
FlowBoost – Appearance Learning from Sparsely Annotated Video

Karim Ali1,2 David Hasler2 François Fleuret3

1 École Polytechnique Fédérale de Lausanne (EPFL), CVLAB, Switzerland
2 Swiss Center for Electronic and Microtechnology (CSEM), Switzerland

3 Idiap Research Institute and École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
karim.ali@epfl.ch, david.hasler@csem.ch, francois.fleuret@idiap.ch

Abstract

We propose a new learning method which exploits tem-
poral consistency to successfully learn a complex appear-
ance model from a sparsely labeled training video. Our
approach consists in iteratively improving an appearance-
based model built with a Boosting procedure, and the re-
construction of trajectories corresponding to the motion of
multiple targets. We demonstrate the efficiency of our pro-
cedure on pedestrian detection in videos and cell detection
in microscopy image sequences. In both cases, our method
is demonstrated to reduce the labeling requirement by one
to two orders of magnitude. We show that in some instances,
our method trained with sparse labels on a video sequence
is able to outperform a standard learning procedure trained
with the fully labeled sequence.

1. Introduction

Many classes of objects can now be successfully de-
tected with machine learning techniques. Faces, cars,
pedestrians and hands, have all been detected with low er-
ror rates by learning their appearance in a highly generic
manner from extensive training sets. These recent advances
have enabled the use of reliable object detection compo-
nents in real systems, such as automatic face focusing func-
tions on digital cameras. One key drawback of these meth-
ods, and the issue addressed here, is the prohibitive require-
ment that training sets contain thousands of manually anno-
tated examples.

We propose to reduce the requirement for such an ex-
tensive labeling by exploiting the temporal consistency oc-
curring in a training video. Our method, FlowBoost, starts

This work has been supported in part by the Swiss National Sci-
ence Foundation under project 200021-117997, by the Fond Québécois de
recherche sur la nature et les technologies, and by the European Commu-
nity’s Seventh Framework Programme FP7 - Challenge 2 - Cognitive Sys-
tems, Interaction, Robotics - under grant agreement No 247022 - MASH.

from a sparse labeling of the video, and alternates the train-
ing of an appearance-based detector with a convex, multi-
target, time-based regularization. The latter relabels the full
training video in a manner that is both consistent with the re-
sponse of the current detector, and in accordance with phys-
ical constraints on target motions.

The performance of this approach is evaluated on pedes-
trian detection in a surveillance camera setting, and on cell
detection in microscopy data. Our experiments show that
our method allows for a reduction in the number of training
frames by a factor of 15 to 60. This comes with virtually no
loss in performance when compared to a standard learning
procedure trained on a fully labeled sequence. In fact, in
some cases, gains in performance are observed.

2. Related Work

The use of labeled and unlabeled data to learn a clas-
sification model falls under the broad category of semi-
supervised learning, initially introduced in [12]. Given the
prominence of machine learning techniques, the cost asso-
ciated with producing annotated data and the abundance of
unlabeled data, a growing number of works have addressed
this problem.

Broadly speaking, one can view the semi-supervised
learning problem as a constrained instance of unsupervised
learning, where the additional constraints come in the form
of labeled data. This approach was taken in [11] where a
generative classification model for document classification
is used along with Expectation-Maximization. The algo-
rithm first trains a naive Bayes classifier using the labeled
data and probabilistically labels the unlabeled data. It then
retrains a classifier using the most confident labels and the
procedure is iterated.

A number of other works rely on the assumption that
the data lies on a low-dimensional manifold. As a conse-
quence, the data is represented as a graph where vertices
represent samples and edges-weights, pairwise similarity.
Various methods which propagate labels to the entire graph

1433



until convergence are proposed in [15, 13, 3, 7]. These al-
gorithms are naturally transductive and hence of limited ap-
plicability to the object detection setting where an inductive
classification rule is desired.

Still other works rely on the assumption that the deci-
sion boundary must lie in a low-density region. In [14],
a method to maximize the margin of both labeled and unla-
beled sample, termed Transductive Support Vector Machine
(TSVM), is introduced. However, the corresponding prob-
lem is non-convex and therefore difficult to optimize. One
approach presented in [6] starts with an initial SVM solution
obtained from the labeled data alone. Next, the unlabeled
data points are labeled by SVM predictions, their weights
increased and the SVM retrained. An alternative approach
derived from a bayesian discriminative framework and in-
volving a so-called Null Category Noise Model with Gaus-
sian Processes is presented in [10].

In this paper, we exploit temporal consistency in videos
to assist in the labeling of unlabeled data and iteratively
improve an appearance based classifier. Given a training
video, we begin by annotating a small subset of frames
while the remaining frames are not annotated. This lim-
ited initial training data is used to train an appearance
based classifier which is subsequently evaluated on the en-
tire video sequence. Admissible trajectories of targets are
retained as positive samples while the remaining data is re-
tained as negative samples and the process is iterated.

Thus, our unlabeled data is in fact highly structured. In
particular, once all trajectories are correctly identified, all
remaining samples certainly belong to the negative class.
From this perspective, our work is related to the tracking
approach of [8, 9] even though the goals differ significantly.
In [8, 9], a system is built with three components: a tracker,
a detector and a model. The tracker and detector are always
run in parallel and the hypothesis from either that minimizes
the distance to the model is kept. The model itself is updated
by growing and pruning events which generate positive and
negative samples to update the model. The system is on-
line, real-time and shows promising results.

One important difference with our work is that [8, 9] re-
lies on the very stringent assumption that no more than one
target is present in any given frame. Thus, once the hypoth-
esis with maximal confidence is identified in a frame, all re-
maining samples are considered negative. By contrast, we
rely on a global offline optimization, that is integrated into
the AdaBoost algorithm while allowing for an unknown and
unconstrained number of targets as is next explained.

3. Methodology

We are interested in detection by classification. That is,
given an image and a feature vector xs ∈ RD for every

Table 1. Notation

T = {1, . . . , T} time steps
S = {1, . . . ,W} × {1, . . . ,H} spatial locations
xt,s ∈ RD feature vector at location s in time frame t
yt,s ∈ {−1, 0, 1} ground-truth label
hm : RD → {−1, 1} weak learners
H = span{h1, . . . , hM} the combinations of weak learners
ϕ(x) ∈ H a strong classifier
V = T × S vertices of the motion graph
E ⊂ V × V edges of the motion graph
F ⊂ {0, 1}V Boolean labelings of the graph consistent with
multi-target motions
LV(ϕ;y) exponential loss summed on vertices
LE(ϕ; f) exponential loss summed on edges
Θ(f) signed labels on vertices corresponding to the
Boolean labeling f of the edges.

location s in the image, we want to build a classifier

ϕ : RD → R

such that the set of locations

{s : ϕ(xs) ≥ 0}

forms a good prediction of the set of locations where the
targets (faces, cars, etc.) are actually visible. The standard
technique consists in building a hand-labeled training set

(xn, yn) ∈ RD × {−1, 1}

and training a classifier ϕ with a low empirical error rate.
As described in the introduction, we want to avoid the re-

quirement for a large training set by using a training video,
and by going back-and-forth between the optimization of
an appearance-based classifier ϕ, and the optimization of
the labels of non-labeled frames. The latter can be refor-
mulated as the optimization of a Boolean flow f in a graph
under physically plausible motion constraints.

Let T = {1, . . . , T} be the set of time steps, and S =
{1, . . . ,W} × {1, . . . ,H} the set of locations, where W
and H are respectively the width and heights of the video
frames1. Let

x ∈
(
RD
)T ×S

,

be the feature vectors of dimension D computed in every
time frame t and at every location s in the training sequence
(see § 4.1 for details), and let

y ∈ {−1, 0, 1}T ×S ,

be the available ground-truth for every time frame and every
location, where the value 0 stands for “not available”.

1We consider in this article only locations in the image plane, but ad-
ditional parameters such as scale or rotation could be handled in a similar
manner, albeit with an increase of the computational cost.

1434



3.1. Boosting

We quickly summarize here some characteristics of Ad-
aBoost relevant to the understanding of our approach. Let

hm : RD → {−1, 1}, m = 1, . . . ,M

be a family of “weak learners”, and

H = span{h1, . . . , hM}

the set of linear combinations of weak-learners. Given a
labeling y and a mapping

ϕ : RD → R

we can define the exponential loss

LV(ϕ;y) =
∑

(t,s)∈V

exp (−yt,sϕ(xt,s)) (1)

which is low when ϕ takes values consistent with the label-
ing y. This loss ignores samples whose labels are equal to
0. Boosting consists in approximating the mapping

ϕ∗ = argmin
ϕ∈H

LV(ϕ;y)

by successively picking Q weak learners hmq and weights
ωq ∈ R such that LV is reduced in a greedy fashion. In our
experiments, we used stumps, parameterized by a feature
index d ∈ {1, . . . , D} and a threshold ρ ∈ R, as weak
learners of the form:

∀x ∈ RD, h(x) = 2 · 1{xd≥ρ} − 1.

3.2. Time-based regularization

The core idea of our approach is to automatically com-
pute labels for non-labeled samples, which are as consistent
as possible with an existing classifier and with a constraint
of continuous motion for the targets.

Our estimation of a labeling consistent with the physi-
cally possible motions is strongly inspired from the convex
multi-target tracking of [2]. Prior knowledge regarding tar-
get motions is represented by a directed “motion graph”,
which possesses one vertex for each (t, s) pair, where t is a
time step and s a spatial location. Let

V = T × S

be this set of vertices. The edges of that graph correspond
to admissible motions:

E =
{(

(t, s), (t+ 1, s′)
)
, 1 ≤ t < T, s ∈ S, s′ ∈ N (s)

}
,

where N (s) ⊂ S denotes the locations a target located in s
at time t can reach at time t + 1. Given such a graph, we
optimize a flow

f : E → {0, 1}

which associates to every edge of the motion graph the num-
ber of targets moving along it. If the flow f is equal to 0 on
the edge from (t, s) to (t + 1, s′), it means that no target
moves from location s at time t to locations s′ at time t+ 1,
and conversely if f is equal to 1 on that edge, it means that
a target makes that motion at that moment. Let F stand for
the set of Boolean labeling of the edges which are physi-
cally plausible and therefore obey the following constraints:
(1) the flow on each edge is smaller than one and greater
than 0, and (2) the sum of the flow on the edges arriving at a
certain vertex is equal to the sum of the flows on the edges
leaving that vertex.

For clarity, for any edge e = {(t, s), (t+ 1, s′)} ∈ E , we
will use ϕ(e) as a short-cut for ϕ(xt,s), that is the value of
the classifier at the time and location corresponding to the
originating vertex of the edge. To select a flow consistent
with the responses of the classifier, we minimize the expo-
nential loss of Equation (1), as during Boosting. This means
that the flow f should minimize

LE(ϕ; f) =
∑
e∈E

exp(−(2f(e)− 1)ϕ(e)). (2)

Since f takes its values in {0, 1}, we have

f∗ = argmin
f∈F

LE(ϕ; f)

= argmin
f∈F

∑
e∈E

exp(−(2f(e)− 1)ϕ(e))

= argmin
f∈F

∑
e∈E

exp(−ϕ(e))f(e) + exp(ϕ(e))(1− f(e))

= argmin
f∈F

∑
e∈E

(exp(−ϕ(e))− exp(ϕ(e))) f(e).

As in [2], we have to minimize a linear cost, under the linear
equalities of conservation of flow at every vertex, and the
linear inequalities corresponding to an upper-bound of one
target moving per edge, and a lower bound of zero. If we
relax the binary flow constraint and let f take continuous
values in [0, 1], this results into a convex linear program-
ming system, which can be solved optimally2.

Additionally, entrance into the graph is made possible
by relaxing the constraint of conservation of flow for ver-
tices corresponding to “virtual locations”, connected to the
border of the images, where targets can appear or disap-
pear. Finally, the flow is forced to pass through vertices for
which we have explicit positive labels and conversely it is
prevented from passing through vertices with explicit nega-
tive labels by setting the scores appropriately.

2As shown in [2], this linear programming system can equivalently be
solved with the more efficient K-Shortest Paths (KSP) algorithm. Our im-
plementation relies on the KSP algorithm and in the remainder of this paper
the terms KSP and linear programming system are used interchangeably.

1435



3.3. Iterative optimization

Given the Boosting procedure, and the time-based reg-
ularization described above, we depict here our iterative
learning process. Let

y(0) ∈ {−1, 0, 1}T ×S

be the initial labeling provided by experts. In practice, only
one frame in every M will be labeled, leading to labels
equal to ±1 at all the locations in these frames, and 0 ev-
erywhere in other frames. Given that initial labeling, we
define the following algorithm:

for k = 1, . . . ,K do
ϕ(k) ← argmin

ϕ∈H
LV

(
ϕ;y(k−1)

)
f (k) ← argmin

f∈F
LE

(
ϕ(k); f

)
y(k) ← Θ

(
f (k)

)
end for

To summarize, we train with Boosting a first classifier
ϕ(1) from the scarce labeling provided by experts, then
compute an optimal Boolean labeling of edges f (1), con-
sistent with physical motions of targets, and from it a new
signed labeling y(1) over all frames and locations. From
that new labeling, we train with Boosting a second classi-
fier ϕ(2), etc. The Θ operator computes the ±1 labels on
vertices, from the Boolean labels on edges. Precisely:

Θ(f)t,s = 2
∑

s′∈N (s)

f ((t, s), (t+ 1, s′)) − 1

Hence, both the Boosting and the KSP procedure are min-
imizing a common exponential loss function. This loss fa-
vors consistency between the response maps generated by
the classifier and the Boolean flows while penalizing dis-
crepancy.

3.4. Implementation details

In this section, we outline specific implementation de-
tails used in our our algorithm.

3.4.1 Numerical stability

The cost of Equation (2) grows quickly with a high classi-
fier response ϕ(e). This naturally causes numerical stability
issues for the convex linear programming system. For this
reason, given that, as was shown in [5],

ϕ(xt,s) '
1

2
log

P̂ (ys,t = 1|xs,t)
P̂ (ys,t = −1|xs,t)

, (3)

we clip the classifier response ϕ(xt,s) at ±8.0 which cor-
responds to allowing a maximum classifier confidence of
P (ys,t = ±1|xs,t) = 1− 10−7.

3.4.2 Regularization

Non-Maxima Suppression. Ideally, at every iteration, the
classifier would feed the linear programming system a
dense response map. Doing so, however, would result in
a cluster of trajectories around each target being output by
the linear programming system. This behavior is not de-
sirable from both a computational perspective, in that the
linear optimization would deploy vast resources to resolve
numerous trajectories centered on each target, and from a
learning perspective in that multiple shifted copies of a tar-
get would be fed back to the Boosting stage at subsequent
iterations. For this reason, the linear programming system
is fed a sparse response map obtained by applying standard
non-maxima suppression to the dense response map without
thresholding.
Trajectory Filtering. The linear programming system al-
lows for an unconstrained number of targets to appear and
disappear from any location along the boundary of the video
frame. This behavior is naturally desired to maintain the
generality of the approach. A drawback of this approach
however is that as soon as the classifier outputs a positive
response on a boundary point, the linear programming sys-
tem will admit a trajectory at that location even if its du-
ration is only one frame. To mitigate this effect, we intro-
duced a simple heuristic that rejects any trajectory which
does not venture deep enough (10 pixels) into the middle of
the scene.
Soft Consensus. We introduced a final heuristic in order to
include a hard confidence estimation on the output of the
KSP stage and only retain the most confident samples for
the subsequent iteration. To this end, the samples along the
trajectories output by the linear programming system are
not fed as a whole to the Boosting stage of the next iter-
ation. Instead, they are sorted according the response of
the classifier of the current stage and the bottom 25% are
pruned. This choice was ad hoc and was not optimized on
our test sets.

4. Experimental Results
To evaluate the performance of our proposed learning

strategy, experiments were performed on two different data
sets: video sequences of pedestrians and time-lapse mi-
croscopy data containing migrating neurons. In what fol-
lows, the specifics of our experimental setup are given and
the results of our experiments provided.

4.1. Image features

We describe here the image features that we used for the
learning component. A scene x is preprocessed by comput-
ing and thresholding the derivatives of the image intensity
to obtain an edge image. The orientation of these edges are
further quantized into q bins, resulting in q edge maps. Let φ

1436



denote the possible orientations of an edge on Φ = [−π, π[,
and let Φ̂ = {0, 2π

q ,
4π
q , . . . , (q− 1) ∗ 2π

q } denote the possi-
ble orientations of a quantized edge.

Now ∀e ∈ Φ̂, x ∈ I, s ∈ {1, . . . ,W}× {1, . . . ,H}, let

ξe(x, s) ∈ {0, 1}, (4)

denote the presence of an edge with quantized orientation e
at pixel s in image x. We assume ξe(x, s) is equal to 0 if
the location s is not in the image plane. Thus, each ξe(x, s)
is simply a map of edges with quantized orientation e.

Our features, as those in [1], compute the ratio of edges
of a particular orientation within a sub-window of the de-
tector’s r × r square of interest, with respect to the total
number of edges within the same sub-window. Let R de-
note such a sub-window of random size and location con-
tained in {1, . . . , r} × {1, . . . , r} plane. Our features are
entirely parameterized by the sub-window R and the edge
type e and are defined as:

hR,e(x) =
∑
m∈R

ξe(x,m) /
∑

d∈Φ̂,m∈R

ξd(x,m). (5)

These features give the classifier the ability to check for the
presence of outlines and textures and can be computed in
constant time using q integral images, one for each edge
map. In all our experiments, we used q = 8.

4.2. AdaBoost

The standard AdaBoost learning procedure is used. The
selection of the stump at every iteration of AdaBoost re-
sults from examining 1000 of our features. The threshold
ρi of the selected stumps is optimized through an exhaus-
tive search. Finally, feature parameters R and e are cho-
sen uniformly at random. In all our experiments, a single
AdaBoost stage is trained with the bootstrapping procedure
described in [4]: this allows us to avoid the difficulties as-
sociated with training and tuning a cascade.

4.3. Data sets

Pedestrian data Our pedestrian data set contains two se-
quences: a training sequence and a testing sequence. This
data was obtained by mounting a standard DV camera in a
slightly elevated location over a central and relatively busy
campus site. The training and testing sequences are non
overlapping in time and both sequences contain multiple
pedestrians entering and exiting the scene from all borders
of the images. Some positive patches sampled uniformly at
random from the test sequence are shown in Figure 1.

Both sequences have a resolution of 568× 328, a frame
rate of 25fps, contain approximately 1000 frames and ap-
proximately 3500 positive samples. The sequences are rela-
tively challenging in that pedestrians often pass through the
scene walking closely to each other and thereby partially

occluding each other. In addition, a number of pedestrians
walk through a relatively unlit area and a large range in pose
variation is observed. The detector’s window size for these
sequences is 68× 68.

Neuron data Our neuron data set is made up of 14 se-
quences of resolution 168 × 128 each containing exactly
97 frames. The sequences show developing neurons in a
cell culture imaged with bright-field microscopy and using
Green Fluorescent Protein staining. Each sequence is im-
aged over 16 hours with an image taken every 10 minutes.
The detector’s window size for these sequences is 34× 34.

Ordinarily, these developing neurons would move in a
guided fashion while extending and retracting neurites seek-
ing protein signals. However given that they are in a cell
culture, they are moving randomly. These sequences are
highly challenging as the neurons vary greatly in appear-
ance and can move almost their entire length from one
frame to the next. In addition, the microscope periodically
loses focus causing a drastic change in appearance in the
neurons.

Out of these 14 short 97 frame sequences, we build a
training sequence by randomly selecting 8 of the sequences,
while reserving the remaining 6 for testing. The training
and test sequences contain approximately 3000 neurons in
motion each. Some positive patches selected uniformly at
random from the test sequence are shown in Figure 3.

4.4. Error rates

Error rates were computed in a conservative fashion. A
detection is a true alarm if its location is within a certain
distance from the target and a false alarms otherwise. The
considered distance is 0.25 times the length of the detector’s
square window of interest for the pedestrian data and 0.4
times for the neuron data set. The choice of these numbers
reflect how closely two targets may appear to each other in
each data set. Two targets may still lie within the above
mentioned distance. In this scenario, if only one alarm is
raised, a miss is counted.

4.5. Baselines and FlowBoost

In all our experiments we compare the performance
of our algorithm against two baselines. The first is an
AdaBoost classifier as described above trained with 200
stumps and using the full training data. The second is an
AdaBoost classifier, as described above, trained with 200
stumps but using the sparse labeling. We varied the label-
ing rate with each experiments by annotating 1 frame in 16,
32, 64 and 128.

The results are shown for the first three iterations of
FlowBoost. The first iteration trains an AdaBoost stage with
only 50 stumps, while the remaining two iterations train an
AdaBoost stage with 200 stumps.

1437



4.6. Results

Experiments were run on the pedestrian sequences for
the cases where 1 frame is labeled every 32, 64 and 128
frames. This corresponds to initial training sets containing
114, 61 and 29 positive examples out of a population of
3500. Results are shown in Figure 2. For the neuron data
set, experiments were run for the cases where 1 frame is
labeled every 16, 32 and 64 frames. This corresponds to
initial training sets containing 228, 141 and 102 positive
examples out of a population of 3000. Results are shown in
Figure 4.

Results on both data sets are very good, confirming the
soundness of this approach. With the exception of the ex-
periment where 1 frame in 128 is labeled for the pedestrian
data set (see Figure 2 (c)), FlowBoost’s third iteration is able
to outperform a standard Boosting procedure trained with
the entire data set. This is a truly surprising result which
can be explained by the ability of the system to register data
in translation more precisely, or at the very least in a more
learning-friendly manner, than a human annotator.

Performance at very high true positive rates is still of-
ten slightly worse when compared to the fully labeled base-
line. It is indeed extremely difficult to handle unlabeled pos-
itive outliers: trajectories passing through truly positive, yet
highly unusual, samples may in fact score as bad as trajec-
tories passing through the background. This, unfortunately,
cannot be handled in a totally unsupervised manner without
additional knowledge.

5. Concluding Remarks

We presented a novel approach that propagates a sparse
labeling of a training video to every frame in a manner con-
sistent with the known physical constraints on target mo-
tions. Experiments demonstrate that, except at very high
conservative regimes, our algorithm trained with less than
3% of the labels is able to outperform an equivalent Boost-
ing algorithm trained with the fully labeled set.

This work admits several natural extensions. The first is
to cope with geometrical poses of greater complexity. In
both of our applications, we only considered location in
the image plane, without variations in scale or orientation.
While this extension is straightforward formally, the com-
putational costs could be prohibitory. Hence, it would re-
quire additional development in hierarchical representation
or adaptive evaluation.

The second is the explicit inclusion of the non-maximum
suppression in the iterative framework: the flow should be
optimized so that, through the non-maximum suppression,
it is consistent with the classifier response. In the current
version, this is ignored, which leads to suboptimal perfor-
mance.

The third, finally, is the development of an adaptive prun-

ing of the samples to use after the flow-relabeling. The cur-
rent choice of the top 75% is ad-hoc, and probably a poor
man’s version of a confidence estimation based on the dis-
tance to the separation boundary.

Aknowledgment
The authors thank Kevin Smith, Engin Türetken and

Jérôme Berclaz for their invaluable help.

References
[1] K. Ali, F. Fleuret, D. Hasler, and P. Fua. Joint Pose Estimator

and Feature Learning for Object Detection. In International
Conference on Computer Vision, 2009.

[2] J. Berclaz, F. Fleuret, E. Türetken, and P. Fua. Multiple Ob-
ject Tracking Using K-Shortest Paths Optimization. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2011.

[3] A. Blum and S. Chawla. Learning from labeled and unla-
beled data using graph mincuts. In International Conference
on Machine Learning, pages 19–26, 2001.

[4] F. Fleuret and D. Geman. Stationary Features and Cat Detec-
tion. Journal of Machine Learning Research, 9:2549–2578,
2008.

[5] J. Friedman, T. Hastie, and Tibshirani. Additive Logistic Re-
gression: a Statistical View of Boosting. Annals of Statistics,
28:2000, 1998.

[6] T. Joachims. Transductive inference for text classification
using support vector machines. In International Conference
on Machine Learning, pages 200–209, 1999.

[7] T. Joachims. Transductive learning via spectral graph parti-
tioning. In International Conference on Machine Learning,
pages 290–297, 2003.

[8] Z. Kalal, J. Matas, and K. Mikolajczyk. Online Learning
of Robust Object Detectors During Unstable Tracking. In
International Conference on Computer Vision, 2009.

[9] Z. Kalal, J. Matas, and K. Mikolajczyk. P-N Learning: Boot-
strapping Binary Classifiers from Unlabeled Data by Struc-
tural Constraints. In Conference on Computer Vision and
Pattern Recognition, 2010.

[10] N. D. Lawrence and M. I. Jordan. Semi-supervised learning
via gaussian processes. In Advances in Neural Information
Processing Systems, pages 753–760, 2005.

[11] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text
Classification from Labeled and Unlabeled Documents Us-
ing Em. In Machine Learning, pages 103–134, 1999.

[12] H. Scudder. Probability of Error of Some Adaptive Pattern-
Recognition Machines. Information Theory, IEEE Transac-
tions on, 11(3):363–371, July 1965.

[13] M. Szummer and T. Jaakkola. Partially labeled classification
with markov random walks. In Advances in Neural Informa-
tion Processing Systems, pages 945–952, 2002.

[14] V. Vapnik. Statistical Learning Theory. Wiley-Interscience,
New York, 1998.

[15] X. Zhu and Z. Ghahramani. Learning from labeled and unla-
beled data with label propagation. Technical report, Carnegie
Mellon University, 2002.

1438



Figure 1. Some examples of people from our pedestrian test video taken uniformly at random across the entire set.

10 6 10 40.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

1 Frame in 32 Labeled

 

 

 AdaBoost with full labeling
 AdaBoost
 FlowBoost, iteration 1
 FlowBoost, iteration 2
 FlowBoost, iteration 3

(a)

10 6 10 40.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

1 Frame in 64 Labeled

 

 

 AdaBoost with full labeling
 AdaBoost
 FlowBoost, iteration 1
 FlowBoost, iteration 2
 FlowBoost, iteration 3

(b)

10 6 10 40.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

1 Frame in 128 Labeled

 

 

 AdaBoost with full labeling
 AdaBoost
 FlowBoost, iteration 1
 FlowBoost, iteration 2
 FlowBoost, iteration 3

(c)

1 in 1 1 in 32 1 in 64 1 in 128
10 6

10 5

10 4

10 3

Frame labelling rate

Fa
ls

e 
po

si
tv

e 
ra

te

 

 
 @ TP = 0.95, iteration 3
 @ TP = 0.90, iteration 3
 @ TP = 0.85, iteration 3

(d)
Figure 2. Performance of our learning framework compared with a standard labeling for our pedestrian data set. Figures (a,b,c) display
true-positive rate as a function of the false alarms rate on a log scale for the case (a) where one frame in 32 is annotated, (b) where one
frame in 64 is annotated and (c) where 1 frame in 128 is annotated. Figure (d) displays the false alarm rate at various true positive rate as a
function of the number of labeled frames.

1439



Figure 3. Some examples of migrating neurons taken uniformly at random across our microscopy test data.

10 5 10 4 10 3 10 20.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

1 Frame in 16 Labeled

 

 

 AdaBoost with full labeling
 AdaBoost
 FlowBoost, iteration 1
 FlowBoost, iteration 2
 FlowBoost, iteration 3

(a)

10 5 10 4 10 3 10 20.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

1 Frame in 32 Labeled

 

 

 AdaBoost with full labeling
 AdaBoost
 FlowBoost, iteration 1
 FlowBoost, iteration 2
 FlowBoost, iteration 3

(b)

10 5 10 4 10 3 10 20.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

1 Frame in 64 Labeled

 

 

 AdaBoost with full labeling
 AdaBoost
 FlowBoost, iteration 1
 FlowBoost, iteration 2
 FlowBoost, iteration 3

(c)

1 in 1 1 in 16 1 in 32 1 in 64
10 4

10 3

10 2

Frame labelling rate

Fa
ls

e 
po

si
tv

e 
ra

te

 

 
 @ TP = 0.95, iteration 3
 @ TP = 0.90, iteration 3
 @ TP = 0.85, iteration 3

(d)
Figure 4. Performance of our learning framework compared with a standard labeling for our neuron data set. Figures (a,b,c) display true-
positive rate as a function of the false alarms rate on a log scale for the case (a) where one frame in 16 is annotated, (b) where one frame in
32 is annotated and (c) where 1 frame in 64 is annotated. Figure (d) displays the false alarm rate at various true positive rate as a function
of the number of labeled frames.

1440


