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Abstract T —— i

Classification based on image sets has recently attracted
great research interest as it holds more promise than sin-
gle image based classification. In this paper, we propose
an efficient and robust algorithm for image set classifica-
tion. An image set is represented as a triplet: a number of
image samples, their mean and an affine hull model. The
affine hull model is used to account for unseen appearances
in the form of affine combinations of sample images. We
introduce a novel between-set distance called Sparse Ap-
proximated Nearest Point (SANP) distance. Unlike existing
methods, the dissimilarity of two sets is measured as the dis
tance between their nearest points, which can be sparsely .
approximated from the image samples of their respective '-------------------------!
set. Different from standard sparse modeling of a single im-
age, this novel sparse formulation for the image set enforce

sparsity on the sample coefficients rather than the model, "> : :

. g . . two image sets, the points on each set can be representddeara |
Coeﬁ'c_'ems and jointly pptlmlzes the nearest points _ai; wel combination of bases plus the mean image. They can also be rep
as their sparse approximations. A convex formulation for resented as the linear combination of sample images. ThePSAN
searching the optimal SANP between two sets is proposechre dynamically chosen by the joint optimization which sitae-
and the accelerated proximal gradient method is adapted to ously searches for sparse approximated points (maximaesisp
efficiently solve this optimization. Experimental evailiat  of sample coefficients) that are the nearest (minimize iigpbe-
was performed on the Honda, MoBo and Youtube datasetsiween the two sets. The optimal SANPs of the two image sets are
Comparison with existing techniques shows that our methodshown in the center, each of which is sparsely approximaetieb
consistently achieves better results. sample images marked with red boxes.

X, =K +Ui v,
Minimize L, Distance D(x;,x;) [aree

Maximize Sparsity on @ and g

Figure 1. Sparse Approximated Nearest Points (SANPs) of two
image sets. Given the affine hull modéls, U;) and(;, U;) of

ifest large view-point and illumination changes and non-
rigid deformations without any temporal relationship.

In image set classification, each class is represented by Classification based on image sets has recently attracted
one or more image sets and a query image set is assigned thgrowing interest in the computer vision community [23, 28,
label of the gallery set that is the nearesttoitusing some di 9, 12, 25, 19, 18, 29, 5] because it holds more promise com-
tance criterion. For the specific case of human faces, eactpared to single image based classification. The problem
set comprises a different number of facial images under ar-of image set classification naturally arises in a wide range
bitrary poses, illumination conditions and expressions. |  of applications including video surveillance, classifioat
age set classification is a generalization of video-basesd cI based on images from different views using multiple cam-
sification [15, 20, 8], which focuses on exploiting the tem- eras, relevant pictures of a personal album and classificati
poral relationship between the images with the priorithati  based on long term observations. Within a set, individual
dividual images are consecutive video frames. However, inimages either share the common semantic relationship or
image set based classification, the images of a set may maneomplement the appearance variations of the subject. Im-

1. Introduction



age set data pose new challenges to the visual classificatioloes not have strong statistical correlations for paramete
task. The main challenge relates to modelling the image setestimation, the estimated model cannot well characterize
in order to exploit the semantic knowledge between indi- the image set [25, 19]. Non-parametric model-free meth-
vidual images. Traditional classification models e.g. SVM, ods attempt to represent an image set as a linear subspace
k-Nearest Neighbor Classifier based on single sample, can{15, 13, 25, 9], mixture of subspaces [28, 12], or nonlinear
not address this issue. manifolds [2, 19, 18, 27]. Without any assumption on data
In this paper, we propose a novel algorithm for image distribution, it has been shown that these model-free repre
set classification. In the proposed method, every image sesentations inherit many favorable properties.
is represented as a tripletincluding the sample imageis, the  Existing techniques can also be differentiated based on
mean and the affine hull model of its sample images to coverthe second criterion of between-set distance. However, the
all possible affine combinations of sample images. Such apetween set distance is usually defined specifically for cer-
loose representation of the affine hull is capable of aceount tain image set representations. For example, for parametri
ing for the unseen appearances of any affine combinationrepresentations, the between-set distance is calculated b
of sample images which do not appear in the samples. Onmeasuring the similarity between the corresponding distri
the downside, it also introduces a challenge for matching putions of their parameters. Kullback-Leibler divergence
different image sets. The image sets of different classes[14] is an example of this category. For non-parametric
are more likely to intersect due to the over-large space ofrepresentations, two types of distances have been proposed
their affine hulls. To address this issue, we introduce the The first one defines the between set distance using some
Sparse Approximated Nearest Points (SANP) for comput- of the set samples. For example, a simple method for cal-
ing the between-set distance. SANPs of two image sets areulating the between-set distance is to measure the déstanc
defined as a pair of nearest points on the sets that can b@etween the sample means of the two sets [19]. Another
sparsely approximated by the sample images of the respecexample is to use geometric distances (distances of closest
tive set individually. point approach) [5] to compare different image sets. Unlike
The search for SANP of two image sets is formulated as the mean difference, this method adaptively selects differ
a partial L; norm regularized convex optimization. Fig 1 ent samples to calculate the between set distance for-differ
illustrates the formulation of SANP optimization for two ent image sets. Thus it is able to better handle intra-class
image sets. This novel formulation is different from the variations. Given two image sets, the closest points are ob-
sparse modeling of single images in two aspects. First,tained by minimizing the distance between them through
the nearest points to be sparsely approximated are the unleast square optimization. The between-set distanceis the
knowns which means that we need to jointly optimize the defined as the distance between these two closest points.
nearest points and their sparse approximations. Secand, th  The second type of distance for non-parametric repre-
sparsity is enforced on the sample coefficients instead Ofsentations compares different image sets by analyzing thei
model coefficients in our formulation. We show how re- model structures instead of the sample data. Canonical Cor-
cent advances in first-order optimization techniques can beyg|ation Analysis (CCA) [6] is one of the techniques for
adapted to solve this optimization, leading to a fast, scal- cajculating subspace similarity. It findsprincipal angles
able algorithm. Once the SANPs are found, the between-se) < y, < < g, < /2 between the subspaces of two
distance is then defined using these points and the Neares{ets, which are the smallest angles between any vector in the
Neighbor (NN) classifier is deployed to assign the query setfjrst set and any vector in the second set. The between-set
to the class of its nearest neighbor. Experiments on threesimijarity is then defined as the sum of canonical correla-
benchmark datasets and comparison with existing tech-tjons, which are the cosines of principal angles. Different
niques [25, 19, 18, 5] show that the proposed method con-extensions have been proposed for using CCA to match im-
sistently gives better results. age sets. For example, kernelized CCA [10] and localized
CCA [30] have been proposed for image set-based classi-
1.1. Related Work ficatio[n. ]Boosting tecphni?ques have been applied on prin-

Image set classification techniques can be categorizecFipal angles for improving the classification performance
based on two criterion: firstly, how the image sets are repre-0f CCA [26, 24]. Other methods for subspace similar-
sented and secondly, how the between-set distance is delly analysis include the Mutual Subspace Method (MSM)
fined. As far as image set representation is concerned[15], Orthogonal Subspace Method (OSM) and their vari-
existing techniques include parametric and non-parametri ants [13, 23, 9, 29, 22]. These techniques are further ex-
representations. Parametric model-based represergationended by integrating discriminant learning [25] and oalin
[4, 8, 14, 29] use some parametric distributions to represen learning [23, 22].
animage set with the parameters estimated from the set data One common aspect about the above techniques is that
itself. A limitation of these techniques is that if the setada  they either measure the distance between certain samples of



the two sets or the similarity between their structures. On ___Query  Gallery

the other hand, the proposed technique in this paper tries to E ! -
utilize both structure information and the image samples. ', =

2. Image Set Representation

In this paper, we propose a joint representation for image
sets which consists of different numbers of images. Denote

3!

Xe = [e1,%e2, + ,%n,] as the data matrix of the” LY el ] ==
image set, where,. ; is a feature vector of thé” image. e Pt ; i 1
The feature of an individual image can be simplv the high Dense Linear Combination Sparse Linear Combination

X . R 9 ply 9 d(query, gallery)=0.9979 d(query, gallery)=8.4213
dimensional array of pixel values or any other features e.g. b
Local Binary Pattern (LBP) [21] of the image. The joint (@) (0)

representation. beside ina the sample atzonstruct Figure 2. lllustration of matching two image sets of differsub-
pres lon, besides using sample dia structs jects. Nearest points of the sets (a) with dense approxdmaind

alinear model to approximate the structure of the image sety,) \yith sparse approximation. First row shows the imageeef-
in hlgh-d.lmenS|onaI feature space. We model an image Selgst points on the sets and second row shows the sample cerfici
as an affine hull of the set data [5]: used for approximation from samples.

N N.
AH.={z = ZO‘CJ Ty | Zam =1} (1)
= =t sets. Even for two image sets of different classes, it is pos-

This affine hull can also be represented by another parametsible to find two nearest points with very small distance.
ric form using the sample mean. = NL ZZN:H T.; as a This can degrade the classification performance. To over-

reference point to represent every data: come this problem, we propoSparse Approximated Near-
est Points (SANRP measure the dissimilarity between two
AH. = {z = pc + Uove | ve € R'Y, (2)  image sets. SANPs are the two points, one on each individ-

ual set, which satisfy the following constraints:
where thel columns ofU, are the orthonormal bases ob- bt ¢

tained from the Singular Value Decomposition (SVD) of the
centered data matriX. = [¥e1—fic, Te2—fle, - - - » Te, N, —

1. Different from other tight representations e.g. convex
hull, any affine combination of sample images in the set is
accommodated in this representation even when the com-
bination does not appear in the samples of the set. Such a
loose representation is particularly appealing in the exnt

of small set size because the unseen data belonging to thRlote that the second constraint improves the discrimirativ
image set can be better modeled. However, this loose repre- . P :
sentation also brings challenges for calculating the dista power of the SANPs. Given two image sets of different

between two image sets. The affine hulls of image sets areclasses (subjects), the nearest points between thesetsvo se

likely to be over-large, which results in the intersectidn o using a dense combination of all sar_nple Images could be
multiple affine hulls. In this paper, we represent an image very close. For example, the nea_rest Images in Fig 2(a) (top
set as a tripletyi,, U, X..) by including both structure in- row) are very close but they dgwate s!gmflcantly f_rom the

formation and sample images. As we will show in the next sample images of the respective set i.e. they neither look

section, the information of sample images can be utilized toIke the query nor the gallery. Alternatively, using only a

eliminate the ambiguity of the over-large space of the affine f;fégebgmbe' rr:atgz tOfo? tl;]e;/v Ziwrgptlvevz tgte Tglglé? dl';_
hulls. This joint representation of image set is useful for poInts S sets ( y)

improving the robustness of matching image sets. COMES I_arge (eg. t_he Images in Fig 2(b) are approximated
by the linear combination df samples). From a geomet-

3. Sparse Approximated Nearest Points ric point of vi_ew, the affi_ne hull of an image set is formed
from sample images which lie on the facets of the hull. The
Existing methods [19, 5] directly search the nearest constraint of sparse approximation enforces the SANPs to
points in the complete space of two image sets without anybe close to some facet(s) of the affine hull and consequently
additional constraints. These points could be very noigly an close to some sample image(s) on those facet(s). With this
vulnerable to outliers. This issue is especially serious in constraint, the spurious nearest points of image sets of dif
our case because we use loose affine hulls to model imagderent classes can be avoided.

e The Euclidean distance between these two points
should be small;

e Each of the two points should be able to be approx-
imated by a sparse combination of sample images in
the corresponding image set.



3.1. Convex Formulation Algorithm 1 Optimization of SANPs
ReqUire: (Xu s Uz)v (Xja Hjs UJ)

To find the SANPs of two image sets which are opti-

1 _ .0 _ 1 _ 0 __ 1 _ _
mal in terms of the above two criteria, we propose a convex * Sft“i o vi =0,y =0 =0 = =0,
formulation. Given the data matricés andX; of two im- pr=p"=0t=0t1=1k=1L= L = 100,
age sets, their corresponding affine hull representatimns a7 = 1.1, A1 = 0.0, Ay = 0.1 - max (|21 - (X 13)[)
(i, U;) and (u;, U;). We first define several functions as ands = 0.1 maz(|2A1 - (X7 15)))-
follows: 2: while not convergedo

3 compute the proximal pointS'
Fow, = (i +Ui-vi) = (5 +Uj-05)f5 yvl = o + L= (vf b;
Goia = |(pi+Ui-v) = X;-al3 va*U + i 1(v —of 1).
k 1
Quyp = |y +Uj-vj) = X;- B3 3) ya—a +u(a —akh);
) o . ﬂk ’—l(ﬂk ﬂk 1)1
T_h_e optimal model coefficientgu; ,v_j} and san_”npl_e_coef— calculate gradlent
ficients{a*, 3*} of SANPs are obtained by optimizing the Th = (2 + 22 UTUiyk — 2UTUF 1 —
following unconstrained problem: o ¢ T i
k—1
min Fj'u1 vj +)\1(Gyi,a+ij75>+>\2|Oé|1+>\3|ﬂ|1, Vf'l)j - (2 + 2>\1>UJTUJy§J - 2UJTUsz —
R AR ZUJT[LZ+(2+2>\1)UJT‘LLJ 72)\1UTX ﬂk_l'

(4)
Where the first term is to keep the distance between SANPs
= u; + U; - v; and pointr; = p; + U - v; small. The

Vfa = 20X Xiyk o\ X7y — 20 XTU; u;z L
Ve = 20X Xk =20 Xy —20 XTU v; n

second term is to preserve the individual fidelities between 5 OEE{nize proximal regular}iCZf}tion . _
these two points and their sample approximations. The last - ym - L Vv va v =Yy, — TV oy
two terms enforce the approximations to be spadse. Ao = T%( V fa);
and \; are the trade-off weights to control the relative im- 5k+1 _ T_d( V fa);
portance of dlfferent terms. The velue)elf is fixed ag0.01 6 If Fn HIJF)\I (G 1 e Qe 3k+1) > P,
for all the experiments conducted in this paper. koand undatel’ — nZ and 6o to Step 5:
A3, we design an automatic mechanism to control the rel- » Updates. = n i 9 P
. . : . N 7:  stepsize update:
ative sparsity ofo and 5. Notice that if A\ >= A} = e
max(|2X\; - (X1 1;)]), the zero vector is optimal for at thtl = V- T
zero. Similarly, ifA\3 >= A3 = max(|2\; - (X)), 8: end while

the zero vector is optimal fo at zero. We adaptively set ~ 9: Output: optimal solution(v;, v}, a*, %) to (4)
A2 =0.1- A5 and);3 = 0.1- A} for all experiments.

To the best of our knowledge, this is the first time that
sparse modeling has been formulated to match two image
sets. Note that we do not enforce the sparsity on the model . _
coefficientsv; andv;, because the basés/U; obtained — 9(, 5) = Aefali + A3|6l1. Obviously,g(e, 5) is a con-
from SVD do not align with the sample data points. In- V€X function with respect tec andg. It can also be proved
stead, we enforce the sparsity property on the sample cothat the smooth functiorf(v1,v2, o, ) is jointly convex
efficientsa: and 3, which imply that each nearest point is with respect to all its variables. Hence, the objective func
sparsely approximated by the combination of a few sam- tion in (4) is convex and the global minimum solution can
ple images. Different from sparse modeling of single im- be obtained. In the rest of this section, we adapt the Accel-
age classification [7], our formulation jointly optimizéset ~ €rated Proximal Gradient (APG) methods [31, 1] to solve

nearest points between two image sets and their sparse aphis optimization problem, which can achieve the optimal
proximations from samples. convergence rate of first order methods.

The gradient method [31, 1] was used to minimize the
composite functiory(w) + g(w) by extending the equiva-

In this section, we provide an efficient solution to the lence relationship between gradient step and the proximal
optimization problem in (4) which is summarized in Algo- regularization of the linearized functiofi at wy_; to the
rithm 1. The objective function in (4) is a composite model composite functiory (w) + g(w). The corresponding iter-
consisting of a smooth function and a non-smooth func- ative scheme is as follows. At every iteratiénthe new
tion. The smooth part corresponds fovl,v2,a, 5) = solutionwy, is obtained by solving the following proximal
Fy,w; + M(Go, 0 + Qu; 5) and the non-smooth part is  regularization problem from the solutiar, —; at the previ-

4. Efficient Optimization



ous iteration:
wy, = argrrgn{PL(w, wr—1) + g(w)}, (5)

where
Pr(w,wi—1) =

Objective Function Values

L
flwg—1)+ < Vf(wg—1),w —wi—1 >+§||w—wk—1||2- I
(6) o
Wheng(w) = Aw|;, the optimalw;, of (5) can be effi- 0 50 100 on Nuroo, 200 250
ciently obtained by the soft-thresholding operators atyeve
iteration as follows: Figure 3. lllustration of fast convergence of SANP optintiza.
Ta(@)i = (lzi] — &) 1sgn(:), (7)

achieve thes-optimal solution (i.e. & such thatF'(p) —

where(z),. = maz(0, z) andsgn(z) returns the sign aof. F(%*) < ¢), the number of required iteration; is at most
APG methods [31, 1] improve the convergence rate of the | 7= |- WhereC' = /2nL(f)[[p” — p*[[*. Fig 3 plots
gradient method from(+) to o(;%) by carefully selecting the vaIu.es of the objective func_tion (4) over iterations m{he
a sequence of points* for proximal regularization instead ~ computing the SANPs of two image sets. The algorithm
of directly using the point in the previous iteration (Step ~ duickly converges aftet0 iterations in0.8 second using a
in Algorithm 1). Matlab implementation on 23GHz machine.

The composite objective function (4) of our SANP op- . .
timization is different from the standard one in the non- 5. Experimental Evaluation

smooth part, wherd.,; norm only relates to some opti- We evaluate the proposed method on the task of face
mization variablesq and ). Because the objective func-  recognition based on image sets. Once the SANPs are
tion is separable, the proximal regularization of SANP 0p- foynd, the nearest neighbor classifier is used for recogni-
timization at every iteration still can be _solved §ﬁ|C|gntI tion. For every query set, the most similar image set in the
v; and; are directly updated from proximal points in the  gajiery is searched by finding the minimum between-set dis-

negative gradient direction since they are independent oftances hased on the SANPs of two image sets. We define the
the non-smooth party and 3 are updated using the soft- panveen-set distance as follows

thresholding operator (7) with the thresholding value%of

(Step 5in Algorithm 1). The stepsizeis related tothe Lip- ~ D(ci, ¢;) = (di+d;)-[For vr +A1(Goz o +Qur 5+)], (9)

ook U METE1 ., h Gpimal okton of (1) anc
pavely P ¢ g andd; are the dimensions of the affine hulls @fandc;,

e e L 0TI Ao ue E€0_ Tespocivey. Mulplcatn i e facial, + ) por.

. : formed to eliminate the bias to larger image sets. The bias

g?::r;_})ﬁgdkfslse;;geét_r:]ag«“vgﬁﬁmﬁ (Guisa+ Qu,.p) occurs because, when calculating the distance to the larger
: ! +1(Step6i gon ): image sets, the error of the least square functign,,,

4.1. Convergence Rate Analysis which is the projection of:; — p; onto the null space of

(Ui, —U;], will be smaller since the dimension of the null

space is reduced. In the extreme case,; if- d; is larger

than the feature dimension, a zero minimum distance can

be obtained even when the two image sets are very dif-

) _ ) ferent. Multiplication with(d; + d;) ensures that a small

convergence rate @ (), wherek is the iteration number.  petween-set distance is only obtained when the distance be-

Compared to the general gradient method whose converyyeen SANPs and the dimensions of sets are both small.
gence rate i®)(4), this convergence rate is optimal for the

first-order optimization methods. Actually, it can be shown 5.1. Experiment Setup

that ol P, Dataset Configuration: We used the Honda/UCSD [8],
FM - Py < 2 (Hllp p I , (8)  CMU Mobo [17] and Youtube Celebrities [11] datasets in
(k+1) our experiments. Honda/UCSD dataset contaihsideo
wheren > 1 is the constant for backtracking the update sequences df0 different subjects. Different poses and ex-
of stepsize and.(f) is the Lipschitz constant of7 f. To pressions appear across different sequences of eachtsubjec

Following the more general results in [1], it can be
proven that the sequengé = (v¥,v*, o, 3%) generated

19050
by Algorithm 1 converges to the global solutigri =
(vf, vt a*, %) of the function (4) with a non-asymptotic

17 ])




Each video sequence corresponds to an image set. The facexemplar-based methods. Due to this reason and paucity of
in every frame are detected using [16] and then resized tospace, we do not provide comparison with exemplar-based
gray-scale images of siz# x 20 as in [18]. The lengths  methods.

of the sets vary froni2 to 645. Histogram equalization is The standard implementations of all methods from the
the only pre-processing step used to minimize the illumi- original authors are used except MDA. We carefully imple-
nation variations. For this dataset, we directly vectoti=  ment the MDA algorithm since it is not publicly available.
raw pixels of the resized images to form the columns of data The important parameters of different methods are casefull
matrix X . optimized as follows: For DCC, the dimension of the em-

Mobo (Motion of Body) dataset [17] was originally cre- bedding space is set 0. The subspace dimensions are
ated for human pose identification. There 8esequences ~ Set to10 which preserve80% energy and the correspond-
of 24 subjects walking on a treadmill. Multiple cameras ing 10 maximum canonical correlations are used to define
were used to capture videos of four walking patterns: slow, et similarity. For MMD and MDA, the parameters are con-
fast, inclined and carrying a ball. For each subjectideo  figured according to [19, 18]. Specifically, the ratio betwee
sequences are collected each of which Corresponds to £UC|idean distance and geOdeSiC distance is Optimized for
walking pattern. The faces are detected in every frame asdifferent datasets (i.e. 2.0 for Honda, 5.0 for Mobo and
before using [16] and then resized 46 x 40 gray-scale 2.0 for Youtube datasBt The maximum canonical corre-
images. For this dataset, we use the Local Binary Patternlation is used in defining MMD. For MDA, the number of
(LBP) [21] as the features of individual images_ The uni- between-class NN local models and the dimension of MDA
form LBP histogram using circulgs, 1) neighborhoodsis ~ €mbedding space are tuned for different datasets as spec-
extracted from th& x 8 squares of gray-scale images. ified in [18]. The number of connected nearest neighbors

We also provide experimental results on Youtube for.comput.ing geodesic dist.ance in both MMD and MDA
Celebrities [11], which is a large video dataset collected f IS f|xed_ to its default value i.e12. There is no parame-
face tracking and recognitioi910 video sequences df7 ter sefting for AHISD. For CHISD, we set the error penalty
celebrities (actors, actresses and politicians) are atele ~ Parameter to be the same value as in {3 100 for gray-

from Youtube. The clips contain different number of frames scale features and = 50 for LBP in linear SVM). Both
(from 8 to 400) which are mostly low resolution and highly methods apply PCA to preser98% energy as before.
compresseq. This database [11] only provides the cropped » Results and Analysis

face in the first frame. Therefore, we apply [3] to track faces

and resize them t80 x 30 gray-scale images. The pixel On the Honda dataset, we use the standard train-
values are used as features. This dataset introduces mor#g/testing configuration provided in [8R0 sequences are
challenging situations for image set classification beeaus used for training and the remainifig sequences for testing.
of two reasons. First, the video sequences exhibit larger\We report results using all frames as well as with a limited
variations in pose, illumination and expressions. Second,number of frames. Specifically, we conduct the experiments
the low quality of frames, due to the high compression rate, by setting an upper bounti/ of maximum set length to
introduces tracking errors and noises in the cropped faces100 and50. In case a set contains fewer thaf images,
Without enforcing facial constraints as in [11], the croppe all images are used for classification. Such situationsiofte
faces we used in this paper contain larger tracking errorsoccur in real-world applications, for example the tracking

than the face images from [11], which makes our experi- Of a face may fail for a long sequence and only the first
mental setting even more challenging. part of the sequence is available for classification. More-

over, classification based on smaller sets can also be more

Comparison with Existing Methods: We compare
P 9 P efficient. Table 1 summarizes the identification rates of all

the proposed method with several image set classifica- hi
tion methods lately proposed in the literature. They in- Méthods. We can see that the proposed method achieves

clude Discriminant Canonical Correlation Analysis (DCC) the best overall performance in_differ_ent situations. Wh_e_n

- : : . wi sequ sare used, i ieves ssifi
[25], Manifold-to-Manifold Distance (MMD) [19], Mani t_he hole sequences are used, it achieve perfectc_la fica
fold Discriminant Analysis (MDA) [18], Linear version of ~ {0M- When the sets are reduced, our method achieves the
Affine Hull based Image Set Distance (AHISD) [5] as well 2™ highest perforr_nan.ce.. Itis interesting to notice that the
as Convex Hull based Image Set Distance (CHISD) [5]. performances of discriminant learning methods (DCC and

Here, AHISD can be regarded as a baseline method whichIPA) degrade more heavily due to the reduction of train-
finds the nearest neighbors without the sparsity constraint N9 data. Geometric models (AHISD and CHISD) perform

Note that [25, 19, 18, 5] have conducted extensive compar-more consistently across different set lengths with loveer a
isons with exemplar-based methods e.g. Linear Discrimi- Curacy. Note that the accuracies of AHISD and CHISD are

nant Analysis (LDA) and Marginal Fisher Analysis (MFA) 1The optimal parameter for Mobo dataset is different becéhesé BP
have shown that set-based methods generally outperformistograms are used in this case.




Table 1. Identification rates on Honda/UCSD Dataset

Set Length/Methods DCC [25] MMD[19] MDA[18] AHISD (lineafp] CHISD (linear)[5] Our method
50 frames 76.92% 69.23% 74.36% 87.18% 82.05% 84.62%
100 frames 84.62% 87.18% 94.87% 84.62% 84.62% 92.31%
Full Length 94.87% 94.87% 97.44% 89.74% 92.31% 100%
Average 85.47% 83.76% 88.89% 87.18% 86.33% 92.31%
Table 2. Average identification rates and the standard tiem&@of Table 3. Average identification rates and the standard tieng
different methods on CMU Mobo dataset. on Youtube dataset for five-fold cross validation experitaen

Methods | Average Performance

Methods | Average Performancg

DCC [25] 91.53+ 1.66% DCC [25] 53.90+ 4.68%
MMD [19] 89.72+ 3.48% MMD [19] 54.04+ 3.69%
MDA [18] 95.97+ 1.90% MDA [18] 55.11+ 4.55%
AHISD [5] 94.58+ 2.57% AHISD [5] 60.71+ 5.24%
CHISD [5] 96.52+ 1.18% CHISD [5] 60.42+ 5.95%
Our method 97.08%=+ 1.03 Our method 65.03+ 5.74%

) ) Table 4. Comparison of our proposed method with sparse model
lower than those reported in [5] because the images are reing for single image [7] on Youtube datasét (subjects).

sized t020 x 20 instead oft0 x 40. The results are obtained

by the implementation provided by the authors of [5]. | | Our method| Wright et al. [7] |
On CMU Mobo dataset, one sequence per subject is ran; Identification Rate 65.03% 63.12%
domly selected for training and the remaining are used for| Matching Time per se 55.64s 336.33s

testing. We conduct0 experiments by repeating the ran-
dom selection of training/testing data and report the aver-
age identification rates and standard deviations of differ-
ent methods. The results summarized in Table 2 show thatsome methods are relatively lower than those reported in
the proposed method consistently achieves the best perforf18] because our experimental setting is more challenging,
mance (highest classification rate and smallest standard dethe automatically cropped faces contain larger tracking er
viation). It is worth mentioning that our method is generic rors and the data distribution of training/testingisiold
and gives good performance across different types of fea-cross validation is broader than [18]. It is shown that our
tures e.g. pixel values or LBP features. Table 1 and 2 method again achieves the best performance using the same
show that our method consistently achieves good resultsset of parameters used in previous experiments.
using pixel values (Honda and Youtube) and LBP features e also compare the performance and computational
(Mobo). On the other hand, other methods may achievecomplexity of our proposed method and the sparse mod-
good results using one feature and degraded performanceling method for single image classification [7] on the
using another feature. For example, MDA achieves the sec-Youtube dataset. The technique in [7] can be extended from
ond best overall performance on the Honda dataset usings single image to multiple images for image set classifica-
pixel values and CHISD achieves the second best perfortion. Given a query set, all sample images are sparsely rep-
mance on Mobo dataset using LBP histograms. resented as a linear combination of the images of all gallery
On the Youtube Celebrities dataset, we conduct five-fold sets and the image set is assigned to the class with the min-
cross validation experiments. The whole dataset is equallyimum reconstruction error of all its sample images as in
divided into five folds. In each fold3 image sets are ran- [7]. Table 4 shows the advantages of our proposed sparse
domly selected for training an@l are selected for testing. modeling for image set classification. Our method not only
The average identification rates and the associated sthndarachieves better performance but is also more efficient. The
deviations of different methods are summarized in Table accuracy of our method comes from the fact that it dy-
3. Because the videos are captured from real world in low namically finds the nearest points (SANPs), which corre-
quality and broad appearance variations are covered in thisspond to images that may not have appeared in the set sam-
dataset, all methods achieve lower recognition rates com-ples. On the other hand, Wright et al. [7] rely completely
pared to the other two datasets. Notice that the results ofupon the sparse representations of the original samples. Ou



method is more efficient because it optimizes SANPs based [g]
on smaller individual gallery sets (small dictionary) com-
pared to [7] where the query image is approximated from
the complete gallery (i.e. a much larger dictionary). More-
over, a straight forward extension of [7] to the image set
classification problem requires sparse approximation$ of a [10]
samples in the query set whereas our method requires the

sparse approximations of SANPs only. 11

Bl

6. Conclusion and Discussion [12]

We proposed a novel sparse formulation for image set
classification. An image set is represented as a triplet in-[13]
cluding the sample images, their mean and their affine hull [14
model. We introduced the Sparse Approximate Nearest
Points (SANP) to measure the between-set dissimilarity.
Unlike the sparse model of a single image, the sparsity is[15]
enforced on sample coefficients rather than the model coef-
ficients of the proposed SANP. The optimization of SANP [t
jointly minimizes the distance and maximizes the sparsity 1,
of the nearest points using a scalable accelerated proxima
gradient method. We conducted a thorough experimental[18]
evaluation on three benchmark datasets for face recognitio
based on image sets and compared the results to the emstm@
state-of-the-art. Using the same fixed set of parameters, ou
method consistently achieves the best performances acrosgoj
all experiments as well as features while the performances
of other methods fluctuate even with tuned parameters onl21l
different datasets/features.
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