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Abstract
Our primary interest is in generalizing the problem of Cosegmentation to a large group of images,
that is, concurrent segmentation of common foreground region(s) from multiple images. We
further wish for our algorithm to offer scale invariance (foregrounds may have arbitrary sizes in
different images) and the running time to increase (no more than) near linearly in the number of
images in the set. What makes this setting particularly challenging is that even if we ignore the
scale invariance desiderata, the Cosegmentation problem, as formalized in many recent papers
(except [1]), is already hard to solve optimally in the two image case. A straightforward extension
of such models to multiple images leads to loose relaxations; and unless we impose a
distributional assumption on the appearance model, existing mechanisms for image-pair-wise
measurement of foreground appearance variations lead to significantly large problem sizes (even
for moderate number of images). This paper presents a surprisingly easy to implement algorithm
which performs well, and satisfies all requirements listed above (scale invariance, low
computational requirements, and viability for the multiple image setting). We present qualitative
and technical analysis of the properties of this framework.

1. Introduction
Segmentation of an image into its constituent components (or regions) is a fundamental
challenge in early vision. One typically formalizes this task as the minimization of an energy
function on a graph, a strategy which goes back to papers from the 1970s [2]. In the last
decade, the development of efficient graph partitioning based solutions [3, 4, 5] has led to
powerful global methods that are robust and work well in practice. The body of work is now
mature, both from a theoretical as well as a practical point of view. A majority of this
literature, one must note, is focused on the segmentation of a single image (e.g., into
foreground and background regions). In this setting, segmentation (like clustering) is an ill-
posed problem. This difficulty is resolved in part by introducing an inductive bias – either
via guidance from the user in the form of foreground or background seeds or by asking that
the size of the two components be balanced (i.e., normalized). The goal then is to optimize
the segmentation function regularized by this additional bias.
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Rother et al. [6] observed that the inherent ambiguity in image segmentation above can be
partly mitigated if one has access to two images of the same object (even with different
backgrounds). The so-called “Cosegmentation” problem was formalized as a simultaneous
segmentation of the image pair with an additional requirement of consistency between the
corresponding histograms of only the foreground pixels. The resultant function, in its
original form, turned out to be difficult to optimize efficiently. But since then, a great deal of
interest by various authors has provided progressively better algorithms [7, 1, 8, 9, 10, 11].
While there are still certain unresolved questions, efficient methods for image pair
cosegmentation [1, 8] are available. Expectedly, the interest now is in generalizations of the
problem – extending the formalization beyond the two-image setting.

Making cosegmentation viable for a group of images (> 2) has multiple immediate
applications beyond providing a better regularization for the segmentation task.
Simultaneous cutout (or identification) object of interest in an image group enables efficient
editing of all occurrences in one step [11]. The authors in [8] presented experiments on
building a summary collage of foregrounds from a group of images using cosegmentation,
where as [1] applied the idea to identifying pathologies in brain images. Very recently, [12]
showed how to leverage cosegmentation (with user intervention) to create 3D models of
individuals from a few casually taken pictures – with an eye on implanting individuals in
virtual environments such as video games. Preliminary versions of some of these initiatives
have also been translated into end-user applications
(http://chenlab.ece.cornell.edu/projects/iScribble).

1.1. Background and Related Work
We briefly review the recent set of results to place our present work in context.
Cosegmentation [6] performs simultaneous segmentation of two images to extract the same
foreground object. Consistency between the two foreground regions is enforced by asking
that the distribution induced by the foreground pixels over a dictionary of pre-specified
appearance features (such as color or textures) be similar. Let x denote the decision variable
providing the desired segmentation. The cosegmentation energy is expressed as

(1)

where the first two terms are the standard Markov Random Field (MRF) energy terms for
the two images: wp (and w(p,q)) give the unary and pairwise terms. The functional E(·, ·) is a
global term to penalize the difference between the two foreground histograms, h(x(1)) and
h(x(2)) (both functions of the respective segmentation in the images), forcing the algorithm
to extract mutually consistent regions.

The problem in (1) is difficult to solve efficiently for most E(·, ·) of interest – for instance,
the ℓ1-norm in [6], sum of squared differences in [7], or the dual-decomposition based
method recently described in [11]; the sole exception is the submodular function optimized
in [1] via a network flow procedure. (this formulation substitutes the penalty with a reward
function, see [11]). Most of these papers were focused on two image cosegmentation but
may in principle be extended to multiple images – however, even if we ignore necessary
algorithmic modifications, a direct extension will involve at least a quadratic increase in the
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number of additional global terms for each image pair. Further, because these terms are hard
to optimize, the relaxations suffer significantly. To address these difficulties, Batra et al. [8]
recently attempted to directly study the multi-image cosegmentation problem. The key idea
was to avoid the main optimization related challenges by (a) making the process interactive,
and (b) separating the segmentation energy of each image, tied together by a common
parametric appearance model for all images. While leveraging user guidance (if available) is
useful, the common appearance model in [8] is shared by both the foreground and
background regions – a non-negligible limitation if the background varies between images
in the group. Some recent works [10, 9] have presented results by restating the
cosegmentation objective in terms of finding common patterns [9] or as a discriminative
clustering problem [10]. The algorithm in [10] is interesting and allows incorporating color
consistency and spatial constraints but requires specialized strategies to keep the problem
size manageable for more than two images. For example, the kernel matrix is defined for all
pixel pairs from all images –and may be an issue when more than a few images are available
(for more details see [10], pp. 4). Our goal here is to study the multi-image cosegmentation
problem with a focus on resolving the limitations outlined above. Specifically, the key
contributions of this paper are: (a) We present a generalization of image Cosegmentation to
the multi-image setting; (b) The model is scale invariant; further the run-time increases only
linearly with the number of images to be segmented; (c) We provide an analysis of its
theoretical and empirical properties, comparing it to the existing literature on this problem.

2. Preliminaries
We assume that a dictionary of features (based on pixel intensities, SIFT features, textures)
is available for a set of l images, { , … } where each image consists of n pixels.
Features in this dictionary provide {1, ···, K} equivalence classes – pixels that fall in the
same class are assumed to be perceptually similar. This process need not be perfect, only
good enough to provide nominal guidance to the segmentation engine (methods similar to
[8, 1] will suffice). As in [1], we use these equivalence classes as “bins” of a histogram.
Define a matrix operator, H(u) of size K × n,

(2)

where u, j, and b index images, pixels, and histogram bins respectively. Summing over the
rows of H(u) provides the complete histogram for each image , on the pre-specified
dictionary. Recall from (1) that x(u) is the decision variable for segmentation (1 for
foreground, 0 for background). One can express the corresponding foreground histogram(s),

 of size (K × 1), obtained after segmentation:

(3)

That is,  = H(u)x(u). With this notation in place, let us return to the issue of how existing
methods enforce consistency among the two foreground histograms, concurrently with the
segmentation of the two images. The global bias, E( , ) roughly takes the form |  −

|1 in [6], (  − )2 in [7], and − 〈 ,  〉 in [1], as summarized in [11]. Note that it is
this term which makes the otherwise submodular energy more challenging to optimize.
Apart from non-submodularity, the viability of such cost functions is problematic in the
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context of two specific issues: (1) (Scale): Even for the basic cosegmentation setting with
only two images, taking into account scale variations in the foreground will necessarily
involve a grid search over α > 0 to evaluate E( , α ), which is already undesirable1. In
the multiple image setting, a search for the correct α soon becomes infeasible, even for a
small number of images. (2) (Multiple images): Since E(·, ·) is introduced for each image-
pair, the number of these terms in the objective function grow quickly with additional
images. E(·, ·) is hard to optimize; in the presence of many such terms, lower bounds offered
by the relaxations must deteriorate sharply, and lie farther away from the true optimum.

3. Main Ideas
Our overall goal clearly is to make the vectors { , ···, } ‘similar’, while performing
simultaneous segmentation of images { , … }. The main observation is to see that
‘similarity’, especially in terms of how it is typically measured is a stronger than necessary
requirement. In fact, it is sufficient in this setting to ask that the vectors have low conditional
entropy: for images u and u′, knowledge of  allows one to express  (modulo scale)
with probability approaching one. As described next, this property can be formalized using
the simple idea of linear dependence. From (2), we derive a vector Ĥ(u) of size (K × 1)

where . We stack all such Ĥ(u)’s as columns to get a matrix Ĥ of size
(K × l), where Ĥ(b, u) is the number of pixels in bin b from image u. The desired
segmentation, x = {x(1), ···, x(l)}, decomposes Ĥ =  +  as a sum of the two matrices,  =
(  ··· ) and  = (  ··· ), where  (and ) denote the foreground (and background)
histograms respectively. In Cosegmentation, we want  and  for u ≠ u′ to be the same
(or a constant multiple of the other if the foregrounds are of different sizes). To ensure this,
rather than explicitly penalize the gross difference between  and , we can ask that the
columns of  have low entropy and be linearly dependent. An important consequence of
this property is that it is completely immune to scale variations, exactly as desired in
cosegmentation. An effective means for making this idea operational is to ensure that the
rank of  is one. In cases where a precise rank one  cannot be found, a “slack” in the form
of a small (sparse) residual,  may be permitted. We may now define the following model

(4)

where wp (and w(p~q)) are the vector representations of the unary (and pairwise smoothness)
terms in (1), and H(u) is of size (K × n). The objective penalizes the residual to keep the
variation (from a rank one matrix) small. Note that the constraint Ĥ =  +  may be
included, but is redundant.

4. Cosegmentation for image groups
Using (  ≈ ) ≤ Ĥ, we may consider a model which penalizes the slack version of the
constraint,  +  = ,

1[11] reported that using an extension of the Boykov-Jolly model [13] provides some robustness to small scale differences in
experiments.
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(5)

We present the following simple scheme for problem (5).

A brief explanation here is useful. The constant λ balances the influence of the global terms
and the segmentation terms. In (Step 2), for a fixed , we solve the problem,

(6)

where  is the u-th column of . This objective function, after some modifications can be
expressed as a Quadratic Pseudoboolean function [14, 15]. This ensures that the solution is
partially optimal (half integral), that is, every entry of x* is {0, , 1}. Another advantage is
that for u ≠ u′, we see that x(u) has no interaction with x(u′). Therefore, the optimization can
be performed independently for each u. Now, in (Step 3), for a fixed x[k] we are given the
matrix  and want to find its closest rank one matrix . This can be obtained by the
singular value decomposition of . In addition, we may also add a constraint  ≤ Ĥ to
upper bound  entry-wise2, but in most iterations this is not needed.

Lemma 1 (Monotonicity)—The above algorithm reduces the objective value of (5) at
each iteration.

Proof—Denote the objective in (5) as  =  + , where  denotes the MRF terms in (5),

and  gives the global histogram terms. The algorithm begins with a fixed 
and then finds a configuration x[1] which minimizes the function for the given . Let the

energy be denoted by , where the subscript [k] gives the
iteration step. Note that  is a rank one matrix but it is not the closest rank one
approximation of . Therefore, the objective can be further improved by replacing  by ,
where  is the rank one approximation of  (e.g., computed as in Step 3 above). Let the

new objective value be . Clearly,  ≥ . Now, keeping 
fixed we solve and obtain a new configuration x[2]. The objective value now is

. Since x[2] is the optimal configuration for , we have  ≥
. This argument applies to any two consecutive configurations, x[k] and x[k+1], and so the

objective value must be monotonically non-increasing at each iteration.

2A small technicality arises when  ≤ Ĥ is not satisfied entry-wise. In this case, the singular vectors can be adjusted locally to
satisfy the constraints, in which case we are using the best rank one approximation which also satisfies the entry-wise inequalities.
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Theorem 1 (Stationary Point)—The above algorithm will converge after a finite number
of steps to a feasible solution.

Proof—The function  has half-integral solutions if  is fixed (see
Step 2 above). This means that the solution values of any configuration x[k] can only be
drawn from {0, , 1}, and the number of configurations for the problem is finite. Because the
objective value from Lemma 1 is monotonically non-increasing, and only a finite set of
configurations can be visited (and each  is rank one), the method must converge to a
feasible stationary point.3

4.1. Properties of the Hessian
An alternative way of writing the objective in (5) is replacing the constraint rank( ) = 1 as

 = uvT where u (this is a different variable from the non-bold face u used in §3) (and v) are
vectors of size K × 1 (and l × 1) respectively. Then we can rewrite our objective function as

(7)

While the method in Fig. 1 is sufficient in practice, because of the implicit rank one
constraint, the problem remains non-convex and difficult to solve to global optimality. The
standard practice in such situations is to check whether the stationary point obtained from
the iterative procedure satisfies second order conditions, which means a local minimum has
been achieved [16]. In other words, we need to check whether the Hessian (say, D) of the
objective function at the stationary point is positive semidefinite. If D ⋡ 0, we must find a
new search direction to further reduce the objective value. Next, we explore the conditions
under which the Hessian is positive semidefinite. For notational convenience, we omit λ.
Using (7), we express our objective as

From the above relation, we derive the symmetric Hessian matrix of the objective function
in (8) as follows focusing only on the global terms (MRF terms are convex)

(8)

where

3If the problem has multiple optimal solutions, to rule out oscillations, one may use a deterministic procedure to break ties when
selecting the most violated constraints (e.g., in the simplex procedure).
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Here, Ip gives a p × p identity matrix, and vi is the i-th entry of v (similarly for u). Since
each H(u) is of size (K × n), D11 is of size (nl × nl). Let us define

(9)

For blocks D ̃11, D ̃12, D ̃21, and D ̃22, it can be verified that

(10)

Because Q is nonsingular, the above relation implies

Lemma 2—The Hessian D satisfies D ≽ 0 if and only if

(11)

To explore the properties of the matrix D ̃, we first show the following result

Lemma 3—The blocks D ̃11 and D ̃22 in D ̃ satisfy D ̃11 ≽ 0 and D ̃22 ≽ 0.

Proof—Consider the singular value decomposition of ,

where ūi, and v̄i are the left-hand and right-hand side singular vectors corresponding to the
singular values, σi of , and σ1 is its largest singular value. It follows that
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This implies that . Therefore,

(12)

Similarly,

(13)

providing the desired result.

We now obtain an identity for D ̃12, which will be helpful shortly. Let us denote the i-th row

of a matrix M as ⟦M⟧ (i·). From (11), we get . This yields

(14)

Define S = Diag(H(1)T, ···, H(l)T, IK); we can write

(15)

If S is full rank, then we can conclude

Property 1

Theorem 2—The Hessian of the objective function is positive semidefinite if  is a rank
one matrix.
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Proof—Recall that

(16)

it follows

(17)

(18)

The above relation implies

(19)

equality holds when σj = 0 for all j = 2, ···, l.

Remark—We see from Thm. 2 that if  is not a rank-1 matrix, then the Hessian D is not
positive semidefinite. In practice, we found that the negative eigen-values were extremely
small and so the hessian was nearly positive semidefinite. Indeed, (19) suggests that the
variation from a rank one matrix becomes progressively small as the first eigen value
dominates the others. In fact, even if D has negative eigen-values, they are guaranteed to lie
in the lower order block (lowest l − 1). This can be shown by a simpler perturbation
theoretic analysis (see longer version of the paper).

5. Experiments
Our experimental evaluations described next were designed to assess the algorithm’s
performance vis-à-vis three other Cosegmentation methods [7, 10, 7]. For the base case, in
§5.1 we evaluate consistency of our segmentations (for an image pair) with other methods
designed specifically for two images. Then, §5.1 shows our results for image groups,
relative to those obtained from [10] (a recent method which also works for multiple images).
Later, results in §5.2 show robustness to foreground scale differences, and §5.4 sheds
additional light on various experimental properties of the model. Finally, §5.5 assesses the
algorithm’s running time requirements, to conclude our empirical analysis. Datasets: We
conducted experiments on a set of 25 groups of images collected from various sources (over
100 images in all). These include image pairs used in previous work [6, 1] (both publicly
available), as well as larger image sets used in [8, 9]. In addition, similar to [10], our image
groups include images from Weizman horses4, MSRC object categories5, and Oxford

4www.msri.org/people/members/eranb/
5research.microsoft.com/en-us/projects/objectclassrecognition/
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flowers dataset6. Since several categories included high variability images with similar
background as well as foreground, we used a few seed points to facilitate the segmentation
process. Consistent with existing works [1, 10], histograms were generated using a
combination of color, texture features, and SIFT. The number of bins for each color channel
was between 10–20.

5.1. Base case: two image cosegmentation
We first evaluate how our new objective function proposed (for multiple images) compares
to more traditional formulations of Cosegmentation [7, 1] that are specifically designed to
segment two images at a time. We evaluate all three methods on a collection of 10 pairs of
images, examples are shown in Fig. 2. Qualitatively, the results show that our method is
competitive to these methods that have been shown to be partially optimal [7] and optimal
[1] for their respective objectives. For the first image pair, our results are the best where as
they are only slightly worse than [7, 1] on the other images. Measuring accuracy by the
proportion of incorrectly classified pixels to the total number of pixels, for the examples in
Fig. 2, we obtain the following error estimates:

error woman stone can

Mukherjee [7] 2.14% 1.5% 2.3%

Hochbaum [1] 4.0% 1.2% 7.1%

Our method 1.5% 4.6% 4.7%

The trend is mixed, which is representative of the remaining images. Overall, the average of
all three algorithms was under 5%, and our method was within 1.5% of either method.

5.2. Scale Invariance
Our algorithm, by design, offers scale-invariant Cosegmentation. To see how this plays out
in practice, we ran comparisons on image sets where the foreground regions were
significantly different in size. As a baseline, we also evaluated the algorithms from [1], and
to the recently proposed method in [10] (using an implementation provided by the authors).
Unlike our model, these and other methods do not explicitly account for scale. Fig. 3 shows
two such examples where the proposed method is able to identify substantial variations in
foreground scale without difficulty. In comparison, the algorithms from [10, 1] show
oversegmentation, especially in the second image (which has a smaller foreground region).

5.3. Cosegmentation for image groups
Next, we compared our method in the multi image cosegmentation setting with the
algorithm from [10]. We did not perform comparisons with [8] because it assumes the same
appearance model for both the background and foreground; this creates difficulties for many
images considered here (unless sufficient user interaction is incorporated). Comparisons
were carried out on 15 groups of images, with varied number of images in each group. Some
representative samples are shown in Fig. 4. In general, we see that while in some image
groups, the performance of both methods are comparable (e.g., Oxford flowers and dog), in
some other images like banana (which have a shared background in some images), the

6www.robots.ox.ac.uk/~vgg/data/flowers/17/
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algorithm in [10] oversegments. Ignoring such images (where the difference in performance
is higher), the accuracy of our (and [10]) was 4.6 ± 2.1% (and 6.9 ± 1.8%) respectively.

5.4. Other empirical properties of the model
Theorem 2 shows that the ratio of the first and the second eigen value will modulate the
behavior of our algorithm in practice. In our experiments, we observe that this ratio starts
out around 0.9 and decreases in progressive steps until it stabilizes. The decay of this ratio is
faster for fewer images; this is expected since the rank of the initial histogram matrix
directly depends on the number of input images. Also, our analysis of the many (problem
instance specific) Hessians shows that the negative eigen values (when they exist) are very
small. As a result, if one decides to make use of a second order method, modifications to the
Hessian will be minimal (if any). We did not find such a procedure necessary.

5.5. Running time
The algorithm takes fewer than 10 iterations to converge in all cases tested. One iteration of
solving (6) on a standard workstation (using network flow) takes 10 – 30s on a 128 × 128
image (the variation is based on the number of histogram bins). For two images, this is
comparable (within a factor of two) to methods presented in our experiments above [1, 7].
However, a significant advantage of the method becomes apparent in the multiple image
setting. Observe that with an increase in the number of images in the group, the running time
increase of our model is only additive since we solve for x(u) for each u individually, note
that we do not need to perform the complete singular value decomposition, but only its rank
k approximation. The running is time of such operations in O(kmn), see [17], which is linear
in n (the number of images). On the other hand, for the method in [10] the problem size
increases quickly with more images, and the reported running time in [10] for 30 images
was 4–9 hours (calculated under the setting where superpixels were used). Our proposed
method, therefore, offers substantial improvements in running time with the additional
advantage of scale invariance.

6. Conclusions
We have presented a generalization of the Cosegmentation problem to image groups, which
is also immune to foreground scale variations (multiple objects in the foreground are
permitted as long as there exists a constant scale factor relating the foregrounds for an image
pair). The algorithm is easy to implement and has a small computational footprint – the run-
time increases only linearly with additional images (such an increase cannot be avoided).
We have also provided a technical and empirical analysis of the properties of this model,
together with preliminary qualitative and quantitative evidence to demonstrate that the
algorithm performs well in practice.
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Figure 1.
Our proposed algorithm to optimize (5).
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Figure 2.
Representative examples from a comparison of the proposed multi-image cosegmentation
with the algorithms proposed in [7, 1]. Row 1 shows the original image pairs; Rows 2–3
gives the result from [7] and [1] respectively, and our solution is shown in Row 4.
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Figure 3.
Example input images with significant differences in foreground size are shown. Columns
3–4 gives results from [10]; Columns 5–6 show solutions from [1]. The last two columns
present our results on these image pairs.
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Figure 4.
Comparison results of the algorithm proposed in [10] (in columns 2,5) with our method (in
columns 3,6). Original images provided in columns 1,4.
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