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Abstract

Classification based on image sets has recently attracted
great research interest as it holds more promise than sin-
gle image based classification. In this paper, we propose
an efficient and robust algorithm for image set classifica-
tion. An image set is represented as a triplet: a number of
image samples, their mean and an affine hull model. The
affine hull model is used to account for unseen appearances
in the form of affine combinations of sample images. We
introduce a novel between-set distance called Sparse Ap-
proximated Nearest Point (SANP) distance. Unlike existing
methods, the dissimilarity of two sets is measured as the dis-
tance between their nearest points, which can be sparsely
approximated from the image samples of their respective
set. Different from standard sparse modeling of a single im-
age, this novel sparse formulation for the image set enforces
sparsity on the sample coefficients rather than the model
coefficients and jointly optimizes the nearest points as well
as their sparse approximations. A convex formulation for
searching the optimal SANP between two sets is proposed
and the accelerated proximal gradient method is adapted to
efficiently solve this optimization. Experimental evaluation
was performed on the Honda, MoBo and Youtube datasets.
Comparison with existing techniques shows that our method
consistently achieves better results.

1. Introduction

In image set classification, each class is represented by
one or more image sets and a query image set is assigned the
label of the gallery set that is the nearest to it using some dis-
tance criterion. For the specific case of human faces, each
set comprises a different number of facial images under ar-
bitrary poses, illumination conditions and expressions. Im-
age set classification is a generalization of video-based clas-
sification [15, 20, 8], which focuses on exploiting the tem-
poral relationship between the images with the priori that in-
dividual images are consecutive video frames. However, in
image set based classification, the images of a set may man-

Figure 1. Sparse Approximated Nearest Points (SANPs) of two
image sets. Given the affine hull models(µi, Ui) and(µj , Uj) of
two image sets, the points on each set can be represented as a linear
combination of bases plus the mean image. They can also be rep-
resented as the linear combination of sample images. The SANPs
are dynamically chosen by the joint optimization which simultane-
ously searches for sparse approximated points (maximize sparsity
of sample coefficients) that are the nearest (minimize distance) be-
tween the two sets. The optimal SANPs of the two image sets are
shown in the center, each of which is sparsely approximated by the
sample images marked with red boxes.

ifest large view-point and illumination changes and non-
rigid deformations without any temporal relationship.

Classification based on image sets has recently attracted
growing interest in the computer vision community [23, 28,
9, 12, 25, 19, 18, 29, 5] because it holds more promise com-
pared to single image based classification. The problem
of image set classification naturally arises in a wide range
of applications including video surveillance, classification
based on images from different views using multiple cam-
eras, relevant pictures of a personal album and classification
based on long term observations. Within a set, individual
images either share the common semantic relationship or
complement the appearance variations of the subject. Im-



age set data pose new challenges to the visual classification
task. The main challenge relates to modelling the image set
in order to exploit the semantic knowledge between indi-
vidual images. Traditional classification models e.g. SVM,
k-Nearest Neighbor Classifier based on single sample, can-
not address this issue.

In this paper, we propose a novel algorithm for image
set classification. In the proposed method, every image set
is represented as a triplet including the sample images, their
mean and the affine hull model of its sample images to cover
all possible affine combinations of sample images. Such a
loose representation of the affine hull is capable of account-
ing for the unseen appearances of any affine combination
of sample images which do not appear in the samples. On
the downside, it also introduces a challenge for matching
different image sets. The image sets of different classes
are more likely to intersect due to the over-large space of
their affine hulls. To address this issue, we introduce the
Sparse Approximated Nearest Points (SANP) for comput-
ing the between-set distance. SANPs of two image sets are
defined as a pair of nearest points on the sets that can be
sparsely approximated by the sample images of the respec-
tive set individually.

The search for SANP of two image sets is formulated as
a partialL1 norm regularized convex optimization. Fig 1
illustrates the formulation of SANP optimization for two
image sets. This novel formulation is different from the
sparse modeling of single images in two aspects. First,
the nearest points to be sparsely approximated are the un-
knowns which means that we need to jointly optimize the
nearest points and their sparse approximations. Second, the
sparsity is enforced on the sample coefficients instead of
model coefficients in our formulation. We show how re-
cent advances in first-order optimization techniques can be
adapted to solve this optimization, leading to a fast, scal-
able algorithm. Once the SANPs are found, the between-set
distance is then defined using these points and the Nearest
Neighbor (NN) classifier is deployed to assign the query set
to the class of its nearest neighbor. Experiments on three
benchmark datasets and comparison with existing tech-
niques [25, 19, 18, 5] show that the proposed method con-
sistently gives better results.

1.1. Related Work

Image set classification techniques can be categorized
based on two criterion: firstly, how the image sets are repre-
sented and secondly, how the between-set distance is de-
fined. As far as image set representation is concerned,
existing techniques include parametric and non-parametric
representations. Parametric model-based representations
[4, 8, 14, 29] use some parametric distributions to represent
an image set with the parameters estimated from the set data
itself. A limitation of these techniques is that if the set data

does not have strong statistical correlations for parameter
estimation, the estimated model cannot well characterize
the image set [25, 19]. Non-parametric model-free meth-
ods attempt to represent an image set as a linear subspace
[15, 13, 25, 9], mixture of subspaces [28, 12], or nonlinear
manifolds [2, 19, 18, 27]. Without any assumption on data
distribution, it has been shown that these model-free repre-
sentations inherit many favorable properties.

Existing techniques can also be differentiated based on
the second criterion of between-set distance. However, the
between set distance is usually defined specifically for cer-
tain image set representations. For example, for parametric
representations, the between-set distance is calculated by
measuring the similarity between the corresponding distri-
butions of their parameters. Kullback-Leibler divergence
[14] is an example of this category. For non-parametric
representations, two types of distances have been proposed.
The first one defines the between set distance using some
of the set samples. For example, a simple method for cal-
culating the between-set distance is to measure the distance
between the sample means of the two sets [19]. Another
example is to use geometric distances (distances of closest
point approach) [5] to compare different image sets. Unlike
the mean difference, this method adaptively selects differ-
ent samples to calculate the between set distance for differ-
ent image sets. Thus it is able to better handle intra-class
variations. Given two image sets, the closest points are ob-
tained by minimizing the distance between them through
least square optimization. The between-set distance is then
defined as the distance between these two closest points.

The second type of distance for non-parametric repre-
sentations compares different image sets by analyzing their
model structures instead of the sample data. Canonical Cor-
relation Analysis (CCA) [6] is one of the techniques for
calculating subspace similarity. It findsd principal angles
0 ≤ θ1 ≤ . . . ≤ θd ≤ π/2 between the subspaces of two
sets, which are the smallest angles between any vector in the
first set and any vector in the second set. The between-set
similarity is then defined as the sum of canonical correla-
tions, which are the cosines of principal angles. Different
extensions have been proposed for using CCA to match im-
age sets. For example, kernelized CCA [10] and localized
CCA [30] have been proposed for image set-based classi-
fication. Boosting techniques have been applied on prin-
cipal angles for improving the classification performance
of CCA [26, 24]. Other methods for subspace similar-
ity analysis include the Mutual Subspace Method (MSM)
[15], Orthogonal Subspace Method (OSM) and their vari-
ants [13, 23, 9, 29, 22]. These techniques are further ex-
tended by integrating discriminant learning [25] and online
learning [23, 22].

One common aspect about the above techniques is that
they either measure the distance between certain samples of



the two sets or the similarity between their structures. On
the other hand, the proposed technique in this paper tries to
utilize both structure information and the image samples.

2. Image Set Representation

In this paper, we propose a joint representation for image
sets which consists of different numbers of images. Denote
Xc = [xc,1, xc,2, · · · , xc,Nc

] as the data matrix of thecth

image set, wherexc,i is a feature vector of theith image.
The feature of an individual image can be simply the high
dimensional array of pixel values or any other features e.g.
Local Binary Pattern (LBP) [21] of the image. The joint
representation, besides using the sample dataXc, constructs
a linear model to approximate the structure of the image set
in high-dimensional feature space. We model an image set
as an affine hull of the set data [5]:

AHc = {x =

Nc
∑

i=1

αc,i · xc,i |
Nc
∑

i=1

αc,i = 1}. (1)

This affine hull can also be represented by another paramet-
ric form using the sample meanµc = 1

Nc

∑Nc

i=1 xc,i as a
reference point to represent every data:

AHc = {x = µc + Ucvc | vc ∈ Rl}, (2)

where thel columns ofUc are the orthonormal bases ob-
tained from the Singular Value Decomposition (SVD) of the
centered data matrix̄Xc = [xc,1−µc, xc,2−µc, . . . , xc,Nc

−
µc]. Different from other tight representations e.g. convex
hull, any affine combination of sample images in the set is
accommodated in this representation even when the com-
bination does not appear in the samples of the set. Such a
loose representation is particularly appealing in the context
of small set size because the unseen data belonging to the
image set can be better modeled. However, this loose repre-
sentation also brings challenges for calculating the distance
between two image sets. The affine hulls of image sets are
likely to be over-large, which results in the intersection of
multiple affine hulls. In this paper, we represent an image
set as a triplet(µc, Uc, Xc) by including both structure in-
formation and sample images. As we will show in the next
section, the information of sample images can be utilized to
eliminate the ambiguity of the over-large space of the affine
hulls. This joint representation of image set is useful for
improving the robustness of matching image sets.

3. Sparse Approximated Nearest Points

Existing methods [19, 5] directly search the nearest
points in the complete space of two image sets without any
additional constraints. These points could be very noisy and
vulnerable to outliers. This issue is especially serious in
our case because we use loose affine hulls to model image

(a) (b)
Figure 2. Illustration of matching two image sets of different sub-
jects. Nearest points of the sets (a) with dense approximation and
(b) with sparse approximation. First row shows the images ofnear-
est points on the sets and second row shows the sample coefficients
used for approximation from samples.

sets. Even for two image sets of different classes, it is pos-
sible to find two nearest points with very small distance.
This can degrade the classification performance. To over-
come this problem, we proposeSparse Approximated Near-
est Points (SANP)to measure the dissimilarity between two
image sets. SANPs are the two points, one on each individ-
ual set, which satisfy the following constraints:

• The Euclidean distance between these two points
should be small;

• Each of the two points should be able to be approx-
imated by a sparse combination of sample images in
the corresponding image set.

Note that the second constraint improves the discriminative
power of the SANPs. Given two image sets of different
classes (subjects), the nearest points between these two sets
using a dense combination of all sample images could be
very close. For example, the nearest images in Fig 2(a) (top
row) are very close but they deviate significantly from the
sample images of the respective set i.e. they neither look
like the query nor the gallery. Alternatively, using only a
sparse combination of a few samples, the minimum dis-
tance between points of the same two sets (correctly) be-
comes large (e.g. the images in Fig 2(b) are approximated
by the linear combination of5 samples). From a geomet-
ric point of view, the affine hull of an image set is formed
from sample images which lie on the facets of the hull. The
constraint of sparse approximation enforces the SANPs to
be close to some facet(s) of the affine hull and consequently
close to some sample image(s) on those facet(s). With this
constraint, the spurious nearest points of image sets of dif-
ferent classes can be avoided.



3.1. Convex Formulation

To find the SANPs of two image sets which are opti-
mal in terms of the above two criteria, we propose a convex
formulation. Given the data matricesXi andXj of two im-
age sets, their corresponding affine hull representations are
(µi, Ui) and(µj , Uj). We first define several functions as
follows:

Fvi,vj = |(µi + Ui · vi)− (µj + Uj · vj)|22
Gvi,α = |(µi + Ui · vi)−Xi · α|22
Qvj ,β = |(µj + Uj · vj)−Xj · β|22. (3)

The optimal model coefficients{v∗i , v∗j } and sample coef-
ficients{α∗, β∗} of SANPs are obtained by optimizing the
following unconstrained problem:

min
vi,vj ,α,β

Fvi,vj + λ1(Gvi,α +Qvj ,β) + λ2|α|1 + λ3|β|1,
(4)

where the first term is to keep the distance between SANPs
xi = µi + Ui · vi and pointxj = µj + Uj · vj small. The
second term is to preserve the individual fidelities between
these two points and their sample approximations. The last
two terms enforce the approximations to be sparse.λ1, λ2

andλ3 are the trade-off weights to control the relative im-
portance of different terms. The value ofλ1 is fixed as0.01
for all the experiments conducted in this paper. Forλ2 and
λ3, we design an automatic mechanism to control the rel-
ative sparsity ofα and β. Notice that ifλ2 >= λ∗

2 =
max(|2λ1 · (XT

i µi)|), the zero vector is optimal forα at
zero. Similarly, ifλ3 >= λ∗

3 = max(|2λ1 · (XT
j µj)|),

the zero vector is optimal forβ at zero. We adaptively set
λ2 = 0.1 · λ∗

2 andλ3 = 0.1 · λ∗
3 for all experiments.

To the best of our knowledge, this is the first time that
sparse modeling has been formulated to match two image
sets. Note that we do not enforce the sparsity on the model
coefficientsvi and vj , because the basesUi/Uj obtained
from SVD do not align with the sample data points. In-
stead, we enforce the sparsity property on the sample co-
efficientsα andβ, which imply that each nearest point is
sparsely approximated by the combination of a few sam-
ple images. Different from sparse modeling of single im-
age classification [7], our formulation jointly optimizes the
nearest points between two image sets and their sparse ap-
proximations from samples.

4. Efficient Optimization

In this section, we provide an efficient solution to the
optimization problem in (4) which is summarized in Algo-
rithm 1. The objective function in (4) is a composite model
consisting of a smooth function and a non-smooth func-
tion. The smooth part corresponds tof(v1, v2, α, β) =
Fvi,vj + λ1(Gvi,α + Qvj ,β) and the non-smooth part is

Algorithm 1 Optimization of SANPs

Require: (Xi, µi, Ui), (Xj , µj , Uj)
1: Set v1i = v0i = 0, v1j = v0j = 0, α1 = α0 = 0,

β1 = β0 = 0, t0 = 0, t1 = 1, k = 1, L = L0 = 100,
η = 1.1, λ1 = 0.01, λ2 = 0.1 · max(|2λ1 · (XT

i µi)|)
andλ3 = 0.1 ·max(|2λ1 · (XT

j µj)|).
2: while not convergeddo
3: compute the proximal points:

ykvi = vki + tk−1−1
tk

(vki − vk−1
i );

ykvj = vkj + tk−1−1
tk

(vkj − vk−1
j );

ykα = αk + tk−1−1
tk

(αk − αk−1);

ykβ = βk + tk−1−1
tk

(βk − βk−1);
4: calculate gradient:

▽fvi = (2 + 2λ1)U
T
i Uiy

k
vi

− 2UT
i Ujv

k−1
j −

2UT
i µj + (2 + 2λ1)U

T
i µi − 2λ1U

T
i Xiα

k−1;
▽fvj = (2 + 2λ1)U

T
j Ujy

k
vj

− 2UT
j Uiv

k−1
i −

2UT
j µi + (2 + 2λ1)U

T
j µj − 2λ1U

T
j Xjβ

k−1;

▽fα = 2λ1X
T
i Xiy

k
α−2λ1X

T
i µi−2λ1X

T
i Uiv

k−1
i ;

▽fβ = 2λ1X
T
j Xjy

k
β−2λ1X

T
j µj−2λ1X

T
j Ujv

k−1
j ;

5: optimize proximal regularization:
vk+1
i = ykvi − 1

L
▽ fvi ; vk+1

j = ykvj − 1
L
▽ fvj ;

αk+1 = τλ2
L

(ykα − 1
L
▽ fα);

βk+1 = τλ3
L

(ykβ − 1
L
▽ fβ);

6: If F
v
k+1

i
,v

k+1

j
+λ1 ·(Gv

k+1

i
,αk+1+Q

v
k+1

j
,βk+1) > PL

, updateL = ηL and go to Step 5;
7: stepsize update:

tk+1 =
1+

√
4(tk)2+1

2 ;
8: end while
9: Output: optimal solution(v∗i , v

∗
j , α

∗, β∗) to (4)

g(α, β) = λ2|α|1 + λ3|β|1. Obviously,g(α, β) is a con-
vex function with respect toα andβ. It can also be proved
that the smooth functionf(v1, v2, α, β) is jointly convex
with respect to all its variables. Hence, the objective func-
tion in (4) is convex and the global minimum solution can
be obtained. In the rest of this section, we adapt the Accel-
erated Proximal Gradient (APG) methods [31, 1] to solve
this optimization problem, which can achieve the optimal
convergence rate of first order methods.

The gradient method [31, 1] was used to minimize the
composite functionf(w) + g(w) by extending the equiva-
lence relationship between gradient step and the proximal
regularization of the linearized functionf at wk−1 to the
composite functionf(w) + g(w). The corresponding iter-
ative scheme is as follows. At every iterationk, the new
solutionwk is obtained by solving the following proximal
regularization problem from the solutionwk−1 at the previ-



ous iteration:

wk = argmin
w

{PL(w,wk−1) + g(w)}, (5)

where
PL(w,wk−1) =

f(wk−1)+ < ▽f(wk−1), w−wk−1 > +
L

2
||w−wk−1||2.

(6)
When g(w) = λ|w|1, the optimalwk of (5) can be effi-
ciently obtained by the soft-thresholding operators at every
iteration as follows:

τα(x)i = (|xi| − α)+sgn(xi), (7)

where(x)+ = max(0, x) andsgn(x) returns the sign ofx.
APG methods [31, 1] improve the convergence rate of the
gradient method fromo( 1

k
) to o( 1

k2 ) by carefully selecting
a sequence of pointsY k for proximal regularization instead
of directly using the point in the previous iteration (Step1
in Algorithm 1).

The composite objective function (4) of our SANP op-
timization is different from the standard one in the non-
smooth part, whereL1 norm only relates to some opti-
mization variables (α andβ). Because the objective func-
tion is separable, the proximal regularization of SANP op-
timization at every iteration still can be solved efficiently:
vi andvj are directly updated from proximal points in the
negative gradient direction since they are independent of
the non-smooth part;α andβ are updated using the soft-
thresholding operator (7) with the thresholding value ofλ

L

(Step 5 in Algorithm 1). The stepsizeL is related to the Lip-
schitz constant of▽f , which unfortunately is unknown. We
adaptively select the stepsize using the backtracking rule
[1]. Given the initialL = L0 and someη > 1, we keep
updatingL = ηL until PL between the solutions of itera-
tion k+1 andk is larger thanFvi,vj +λ1 · (Gvi,α+Qvj ,β)
at iterationk + 1 (Step 6 in Algorithm 1).

4.1. Convergence Rate Analysis

Following the more general results in [1], it can be
proven that the sequencepk = (vki , v

k
j , α

k, βk) generated
by Algorithm 1 converges to the global solutionp∗ =
(v∗i , v

∗
j , α

∗, β∗) of the function (4) with a non-asymptotic
convergence rate ofO( 1

k2 ), wherek is the iteration number.
Compared to the general gradient method whose conver-
gence rate isO( 1

k
), this convergence rate is optimal for the

first-order optimization methods. Actually, it can be shown
that

F (pk)− F (p∗) ≤ 2ηL(f)||pk − p∗||2
(k + 1)2

, (8)

whereη > 1 is the constant for backtracking the update
of stepsize andL(f) is the Lipschitz constant of▽f . To
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Figure 3. Illustration of fast convergence of SANP optimization.

achieve theε-optimal solution (i.e. ãp such thatF (p̃) −
F (p∗) ≤ ε), the number of required iterations is at most
⌈ C√

ε−1
⌉, whereC =

√

2ηL(f)||p0 − p∗||2. Fig 3 plots
the values of the objective function (4) over iterations when
computing the SANPs of two image sets. The algorithm
quickly converges after40 iterations in0.8 second using a
Matlab implementation on a2.3GHz machine.

5. Experimental Evaluation

We evaluate the proposed method on the task of face
recognition based on image sets. Once the SANPs are
found, the nearest neighbor classifier is used for recogni-
tion. For every query set, the most similar image set in the
gallery is searched by finding the minimum between-set dis-
tances based on the SANPs of two image sets. We define the
between-set distance as follows

D(ci, cj) = (di+dj)·[Fv∗

i
,v∗

j
+λ1(Gv∗

i
,α∗+Qv∗

j
,β∗)], (9)

where(v∗i , v
∗
j , α

∗, β∗) is the optimal solution of (4) anddi
anddj are the dimensions of the affine hulls ofci andcj ,
respectively. Multiplication with the factor(di + dj) is per-
formed to eliminate the bias to larger image sets. The bias
occurs because, when calculating the distance to the larger
image sets, the error of the least square functionFvi,vj ,
which is the projection ofµj − µi onto the null space of
[Ui,−Uj], will be smaller since the dimension of the null
space is reduced. In the extreme case, ifdi + dj is larger
than the feature dimension, a zero minimum distance can
be obtained even when the two image sets are very dif-
ferent. Multiplication with(di + dj) ensures that a small
between-set distance is only obtained when the distance be-
tween SANPs and the dimensions of sets are both small.

5.1. Experiment Setup

Dataset Configuration: We used the Honda/UCSD [8],
CMU Mobo [17] and Youtube Celebrities [11] datasets in
our experiments. Honda/UCSD dataset contains59 video
sequences of20 different subjects. Different poses and ex-
pressions appear across different sequences of each subject.



Each video sequence corresponds to an image set. The faces
in every frame are detected using [16] and then resized to
gray-scale images of size20 × 20 as in [18]. The lengths
of the sets vary from12 to 645. Histogram equalization is
the only pre-processing step used to minimize the illumi-
nation variations. For this dataset, we directly vectorizethe
raw pixels of the resized images to form the columns of data
matrixX .

Mobo (Motion of Body) dataset [17] was originally cre-
ated for human pose identification. There are96 sequences
of 24 subjects walking on a treadmill. Multiple cameras
were used to capture videos of four walking patterns: slow,
fast, inclined and carrying a ball. For each subject,4 video
sequences are collected each of which corresponds to a
walking pattern. The faces are detected in every frame as
before using [16] and then resized to40 × 40 gray-scale
images. For this dataset, we use the Local Binary Pattern
(LBP) [21] as the features of individual images. The uni-
form LBP histogram using circular(8, 1) neighborhoods is
extracted from the8× 8 squares of gray-scale images.

We also provide experimental results on Youtube
Celebrities [11], which is a large video dataset collected for
face tracking and recognition.1910 video sequences of47
celebrities (actors, actresses and politicians) are collected
from Youtube. The clips contain different number of frames
(from 8 to 400) which are mostly low resolution and highly
compressed. This database [11] only provides the cropped
face in the first frame. Therefore, we apply [3] to track faces
and resize them to30 × 30 gray-scale images. The pixel
values are used as features. This dataset introduces more
challenging situations for image set classification because
of two reasons. First, the video sequences exhibit larger
variations in pose, illumination and expressions. Second,
the low quality of frames, due to the high compression rate,
introduces tracking errors and noises in the cropped faces.
Without enforcing facial constraints as in [11], the cropped
faces we used in this paper contain larger tracking errors
than the face images from [11], which makes our experi-
mental setting even more challenging.

Comparison with Existing Methods: We compare
the proposed method with several image set classifica-
tion methods lately proposed in the literature. They in-
clude Discriminant Canonical Correlation Analysis (DCC)
[25], Manifold-to-Manifold Distance (MMD) [19], Mani-
fold Discriminant Analysis (MDA) [18], Linear version of
Affine Hull based Image Set Distance (AHISD) [5] as well
as Convex Hull based Image Set Distance (CHISD) [5].
Here, AHISD can be regarded as a baseline method which
finds the nearest neighbors without the sparsity constraint.
Note that [25, 19, 18, 5] have conducted extensive compar-
isons with exemplar-based methods e.g. Linear Discrimi-
nant Analysis (LDA) and Marginal Fisher Analysis (MFA)
have shown that set-based methods generally outperform

exemplar-based methods. Due to this reason and paucity of
space, we do not provide comparison with exemplar-based
methods.

The standard implementations of all methods from the
original authors are used except MDA. We carefully imple-
ment the MDA algorithm since it is not publicly available.
The important parameters of different methods are carefully
optimized as follows: For DCC, the dimension of the em-
bedding space is set to100. The subspace dimensions are
set to10 which preserves90% energy and the correspond-
ing 10 maximum canonical correlations are used to define
set similarity. For MMD and MDA, the parameters are con-
figured according to [19, 18]. Specifically, the ratio between
Euclidean distance and geodesic distance is optimized for
different datasets (i.e. 2.0 for Honda, 5.0 for Mobo and
2.0 for Youtube dataset1). The maximum canonical corre-
lation is used in defining MMD. For MDA, the number of
between-class NN local models and the dimension of MDA
embedding space are tuned for different datasets as spec-
ified in [18]. The number of connected nearest neighbors
for computing geodesic distance in both MMD and MDA
is fixed to its default value i.e.12. There is no parame-
ter setting for AHISD. For CHISD, we set the error penalty
parameter to be the same value as in [5] (C = 100 for gray-
scale features andC = 50 for LBP in linear SVM). Both
methods apply PCA to preserve90% energy as before.

5.2. Results and Analysis

On the Honda dataset, we use the standard train-
ing/testing configuration provided in [8]:20 sequences are
used for training and the remaining39 sequences for testing.
We report results using all frames as well as with a limited
number of frames. Specifically, we conduct the experiments
by setting an upper boundM of maximum set length to
100 and50. In case a set contains fewer thanM images,
all images are used for classification. Such situations often
occur in real-world applications, for example the tracking
of a face may fail for a long sequence and only the first
part of the sequence is available for classification. More-
over, classification based on smaller sets can also be more
efficient. Table 1 summarizes the identification rates of all
methods. We can see that the proposed method achieves
the best overall performance in different situations. When
the whole sequences are used, it achieves perfect classifica-
tion. When the sets are reduced, our method achieves the
2nd highest performance. It is interesting to notice that the
performances of discriminant learning methods (DCC and
MDA) degrade more heavily due to the reduction of train-
ing data. Geometric models (AHISD and CHISD) perform
more consistently across different set lengths with lower ac-
curacy. Note that the accuracies of AHISD and CHISD are

1The optimal parameter for Mobo dataset is different becausethe LBP
histograms are used in this case.



Table 1. Identification rates on Honda/UCSD Dataset

Set Length/Methods DCC [25] MMD [19] MDA [18] AHISD (linear)[5] CHISD (linear) [5] Our method
50 frames 76.92% 69.23% 74.36% 87.18% 82.05% 84.62%
100 frames 84.62% 87.18% 94.87% 84.62% 84.62% 92.31%
Full Length 94.87% 94.87% 97.44% 89.74% 92.31% 100%
Average 85.47% 83.76% 88.89% 87.18% 86.33% 92.31%

Table 2. Average identification rates and the standard deviations of
different methods on CMU Mobo dataset.

Methods Average Performance

DCC [25] 91.53± 1.66%
MMD [19] 89.72± 3.48%
MDA [18] 95.97± 1.90%
AHISD [5] 94.58± 2.57%
CHISD [5] 96.52± 1.18%
Our method 97.08%± 1.03

lower than those reported in [5] because the images are re-
sized to20×20 instead of40×40. The results are obtained
by the implementation provided by the authors of [5].

On CMU Mobo dataset, one sequence per subject is ran-
domly selected for training and the remaining are used for
testing. We conduct10 experiments by repeating the ran-
dom selection of training/testing data and report the aver-
age identification rates and standard deviations of differ-
ent methods. The results summarized in Table 2 show that
the proposed method consistently achieves the best perfor-
mance (highest classification rate and smallest standard de-
viation). It is worth mentioning that our method is generic
and gives good performance across different types of fea-
tures e.g. pixel values or LBP features. Table 1 and 2
show that our method consistently achieves good results
using pixel values (Honda and Youtube) and LBP features
(Mobo). On the other hand, other methods may achieve
good results using one feature and degraded performance
using another feature. For example, MDA achieves the sec-
ond best overall performance on the Honda dataset using
pixel values and CHISD achieves the second best perfor-
mance on Mobo dataset using LBP histograms.

On the Youtube Celebrities dataset, we conduct five-fold
cross validation experiments. The whole dataset is equally
divided into five folds. In each fold,3 image sets are ran-
domly selected for training and6 are selected for testing.
The average identification rates and the associated standard
deviations of different methods are summarized in Table
3. Because the videos are captured from real world in low
quality and broad appearance variations are covered in this
dataset, all methods achieve lower recognition rates com-
pared to the other two datasets. Notice that the results of

Table 3. Average identification rates and the standard deviations
on Youtube dataset for five-fold cross validation experiments.

Methods Average Performance

DCC [25] 53.90± 4.68%
MMD [19] 54.04± 3.69%
MDA [18] 55.11± 4.55%
AHISD [5] 60.71± 5.24%
CHISD [5] 60.42± 5.95%
Our method 65.03± 5.74%

Table 4. Comparison of our proposed method with sparse model-
ing for single image [7] on Youtube dataset (47 subjects).

Our method Wright et al. [7]

Identification Rate 65.03% 63.12%
Matching Time per set 55.64s 336.33s

some methods are relatively lower than those reported in
[18] because our experimental setting is more challenging,
the automatically cropped faces contain larger tracking er-
rors and the data distribution of training/testing in5-fold
cross validation is broader than [18]. It is shown that our
method again achieves the best performance using the same
set of parameters used in previous experiments.

We also compare the performance and computational
complexity of our proposed method and the sparse mod-
eling method for single image classification [7] on the
Youtube dataset. The technique in [7] can be extended from
a single image to multiple images for image set classifica-
tion. Given a query set, all sample images are sparsely rep-
resented as a linear combination of the images of all gallery
sets and the image set is assigned to the class with the min-
imum reconstruction error of all its sample images as in
[7]. Table 4 shows the advantages of our proposed sparse
modeling for image set classification. Our method not only
achieves better performance but is also more efficient. The
accuracy of our method comes from the fact that it dy-
namically finds the nearest points (SANPs), which corre-
spond to images that may not have appeared in the set sam-
ples. On the other hand, Wright et al. [7] rely completely
upon the sparse representations of the original samples. Our



method is more efficient because it optimizes SANPs based
on smaller individual gallery sets (small dictionary) com-
pared to [7] where the query image is approximated from
the complete gallery (i.e. a much larger dictionary). More-
over, a straight forward extension of [7] to the image set
classification problem requires sparse approximations of all
samples in the query set whereas our method requires the
sparse approximations of SANPs only.

6. Conclusion and Discussion

We proposed a novel sparse formulation for image set
classification. An image set is represented as a triplet in-
cluding the sample images, their mean and their affine hull
model. We introduced the Sparse Approximate Nearest
Points (SANP) to measure the between-set dissimilarity.
Unlike the sparse model of a single image, the sparsity is
enforced on sample coefficients rather than the model coef-
ficients of the proposed SANP. The optimization of SANP
jointly minimizes the distance and maximizes the sparsity
of the nearest points using a scalable accelerated proximal
gradient method. We conducted a thorough experimental
evaluation on three benchmark datasets for face recognition
based on image sets and compared the results to the existing
state-of-the-art. Using the same fixed set of parameters, our
method consistently achieves the best performances across
all experiments as well as features while the performances
of other methods fluctuate even with tuned parameters on
different datasets/features.
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