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Abstract

We present a human-centric paradigm for scene under-
standing. Our approach goes beyond estimating 3D scene
geometry and predicts the “workspace” of a human which
is represented by a data-driven vocabulary of human inter-
actions. Our method builds upon the recent work in indoor
scene understanding and the availability of motion capture
data to create a joint space of human poses and scene ge-
ometry by modeling the physical interactions between the
two. This joint space can then be used to predict potential
human poses and joint locations from a single image. In
a way, this work revisits the principle of Gibsonian affor-
dances, reinterpreting it for the modern, data-driven era.

1. Introduction

Consider the image shown in Figure la. What would
it mean to “understand” this image and how do we know
if our understanding is reasonable and useful? This seem-
ingly simple question actually hides a lot of complexity, go-
ing to the very heart of the computer vision problem. One
popular answer is locating and naming the objects in the
scene [6] (e.g., “couch” and “table” in Figure 1b). How-
ever, understanding on the level of bounding boxes (or im-
age segments) is rather superficial — it tells us little about
where the objects are located within the 3D scene and how
one can interact with them. While useful for various image
retrieval tasks, such as searching for couch pictures on the
Internet, a standard object detector would not help a blind
man find where to sit.

To address these shortcomings, there has been a recent
push towards more geometric approaches to image under-
standing [8, 11, 13, 16, 20, 22, 26]. The goal of these ap-
proaches is to recover an approximate, qualitative structure
of the scene, typically modeled by planar surfaces or vol-
umes (e.g., Figure 1¢). The advantage of such a representa-
tion is the ability to reason about the 3D space of the scene
as well as the interactions (occlusions, depth ordering, prox-
imity) between the objects within it.

However, what is often overlooked is that image under-
standing, unlike mere measurement, is a deeply subjective
task. And the subject is us, the human observer. Implicitly,
what we want from a computer vision algorithm is to under-
stand our world the way we do. This means operating not
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(c) Geometry estimation

(d) Our human-centric representation

Figure 1: There are many ways to “understand” an image; e.g., by nam-
ing the objects within it (b), or by estimating the scene geometry (c).
We present a human-centric scene representation that models the human
workspace of a scene. It can predict human poses afforded by the geome-
try in a given image (d).

in terms of voxels or horizontal and vertical surfaces, but in
terms of walkable space, sittable space, etc. We want vi-
sion to be human-centric, and justifiably so — for example,
as flightless creatures, we should care more about an algo-
rithm’s correct estimate of the floor rather than the ceiling.
Even semantic notions of object classes are usually impreg-
nated with human-centric considerations: a “table” that is
6ft tall stops being a table, despite appearances, because its
main functionality — reachability from the sitting position
— is lost. At the same time, a low-standing filing cabinet
could, under some circumstances, be considered a “chair.”
The subject of this paper is putting the human back
“into the picture” (Figure 1d). Our goal is to make in-
door scene understanding more human-centric by reason-
ing about space from the point of view of a human ac-
tor. By analogy to the workspace of a robot, defined as
the set of reachable poses given the geometry of a robot’s
mechanism [5], the idea is to represent a scene as a human
workspace — that is, a set of reachable pose states for a typi-
cal human within the scene. The result is the intersection of
objective scene geometry and subjective human pose. For



example, in Figure 1d, the “sitting reclined” action is the
link that transforms the geometric blocks of the couch and
the table into a functional chair.

Of course, this is a very difficult problem, and this pa-
per is just the first step. The building blocks of this work,
single-view indoor geometry estimation [11, 12, 15, 16]
and human pose analysis via motion capture [3], are by no
means perfect. However, we believe that now is the time to
start designing ways to represent space and actions together,
as it will guide further research in both geometry estimation
as well as action recognition.

1.1. Background

The notion that objects are best defined not by their iden-
tity (e.g. “couch”) but rather by their function (e.g. “sit-
ting”), has a long and rich history. It dates back to early 20th
century when Gestalt psychologists proposed that some
functions of objects can be perceived directly. Kurt Koffka
went so far as to claim: “To primitive man, each object says
what it is and what he ought to do with it: a fruit says, ‘Eat
me’; water says, ‘Drink me’, thunder says, ‘Fear me’ and
woman says, ‘Love Me’” [14]. This idea was picked up and
elaborated on by J.J. Gibson [7] who proposed the notion
of affordances. Affordances can be seen as “opportunities
for interactions” provided by the environment, which can
be perceived directly from form and shape. While Gibson’s
affordance theory is very appealing, like Koffka’s it may be
going a bit too far. Do fruits really afford eating? The fa-
mous counter-example by Palmer [18] is “mailbox vs. trash
can”: since their shape can be very similar, it’s impossible to
infer their function just from their visible structure. In these
cases, we use the association of an instance with past experi-
ences to infer functionality. To address these shortcomings,
Neisser [17] narrowed the concept and proposed physical
affordances where only the physical interactions could be
perceived from the physical structure of the objects. For ex-
ample, while one can predict affordances like “throwable”
and “pushable” from object structure, affordances like “for
mail” cannot be predicted without associations.

In computer vision, over the last 30 years there have been
regular attempts to use functional reasoning as a way to
model objects by their “purpose” rather than their appear-
ance [4, 19, 21, 23]. Most were recognition approaches that
first estimated physical attributes/parts and then jointly rea-
soned about them to come up with an object hypothesis. For
example, Stark et al. [21] used manually-defined rules to
reason about functional elements of 3D CAD objects (e.g.,
chairs) for recognition. A typical rule would define a partic-
ular type of chair as a combination of legs, surfaces of given
heights and orientations, handles, ezc.

Unfortunately, the hopes that these early efforts would
generalize beyond the few hand-picked object classes with
detailed 3D CAD models did not materialize. We believe
that there were two major reasons for this:

(1) Use of Semantic Categories: While functional ap-
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proaches aimed to move beyond semantic object cate-
gories into functional descriptions, these descriptions were,
nonetheless, still semantic. For example, instead of defining
the “chair” category, they would instead define the “sitting”
category, which, while somewhat different, still shared all
the problems of semantic object recognition.

(2) Reliance on Exact 3D: The early approaches were too
optimistic in expecting to somehow obtain accurate seg-
mentations and recover perfect 3D geometry from images
— which decades later, still remain challenging problems.

In this paper, we present a physical model for captur-
ing human-scene interactions'. Our approach uses 3D hu-
man poses as the functional categories and predicts the
workspace of a human in terms of poses that can occur in
a given scene. Furthermore, instead of assuming the avail-
ability of perfect 3D scene geometry, our approach builds
upon the advances in 3D scene understanding from a sin-
gle image and predicts the human workspace based on their
geometric representation.

Our approach is most related to recent work in modeling
geometric scene structure from a single image: inferring
qualitative geometry of surfaces [|3], grouping lines into
surfaces [16], and estimating volumetric representations of
a scene [8, 12, 15]. However, these approaches do not con-
sider the interaction of humans with geometry. On the other
hand, in recent years, motion capture technology [3] has
allowed the routine capture of human form and shape. Re-
searchers in computer graphics have looked into generating
sets of constraints on human motions when interacting with
objects in an environment [24]. However, in many cases,
these constraints as well as the scene geometries are hand-
defined, reducing the problem to path planning.

2. Overview

Our work is an attempt to marry 3D scene understanding
with human action modeling. We propose a novel qualita-
tive scene representation that combines 3D scene geometry
with a set of possible human actions, to create a joint space
of human-scene interactions. The ultimate goal is to be able
to predict the full human workspace of the scene, that is the
space of all physical actions that a given human agent can
perform within a given scene.

In this paper, we present a proof-of-concept system for
estimating a human workspace from a single image. We de-
cided to limit our focus to indoor scenes, since they allow
for more interesting human interactions, and since several
approaches exist specifically for estimating indoor scene ge-
ometry [11, 15] (Section 3). We have selected a representa-
tive set of common physical human actions, such as reach-
ing and sitting. While temporal information can provide ad-
ditional constrains for many human actions, presently, we

IThere have been a few recent papers which model the semantic rela-
tionships between humans and objects in 2D using appearances [9, 25];
however, our focus is on geometric and physical reasoning in 3D using
form and structure.
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Figure 2: Qualitative Representation of Human Poses: Each pose is represented by the occupied blocks in discretized 3D space (shown in red) and the

required surfaces of interaction (shown in green).

only deal with static poses. Therefore, we define the al-
lowable actions by a set of 3D human poses, manually se-
lected from a large motion capture database (Section 4). In
Section 5, we formulate our human-scene interaction model
and demonstrate it on synthetic 3D data. Then, in Section 6,
we describe how to apply it to real images. Qualitative and
quantitative results are presented in Section 7. Lastly, in
Section 8, we discuss some potential applications of our
new representation.

3. Representing Scene Geometry

" \
Figure 3: Block world representation of an indoor scene. Each scene is
represented by the walls (shown in red and blue) and the occupied voxels
in the scene.

We adopt a geometric representation that is consistent
with recent approaches for extracting indoor scene geom-
etry from a single image [1 1, 12, 15, 16]. We briefly de-
scribe our scene geometry representation here: An indoor
3D scene is modeled by the layout of a room (walls, floor
and ceiling) and the location and layout of the objects in the
room. It is assumed that there are three principal directions
in the 3D scene (Manhattan world) and that all walls and
objects are aligned to those three principal directions. A
simplified room is represented as a box being viewed from
the inside, and therefore the layout can be encoded with
only a few parameters (the locations of each visible wall).
The objects in a scene are modeled by a set of occupied
voxels. An example scene representation is shown in Fig-
ure 3. In this scene the extracted walls are shown in red and
blue. The two beds in the image are represented by the set
of occupied voxels in the 3D scene.

4. Qualitative Human Pose Representation

We now describe our basic representation of human in-
teractions. Given the volumetric (voxel-based) representa-
tion of the scene, we would like to predict all the possible
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actions that are consistent with the scene geometry. We pro-
pose to use a vocabulary of potential actions represented in
terms of human poses rather than semantic categories such
as “sittable” or “touchable.” However, the space of human
pose configurations is combinatorial in nature and therefore
using raw pose data is computationally infeasible. Further-
more, we would like our representation to generalize such
that we do not need to see all possible poses before pre-
dicting them. For example, we should be able to generalize
from the pose of a person sitting on a chair (of a specific
height) and predict the pose affordance of a couch (of a dif-
ferent height).

A key insight is to note that there are only two con-
straints on a 3D human pose that are relevant for embedding
it within a given geometry: 1) the 3D space (volume) the
pose occupies, and 2) the surfaces it is in contact with. To
allow for generalization, we use a discretized representation
of the 3D space occupied by the human actor. We divide the
space around the human actor into blocks (Figure 2) and as-
sociate each block with a 0 or 1 based on whether the block
is occupied or not. In addition, each block may require an
external support in a particular direction. For example, in
the sitting pose (with back support), we need a horizontal
surface below the pelvic joint to support the body and a
vertical surface to rest the spine (Figure 2b). In a similar
manner, for the “reaching” action (Figure 2c) a horizontal
support is required at the feet and a vertical surface of in-
teraction is required to represent the point of contact of the
hands. Since it is impossible to enumerate all potential di-
rections of support, we make the simplifying assumption
that the scene and object layouts are aligned with three or-
thogonal vanishing points.

We use 3D human poses from motion capture data [1]
for our experiments. We manually associate each action
with an exemplar pose, and annotate the required support
and interaction surfaces. Given the mocap poses and their
corresponding support annotations, we obtain a discretized
representation of these poses as explained above. For our
experiments, we use three, five and seven blocks in the =,
vy, and z directions respectively. Figure 2 shows a sampling
of the discretized poses used in this paper. The arrows on
the stick figure indicate locations where support or interac-
tion surfaces are required, and the green blocks on the right
show the position of these surfaces.



5. Human-Scene Interactions

In the previous sections, we have described a model of
scene geometry, as well as a simplified representation of
human poses. Using these poses and scene geometry as in-
puts, we can now ask the question, “Where in the scene can
a human perform these actions?”’

In order for a pose to be valid at a specific location, two
constraints must be satisfied:

Free space constraint: The volume occupied by a human
cannot intersect any objects.

Support constraint: There must be object surfaces in the
scene which provide sufficient support so that the pose
is physically stable.

Consider the pose “sitting.” The support constraint states

that there must exist a horizontal surface beneath the pelvis

(such as a chair). The free space constraint ensures that no

object prevents a person from sitting on the chair.

By discretizing the scene geometry into an occupancy
matrix, we can efficiently search for poses which satisfy the
free space and support constraints. We begin by creating
a binary representation of the environment, where each cell
of a 3D matrix is O if there is free space and 1 if occupied by
walls, furniture, efc. Human poses are also discretized into
a binary occupancy matrix using the same cell size as the
environment (we chose a cell size of 3x3x3 inches for our
experimentation). Now, we can simply perform a 3D cor-
relation operation to compute the set of valid locations for
a pose. A non-zero correlation at a given location indicates
a violation of the free space constraint. Conversely, where
the correlation is zero, the intersection of the cells occupied
by the person and the environment is empty — thus, the pose
is valid.

In a similar manner, we can compute whether each loca-
tion in an environment satisfies a pose’s support constraints.
We create a set of interaction blocks which indicate loca-
tions in the environment where objects or support surfaces
must be present (shown in green in Figure 2). Again, we
use a 3D correlation operation to compute the set of loca-
tions with the correct geometry to afford the pose. Unlike
the free space constraint, now we are trying to maximize
the correlation score, to find locations where there are en-
vironment blocks present which align with the interaction
blocks. A correlation score equal to the number of non-zero
interaction blocks indicates that all support constraints are
satisfied for a pose at that location. We take the intersection
of valid support locations and valid free space locations to
determine all positions in the environment which afford the
pose.

This view of the interaction between human pose and
scene geometry is a bit idealized. For example, in the real-
world free space and support of the environment actually
deform to allow a wide range of poses (e.g., cushions of
furniture deform to the shapes of our bodies). Additionally,
when presented with a rigid object, the human body can ad-
just. For example, we often slouch on seats where the back
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Figure 4: Human-centric representation on a synthetic 3D scene: given an
example “sitting” pose, we visualize where a human can sit in the environ-
ment (blue mask shows all possible pelvis locations). Note how rearrang-
ing a few objects within the scene can have a big influence on the estimated
human workspace.

support would otherwise be uncomfortable. To represent
these interactions, we need to the relax the free space and
support constraint a bit. We implement this by applying a
small amount of erosion or dilation to the occupancy map of
the environment prior to performing each correlation opera-
tion. More precisely, a small amount of erosion in the occu-
pancy matrix allows configurations which would otherwise
violate free space constraints to become permissible. Con-
versely, dilation of the environment allows locations which
do not have the necessary support surfaces to grow to ac-
commodate a pose. For example, if the seat of a chair is
too low to comfortably sit on, dilation will raise the support
surface, making the pose possible. Thus, we first erode a
scene’s occupancy matrix before performing the correlation
to validate free space constraints, and dilate the matrix be-
fore performing the correlation to validate support surfaces
and surfaces of interaction.

We demonstrate the capabilities of our human-centric
representation by running our human-scene interaction
model on a few synthetic 3D indoor scenes downloaded
from the Google 3D Warehouse [2]. Figure 4 shows the
locations where a human can sit for two possible furni-
ture configurations. It can be seen how our representation
captures the spatial arrangements of objects and how affor-
dances change for the same objects under varying configu-
rations. While in Figure 4(top) a person can sit on the left
couch, the same couch is no longer accessible for sitting in
Figure 4(bottom) because the table is moved too close to it.
Similarly, the side table becomes accessible in the bottom
figure, once an obstruction is removed.



6. Geometry Estimation

We have shown how, given a scene geometry and a quali-
tative representation of human poses, we can derive the joint
space of human-scene interactions using free space and sup-
port constraints. If the estimated geometry from a single
image were exact, we could estimate the human workspace
perfectly, presuming that the physical constraints provide
a complete model of interaction (as demonstrated using
ground-truth geometry in Section 5). However, estimating
scene geometry from a single image is an extremely difficult
problem. For robustness, we use two sources of geometry
based on the outputs of [1 1, 15]. Given an input image, we
select which source to use based on a cost function which
measures the agreement between the geometry (placement
of cuboids) and the estimated distribution of occupied vox-
els. An overview of our approach is shown in Figure 5.

Given an image (example shown in Figure 5a), we first
compute a room layout hypothesis using the method of Lee
et al. [15] (Figure 5c). We also compute the probability
of each pixel being associated with object/clutter using the
surface layout algorithm [ 1] (Figure 5b). The clutter la-
bels are used to estimate an occupancy grid in 3D. A voxel
in 3D is occupied by an object if: (1) the pixel correspond-
ing to voxel center in image is classified as object/clutter,
and (2) the voxel corresponding to the projection on the
ground is occupied as well since most objects are supported
by the floor. Each voxel in 3D space is projected onto the
image using the standard projective camera model, where
camera calibration” is performed using estimated vanish-
ing points [10]. Therefore, the probability of each voxel
(V(X,Y, Z) where (X,Y, Z) is the location of the center of
voxel) being occupied is computed directly from the proba-
bilistic clutter image C as:

P(V(X,Y,Z)) = C(M[XY Z1])C(M[X021]") (1)
where M is the camera projection matrix and C(z,y) cor-
responds to the probability that pixel (x, y) belongs to clut-
ter. Therefore, for a voxel to be labeled as clutter, both the
pixels corresponding to the voxel and the pixels correspond-
ing to the vertical projection on ground should be labeled as
clutter. Figure 5d shows occupied voxels with probability
P(V(X,Y,Z)) > 0.5. Once we have a probabilistic esti-
mate of the occupancy of each voxel, our goal is to estimate
the cuboids corresponding to objects that can explain the
3D voxel occupancy map. We generate two possible sets of
cuboids (described below), and select the better set using a
cost function consisting of two terms. The first term counts
the non-occupied voxels in the cuboids and the second term
sums the occupied voxels that have not been explained by
any cuboids. The first terms can be written as:

F(8)=>" > log P(=Vy),

0€eS V,e0

where S is the set of cuboids, O is a cuboid in that set,
Vi € O is the set of voxels contained in O and P(=V;) is

2

2The axes of the world coordinate system are aligned with the principal
directions (defined by the estimated vanishing points). The y-axis corre-
sponds to the vertical direction. The projection of camera center on the
ground is the origin.
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Figure 5: Overview of 3D Geometry Estimation.

the probability that V; is empty. The second term of our cost
function can be written as:

g(9)
vig U Oy
0,€es

= log P(V;), (3)

where V; is the set of voxels that are not in any of the
cuboids in the set S and P(V}) is the probability that V; is
non-empty.

This cost function is used to choose the better of two geo-
metric hypotheses. The first hypothesis is obtained directly
using the results of Lee ef al. [15]. Here, the cuboid hypoth-
esis for objects are generated by combining regions whose
orientations are obtained using a sweeping algorithm. The
final set of cuboids are chosen based on volumetric relation-
ships and a learned cost function as explained in [15]. We
generate the second hypothesis from the probabilistic 3D
occupancy map (Figure 5d) by searching for standard size
cuboids (seen frequently in training data and correspond-
ing to common house-hold objects) that can explain the 3D
voxel occupancy map. Under the assumption that most ob-
jects in a room rest on the ground and are attached to walls,
we slide cuboids of multiple sizes (e.g., 60x60x15in and
72x24x15in) along the walls of the room. We use a greedy
approach which iteratively adds cuboids one by one such



that: (1) the cuboid should not intersect with other already
selected cuboids, and (2) the cuboid has a high occupancy
score. This can written as:

argmgx Z log P(V;) st. YO,€S: ONO; =2. 4
V;€0
For robustness, we also impose the constraint that largest
sized cuboids do not co-occur with smaller cuboids.

7. Evaluation

There has been little research in the area of human-
centric scene understanding and therefore, there are no es-
tablished datasets, methodologies or relevant previous work
to compare against. We will present our experiments in two
parts: 1) qualitatively, by showing a few representative re-
sults; 2) quantitatively, by comparing the performance of
our approach to a baseline appearance based classifier for
predicting the location of joints in different poses.

Tasks and 3D Poses: We show our results for four phys-
ical tasks: Sitting upright (no back support), Sitting reclined
(back support and legs up), Laying down, and Reaching for
a vertical surface. We manually select one pose for each
task, except for the last one. Since the heights of the reach-
ing locations can vary, we use four poses corresponding to
the reaching task.

Dataset: We use the indoor scene dataset introduced by
Hedau et al. [11]. The dataset consists of 314 images (209
training and 105 test images). Since we build upon the re-
sults of [1 1, 15], we use the same set of test images used in
these papers.

7.1. Qualitative Evaluation

Figure 6 (next page) shows the performance of our ap-
proach on a representative set of images for which the au-
tomatic calibration procedure has low errors. To visual-
ize the whole range of possible poses, we overlay colored
masks indicating the locations of pertinent joints for a given
pose. For example, we show in blue the locations where
the pelvic joint makes contact with a valid surface of sup-
port for the “sitting reclined” task. We also indicate in cyan
the locations where the back makes contact with a vertical
support. Example human stick figures (extracted from the
mocap data) show representative valid poses in each scene.
As is evident from the stick figures, our approach predicts
affordances that cannot be represented by basic object cat-
egories. For example, on the “sitting reclined” pose, our
approach combines the vertical surface of the bed with the
horizontal surface of the ground to predict human poses.
Similarly, for “sitting upright” our approach finds valid pose
locations that cannot be predicted by object-level categories
such as chairs or couches. For example, in the second scene,
our approach finds a table as one of the valid sitting loca-
tions and in a kitchen (fourth scene) it predicts the stove as
a possible location for sitting. For the pose “laying down,”
our approach predicts beds, couches and the ground all as
valid locations. Figure 7 shows a few failure cases when
there is error in geometry estimation. For example, in the
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Figure 7: Additional results to show the performance of our approach when
there is error in 3D geometry estimation. The 3D geometry estimation er-
ror increases from left to right (and the accuracy of our results drop ac-
cordingly). For example, only part of the bed is recovered in the second
scene, and in the third scene, the estimated room layout is incorrect.

two-bed example, only one of the beds is detected. How-
ever, our approach shows graceful degradation and still pre-
dicts some correct locations for all poses. Subjectively, our
approach is able to predict reasonable workspaces for about
one-third of the images in the dataset, with the vast major-
ity of errors coming from misestimated geometry. Our code
and data is available online.

7.2. Quantitative Evaluation

Our approach allows us to predict possible human joint
locations in a scene, which we now evaluate quantita-
tively. We compare the masks predicted by our algorithm
to ground truth masks. We manually labeled 25 test im-
ages® for four poses:

(a) Locations a pelvic joint can rest while sitting upright,
(b) Locations a pelvic joint can rest while sitting reclined,
(c) Locations a human’s back can rest when laying down,
(d) Locations a hand can reach on a vertical surface.

We also compare our algorithm with a standard
appearance-based baseline; training a separate classifier for
each task. These methods have shown good performance
for different pixel labeling tasks, such as object categoriza-
tion and qualitative geometry estimation. Each pose clas-
sifier uses appearance features computed from an image to
label the pixels where a relevant body joint can appear for
that human pose. For example, the “sitting upright” classi-
fier predicts where a person can sit by indicating where the
pelvic joint could rest in an image when the person is sit-

3We used images for which [11, 15] report reasonable vanishing point
estimates.



Figure 6: Qualitative performance of our approach on images with low calibration errors. The images in the first row are the input to our algorithm. The
second row shows our estimated 3D scene geometry. The third row shows the possible pelvic joint and back support locations in blue and cyan respectively
for the “sitting reclined” pose. The fourth row shows the possible pelvic joint locations in blue for the “sitting upright” pose. The fifth row shows the
locations where a human’s back can rest when “laying down.” The last row shows the vertical surfaces a person’s hand can touch from a standing position
for the “reaching” pose, color coded to indicate the corresponding pose. Each scene also includes a representative stick figure for each pose.

ting. Specifically, we use the image features and multiple
segmentations classifier of [13]. We use 50 training images

for each classifier.

Baseline | Our Approach
Reaching 0.3733 0.5431
Laying Down 0.4189 0.4786
Sitting Upright 0.0451 0.2081
Sitting Reclined 0.0056 0.1222

Table 1: Quantitative comparison of our approach with an appearance-

based classifier.
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Table 1 shows the performance of our approach com-
pared to the baseline appearance classifier on each of the
four classes. To evaluate the quality of a result, we use the
pixel-wise overlap score metric. Our approach outperforms
the appearance-based classifier in all categories. While the
appearance-based classifier does a decent job in predicting
valid locations for “laying down” and “reaching,” it com-
pletely fails for both “sitting upright” and “sitting reclined.”
This is because predicting actions such as sitting require



Figure 8: Comparison of valid poses for adults and children.

global reasoning which appearance-based approaches fail
to capture.

7.3. Subjective Affordances

People come in all shapes and sizes. This natural vari-
ation dictates how we interact with our environment. To
illustrate how the same objects in a scene can afford differ-
ent actions for different people, we conducted a proof-of-
concept experiment using a 6ft tall adult and a 3ft tall child
on scene with annotated geometry.

Figure 8 shows valid “sitting reclined” and ‘“reaching”
poses for an adult and a child found automatically by our
human-scene interaction algorithm. Note that a child would
be capable of sitting with its legs up on the couch; however,
for an adult to have the same pose, they would have to rest
their legs on a second surface of support (the coffee table).
Similarly, the child is able to stand on the narrow base of
support (the back of the couch), in order to reach the same
height the adult can by standing on the ground.

8. Using the Joint Human/Scene Space

The big question is: “What can we do, once we have
a joint space of human pose and scene geometry?” We be-
lieve that our approach not only provides a fresh perspective
on scene understanding that looks at predicting potential ac-
tions; but, it can be a vital link for solving several traditional
vision problems. Three of these possible applications are:
1) Priors for Actions Recognition: Predicting the set of
potential interactions and possible poses given an environ-
ment provides strong priors for action recognition.

2) Priors for Object Recognition: Valid pose positions
could be used as a prior on the locations of objects in a
scene. For example, one can compute the set of possible
hand locations for all reaching poses, which provides a prior
as to where manipulable objects are likely to be found.

3) Improving 3D Geometry Estimation: Indoor environ-
ments are designed to afford our daily activities. Knowl-
edge of what tasks a human performs in an environment de-
fines a set of poses which are known to be possible in that
location. Thus, we can close the loop and use these poses
to improve 3D geometry estimates.

Evaluating these possible applications in a comprehen-
sive manner is beyond the scope of this paper. But, our
preliminary experiments on pose prediction suggest that
our approach could be useful for the vision tasks described
above. We hope that this work opens the door for future
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exploration into how humans physically interact with their
environment.
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