang, I. Cohen, and G. Medioni. Continuous tracking within and
across cameras. In CVPR, 2003. 3434

[12] S. Khan and M. Shah. A multiview approach to tracking people in
crowded scene using a planar homography constraint. In Proc. IEEE
ECCV, 2006. 3433

[13] J. Krumm, S. Harris, and S. Shafer. Multi-camera multi-person track-
ing for easyliving. In Intl. Wkshp on Visual Surveillance, 2000. 3434

[14] D. Makris, T. Ellis, and J. Black. Bridging the gaps between cameras.
In CVPR, 2004. 3433

[15] O. Maron and T. Lozano-Perez. A framework for multiple instance
learning. In Proc. NIPS, 1998. 3434

[16] A. Mittal and L. Davis. M2tracker: A multi-view approach to track-
ing people in a clustter scene using region-based stereo. In Proc.
IEEE ECCV, 2002. 3434

[17] J. Mu, L. Kwok and L. Bao-Liang. Online multiple instance learning
with no regret. In CVPR, 2010. 3434

[18] F. Porikli. Inter-camera color calibration using crosscorrelation
model function. 2003. 3433, 3434

[19] F. Porikli, O. Tuzel, and P. Meer. Covariance tracking using model
update based on means on Riemannian manifolds. In CVPR, 2006.
3434, 3436

[20] D. Ross, J. Lim, and M. Yang. Incremental learning for robust visual
tracking. In IJCV, 2008. 3439

[21] K. Sankaranarayanan and J. Davis. A fast linear registration frame-
work for multi-camera gis coordination. In AVSS, 2008. 3437

[22] B. Settles, M. Craven, and S. Ray. Multiple-instance active learning.
In Proc. NIPS, 2007. 3434

[23] M. Tipping. Sparse bayesian learning and the relevance vector ma-
chine. JMLR, 1:211–244, 2001. 3436

[24] P. Viola, J. Platt, and C. Zhang. Multiple instance boosting for object
detection. In Proc. NIPS, 2005. 3434

3440


