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Abstract

We present an algorithm for calibrated camera relative
pose estimation from lines. Given three lines with two of the
lines parallel and orthogonal to the third we can compute
the relative rotation between two images. We can also com-
pute the relative translation from two intersection points.
We also present a framework in which such lines can be
detected. We evaluate the performance of the algorithm us-
ing synthetic and real data. The intended use of the algo-
rithm is with robust hypothesize-and-test frameworks such
as RANSAC. Our approach is suitable for urban and in-
door environments where most lines are either parallel or
orthogonal to each other.

1. Introduction

Structure from motion research in computer vision has
reached the point where a fully automated reconstruction
of the trajectory of a video camera moving through an un-
known scene is becoming a routine practice. Having the
ability to accurately localize a moving camera is an essential
building block for robotic navigation and simultaneous lo-
calization and mapping (SLAM). Many achievements such
as obtaining sparse reconstructions of cities, visual odome-
try and auto-calibration, to name a few, already exists.

Existing approaches were designed with the assumption
that many point features can be accurately tracked. There-
fore, the majority of the SfM literature uses point rather
than line features. However, indoor environments consists
mainly of planar surfaces with little texture and it is fre-
quently the case that few point features can be localized.
On the other hand, such environments are abundant in lines
which can be more accurately localized and tracked due
to their multi-pixel support. Additionally, indoor environ-
ments exhibit structures that can be exploited to achieve ro-
bust structure from motion even with few features. Existing
approaches try to enforce structural constraints after com-
puting the pose of the camera and thus do not benefit from
the extra information available in the relative pose compu-
tation (e.g. [20]).
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(a)

Figure 1: la Primitive configuration. L1, L2, L3 are three lines
with Ly || Lz and L Lq. 1b Two examples of primitive config-
urations. The dashed black configuration is an example of a triv-
ial configuration that occurs in any rectangular structure such as
windows and doors. The Solid Black configuration is a nontrivial
example where the lines are not coplanar.

(b)

Relative pose estimation is the problem of computing the
relative motion between two images and is a key ingredient
for any SfM system. For relative pose estimation to be ro-
bust many primitives must be used. Typically this is done by
using hypothesize-and-test frameworks such as RANSAC
[7]. These frameworks require the existence of an algorithm
that estimates the pose from a small sample of primitives.

This paper proposes a framework that solves the cali-
brated relative pose estimation from lines. The rotation is
first computed from a “primitive configuration” which we
define as a configuration of three lines with two of the lines
parallel and their direction orthogonal to the third line. This
configuration is depicted in Fig. 1. Note that none of the
lines need to intersect. The three lines do not need to be
coplanar. The plane defined by the two parallel lines need
not be orthogonal to the third line. The parallel lines do not
need to be on the same planar surface. The solid black lines
in Fig.1b shows an example of such configuration. Such
primitive configuration frequently occurs in indoor and ur-
ban environments.

Once the relative rotation is computed, the translation is
then computed from any two intersections of two pairs of
lines. Such intersection points may not corresponds to real
intersections. The algorithm is ideal for use with RANSAC
since it requires a minimal sample of three line matches be-



tween two images to compute a general rotation and any two
intersection points to compute the translation. We do not
assume prior knowledge of primitive configurations, rather
the detection of primitive configurations is done automat-
ically by RANSAC. The combination of weak structural
constraints required by our method and the low number of
primitives required makes our framework suitable for pose
estimation in indoor and urban environments.

One important characteristic of our algorithm is that it
decouples the computation of the relative rotation and trans-
lation. A major advantage over other algorithms is there-
fore, that the rotation computation is not susceptible to de-
generacies due to a small baseline. In fact, we can effec-
tively compute the relative rotation with zero baseline with-
out having to handle it as a special case.

Our main contributions are :

e A method to compute the relative rotation between two
cameras given a primitive configuration. The transla-
tion is computed from any two line intersections once
the relative rotation is known.

A framework where this algorithm can be used to de-
tect triplet lines compromising a primitive configura-
tion. Lines fitting this criteria are considered inliers
and are used for the estimation of the camera pose.

2. Related Work

From two images lines do not put any constraints on the
camera pose [14]. The trifocal tensor [23], is thus the stan-
dard method to achieve structure from motion from lines
[14, 9]. The trifocal tensor has 18 degrees of freedom and
at least 13 lines are needed to compute it [15]. Besides the
requirement of three images, the large number of line cor-
respondences required discourages the use of trifocal tensor
in hypothesize-and-test frameworks. In contrast, we need
only 3 lines correspondences to compute the relative rota-
tion and two line intersections to compute the relative trans-
lation. Recently, [3] used line matches in two stereo pairs (4
images), to compute the camera pose. The issue of 3D line
representation, triangulation, and bundle adjustment was in-
vestigated in [2] but the motion computation was done using
the trifocal tensor.

Another category of SfM from lines, exploits common
assumptions such as the existence of three orthogonal dom-
inant directions. In [4], single view camera pose estimation
from scene constraints is proposed where it is done using
a vertical vanishing point and world to image homography.
To compute the homography a reference plane had to be
identified. In [27, 17], the three dominant directions are
computed and then used to obtain reconstructions. Since
finding the dominant directions involves using all lines in
the image these methods fail if dominant direction can not
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be detected in an image. In contrast, lines in our primi-
tive configurations do not need to be aligned to dominant
directions. For the computation of the rotation they do not
even have to be coplanar. Instead all directions present in
the scene can be used as long as they are part of a primitive
configuration. In [8], the constrained motion of the camera
for turntable sequences is used in the SfM computation. Al-
though, we show results on such sequences, we use these as
a benchmarking tool rather than being restricted to them.

Using line segments instead of lines has been also ex-
plored, however these methods are faced with the difficulty
of reliably matching end-points. In [25] they formulate the
problem of reconstructing line segments in terms of an ob-
jective function which measures the re-projection error in
the image plane. Since they use nonlinear minimization,
the method is prone to not converge to the correct solu-
tion. Additionally, they require at least 6 correspondences
in 3 images which is a problem for hypothesize-and-test
frameworks. In contrast, our method uses lines (not line
segments) and is thus not susceptible to reliability issues of
endpoints. Our algorithm is also used in a RANSAC frame-
work and is therefore more robust.

Recently, large progress was made in visual odometry
[21, 19, 1], and urban reconstruction systems [20, 10]. Al-
most all such systems uses stereo cameras or camera rigs.
These systems rely on solutions to the problem of relative
pose estimation from a minimal set of 5 points [18, 24] in-
side a RANSAC framework. We focus on the relative pose
estimation problem from lines. Using lines is complemen-
tary to using points and thus our approach can be used in
any of these systems to compute the relative pose. Similar
to the state of the art for points[18] which produces up to
10 solutions we produce 4 solutions. Relevant to these sys-
tems, is PTAM[16] which performs SFM using a hand-held
camera but on small augmented reality workspaces.

A related field of research in the robotics community is
that of Simultaneous Localization and Mapping (SLAM). In
[5], SLAM from a single camera is performed. Point fea-
tures are tracked and extended kalman filtering is used for
updating the location of the camera and the 3D structure. A
small set of known 3D world points are used in initializa-
tion. In [22], this system is extended to incorporate lines
but still requires the initialization given some point and line
features. In contrast, our approach does not require initial-
ization.

3. Structure from motion using lines
3.1. Problem statement

Lines in two images do not provide any constraints on
the camera pose [26]. However, in indoor and urban en-
vironments many lines are parallel and/or orthogonal. For
example, most furniture have edges that satisfy these as-
sumptions. This motivates the need to develop algorithms



that exploit such constraints.

Before delving into the details of our method, we intro-
duce some notation. Let Ly, Lo, L3 be three world lines
with Ly || L and Lo, L L L;. We call these a primitive
configuration; see Fig. la. Let 11, 13, 13 be vectors of size
3 representing the homogeneous image coordinates of L,
Lo, Lj respectively. Also, let da represents the direction of
lines Lo, L3 and d; represents the direction of L in 3D.
d;,d2 are represented as 3 dimensional vectors but have
only 2 degrees of freedom. We will choose the world co-
ordinate system such that the x-axis direction corresponds
to d; and the y-axis direction corresponds to dz . The z-
axis, using a right hand coordinate system, is the direction
orthogonal to d; and ds with +ve Z towards the camera.
This is illustrated in Fig. 1a. The projection matrix for cam-
era 1 and 2 is thus represented using P; = K[R4[t1] and
P, = K[Ra|t2]. Where K is the calibration matrix, R; is
a rotation matrix, and t; is a translation vector.

3.2. Relative rotation from three lines

Instead of computing the relative rotation directly, we
first compute the rotation between the coordinate system
defined by the primitive configuration and each camera de-
noted by R;,R5. Then we can compute the relative rota-
tion between the two cameras, R, by

Riet = R2RT. M
In the rest of the derivation we will be dealing with a
single camera with P, R denoting projection and rotation

matrix for that camera. The relation between the direction
of a line and its vanishing point can be written as [13]

v = KRd. 2)

Since we choose d; to coincide with the x-direction and do
to coincide with the y-direction we have d; = (1 0 0) T,
anddz = (0 1 0)".

Let us denote by vy and vg the vanishing points in the
direction of the orthogonal line L; and the parallel lines
Lo, L3 respectively. Using (2), they can be expressed by

V1 = KRd1 = KI‘1, Vo = KRdz = I{I‘z7 (3)

where r; represents the ith column of R . On the other
hand, we know that vy lies on the intersection of the lines
I5,and I3, i.e.,

Vo = Kl‘z = 12 X 13. (4)
We also know that d; is orthogonal to ds, i.e. dy - dg = 0.
Substituting from (2)

RTK 'vi) - RTK 'v2) =0 5)
viEK TK Y)va=0 (©6)

Since vy must satisfy the orthogonality constraint' (6)
and also must lie on 15 (i.e., vy - 13 = 0) we get

vi = null ([ F(KTKT D

V2
I
'The matrix K~ TK 1 is the image of absolute conic (IAC) [6].

@)
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Thus algorithm for computing the rotation R of a single
camera from a primitive configuration can be summarized
as : Input: Given 14, 1o, 13

1. Compute v, from equation (4)

2. Compute vy from equation (7)

3. Compute ry, ro from equations (3)
4. Compute rg =17 X I'p

Once we have computed R; for each camera, the relative
rotation, R,e], can be obtained from (1). Note that for the
computation of R, we did not need to assume that Ly, Lo,
and L3 are coplanar.

A note about relative rotation in the case of zero baseline.
In this case a point in the first image and its corresponding
point in the second image are related by the homography
H = KR, K™ [13]. Taking any three lines, not neces-
sarily in a primitive configuration, and applying our algo-
rithm we find that

Rs = [Kilv'l K vl rix rz] 8)
= [K_lel K 'Hv, r;x rz] ©)
= [RraK 'vi ReaK 'vz 11xT12] (10)
= RyaR1, (11

where v;,v{ are the vanishing points computed by our
algorithm in the two images respectively. Therefore,
R2Rf = RrelRerf = Rye and we get the correct rel-
ative rotation regardless of whether the lines are in a primi-
tive configuration or not.

3.3. Degenerate Cases for Relative Rotation

From the algorithm described above we notice that the
only step where degenerate cases can occur is when we
compute the null space in equation (7). The dimension of
null space is at least 1 since this is a 2 x 3 matrix. For the
non-degenerate case the null space has dimension 1 and for
degenerate cases the null space can have dimensions 2 or 3.

For the null space to have dimension 3 both
(K-TK~1)v, and 1; must be equal to 0 . However, it
is not possible for 1; to be a zero vector because this does
not correspond to a defined line. We are left with the case
where the null space has dimension 2. This means the 1; is
a linear combination of (K~ TK~1)v,. We can write the
condition where this will occur as

L = (K TK Y)va (12)

which is equivalent to

K™, =K v, (13)

Geometric interpretation : Let ai be the directions of the
lines in the coordinate frame of the camera. From equation

(2) this implies ai = K~ 1v;. We re-write equation (7) as

(K™ va)T }) (14)

A o1
d; =K vlfnull<{ (KTll)T



It is known that KT1; = n, where n is the normal of
the back projected plane from 1; in the coordinate frame of
the camera [13]. From this we conclude that our algorithm
computes the direction of the orthogonal line as the direc-
tion that is orthogonal to both n and d,. The degeneracy
occurs when both n and az coincide.

3.4. Relative translation

Once the relative rotation is computed we can now com-
pute the relative translation t,.). We can compute t,.) from
two intersection points. Since our primitive does not need
the lines to be coplanar, they do not necessarily intersect
in 3D. However, naturally there are many lines which are
coplanar in any given scene, and their intersection points
can be used (As we will see later, we leave the task of de-
tecting if the lines are in fact planar to RANSAC).

Obviously, the relative translation can be only obtained
up to scale. Let p1, p2 be any two intersection points of two
pairs of lines and pj, p5 their corresponding points in the
second image. Note that these intersection points are com-
puted without any point feature detection. Without loss of
generality we can assume that these points are normalized
by pre-multiplying with K~ . Thus the epipolar constraint
can be written as

Pi " [tret] x Rrepi = 0. (15)

Since R..¢] is known, we have 2 linear constraints on the
elements of t,e], one for each intersection point, the relative
translation can be linearly computed up to scale.

3.5. Number of Solutions

Typically, relative pose algorithms compute several solu-
tions for each set of primitives and relies on other methods
to disambiguate between the solutions. For example, the 7-
point algorithm[13] produces up to 4 solutions, while the 5
point algorithm[18] computes up to 10 solutions given a set
of 5 point correspondences. Similarly, here we show that
there is up to 4 solutions for our algorithm and propose two
methods to disambiguated between them.

First, we analyze the relation between line directions and
vanishing points. Directions in R3 can be represented by
unit vectors and therefore has 2 degrees of freedom. On
the other hand, vanishing points are represented as point in
IP2. Points in P? can be represented by a unit sphere where
antipodal points are joined together. This implies that the
mapping from directions to vanishing points is 2 to 1. To
see this algebraically, we substitute into equation (2) with d
and —d and get the same vanishing point.

v = KRd = KR(—d) (16)

Where equality is up to scale. This is consistent with our
intuition that there is an inherent ambiguity in determining
line directions. For our algorithms for exterior orientation,
this means we have up to 4 different solutions depending on

3052

the freedom of choosing the x-axis and y-axis directions.
These solutions can be obtained by taking the 4 different
combinations of signs for r; and 5. These solutions are
related by a 180 degrees rotations around the x-axis, the y-
axis, or both.

For the case of relative rotation, a quick combinatorial
analysis shows that there are 16 possible solutions based on
the 4 solutions for each of R; and R>. However, it turns
out that this is not the case and that there are only 4 unique
solutions. We can show this algebraically, by writing down
the 16 possible sign changes in Ry and R2 and computing
R = Rs R;r . The intuition is that there are only 4 possi-
ble choices for the relative directions of axes in the two im-
ages. One method to disambiguate between the solutions,
that is suitable for consecutive video frames, is simply to
assume that the rotation around any axis is not more than
90 degrees between frames. Another method, that is suit-
able for still images, is to use the appearance on the sides of
the line to determine if the line was flipped between the two
images.

4. Robust estimation
4.1. Generating candidate triplets

Unfortunately we can not use line segment matches di-
rectly in a hypothesize and test architecture. Instead, line
segment matches must be grouped into candidate triplets.
The reason for this is that when evaluating the error of a
candidate solution, line matches do not put any constraints
on the rotation. This follows from the fact that they do not
put any constraints on the epipolar geometry. Thus to eval-
uate the error we measure the error in the rotation generated
by other triplets.

Since the number of lines are typically in the order of
~ 100, we accomplish this in a brute force manner. We first
generate all possible triplets of lines and then prune them
using a constraint that has a theoretical basis: the vanishing
point must lie after the intersection point with orthogonal
line. Our experiments show that this simple strategy is in
fact effective.

4.2. RANSAC for relative rotation

Given many candidate triplets of lines, we would like
to robustly estimate the rotation. To accomplish this we
use RANSAC. Since we can estimate the relative rotation
from a single triplet of lines in a primitive configuration,
the number of iterations is greatly reduced 2.

The output of the relative rotation algorithm is a rota-
tion matrix R, and two vanishing points for each camera
v1,Va, V], vh. For RANSAC to work we need to define
a distance function that tells us how well a rotation matrix

2In our experiments, when the number of candidate triplets is less than
M=400 we simply evaluated the error for all triplets instead of random
sampling.



Re1, computed from a sample, fits other samples. Before
deriving this function, we note that from (2) we can write
the relation between vanishing points in two images and the
line direction as

vi=Kd;, vi=KRpad; i=1,2 (17)
Re-arranging we get two equations for d

d=K'v (18)

d = RyuK v/ (19)

If a rotation matrix fits a primitive configuration per-
fectly then both equations (18),(19) should give the same
direction d. However, in general this is not the case and,
therefore, the directions computed from the two equations
will be different. A suitable distance function would be the
sum of angles between each two directions computed from

(18),(19).

dist(Reel, {Vi, Vi}iz1,2) =
K l'vi - RLK v
Kt -

2
—1
E cos

(20)

As aresult of RANSAC we get a set of inliers and a rotation
matrix that produced this set of inliers. This rotation matrix
was computed from one primitive configuration and fits the
set of N inliers within the specified threshold. The final step
of RANSAC is to re-estimate the rotation matrix from all
inliers. Formally, we want to compute a rotation R, that
minimizes

N 2
ZZ | angle(K™'vij, Ry K~ 'vY;) | 2
i—1 ;=1

where vij,vgj are the vanishing point corresponding to
primitive configuration ¢ and direction j in cameras 1 and
2 respectively. This is a nonlinear optimization in Rye;.

Equivalently we try to minimize the following

)

2

K71 /
K-1v!,
‘ g

K™ vlJ

(22)
K= vl

T
Rrel

In matrix form this equivalent to minimizing the Frobenius
norm :

Ryl = argmin

, 2
; (23)
F

where D, D’ are two 3 x 2N matrices formed by the con-
catenation of unit directions in the first and second camera
respectively. This is known as the orthogonal Procrustes
problem”, whose solution is given by [11] as Rye1 = UvT,
where USVT is the SVD of D’DT. It is important to
note that unlike previous approaches we do not need many
lines to have equal directions. Every pair of triplets, one
triplet in each image, votes for a certain relative rotation. If
these triplets satisfies our primitive configuration assump-
tions, even if not aligned to dominant directions, then the
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estimated rotation is equal to the true rotation and they give
support to the same solution. Other triplets that are not
primitive configurations will vote for random rotations and
will have little support. It is the combination of RANSAC
and our algorithm that enables the automatic detection of
primitive configurations from two images. As noted earlier
in the case of zero baseline, all line triplets will produce the
correct relative rotation and we will not be able to detect
primitive configurations in this case.

4.3. RANSAC for relative translation

Once the relative rotation is computed robustly, we
can then compute the relative translation from intersection
points of lines. Although they may seem similar, intersec-
tion points are different from point features. The reason is
that intersection points occur between any two lines regard-
less of weather there is a corresponding image feature at that
position. In fact, the intersection point may exist outside the
image.

We proceed by computing all intersection points be-
tween all possible pairs of N lines in the image; there are
N(N — 1)/2 such pairs. Of these, intersection points sat-
isfying the epipolar constraint (15) are considered inliers.
RANSAC is then used to detect inliers using the symmetric
epipolar error [28]

d(p,p’) =d.(p,FTp’) +d.(p',Fp)

where F is computed as K~ T [tre1]« Rrel K ™1 and te is
computed from two intersection point samples. Next, sim-
ilar to the relative orientation, we re-estimate tpe; from
all inlier intersection points. This is done by using least
squares on the linear constraints (15) generated from all in-
lier points.

An obvious concern is the number of iteration needed
by RANSAC to achieve an outlier free sample given that
we use all intersection points. If we use a pessimistic es-
timate that 90% of the intersection points are outliers, and
we want to achieve an outlier free sample with probability
of 0.99, then a simple computation [7] tells us that we need
458 iterations. We are able to tolerate a high proportion of
outliers since we use only two intersection points to esti-
mate relative translation.

24

4.4. Nonlinear refinement

Since we compute t.e; after the computation of R,
any error in R, will affect the computation of t,e;. In
addition, although we used line directions to compute Ry
we did not use the evidence from intersection points in its
computation. We, therefore, devised a nonlinear refinement
step improve the relative orientation. To accomplish this we
use Levenberg-Marquardt algorithm to minimize the sym-
metric transfer error over all inlier intersection points p;, p}
for the RANSAC of t,.e1

Reel, trel = argmin >  d(pi, pi)? (25)
1 1 %’t z.: (p P)



Where d(p;, p}) is the symmetric epipolar distance defined
in (24). A careful reader may wonder how does this opti-
mization take into account the properties of our primitive
configuration. To see how this is handled, we show first that
all vanishing points corresponding to intersection of parallel
lines are inliers to the epipolar geometry.

vFv =d"RTK"K "[t|xRK 'Kd
= (Rd)T[t]x(Rd) =0

(26)
27

Since vanishing points are already part of our inlier set,
we are in fact adding soft constraints on R,e) to our opti-
mization in equation (25).

5. Experiments

Here we show the results of our framework using syn-
thetic and real datasets. Lines were automatically detected
using LSD detector[12] and tracked to obtain line matches.
In all real data experiments the camera was calibrated using
Zhang method [29] and No bundle adjustment was used.
More results are available in the supplemental materials.
Synthetic data Our synthetic experiment is designed to
quantify the performance of our algorithm. In the synthetic
experiment we create three coplanar lines; two of them par-
allel to each other and orthogonal to the third. The setup is
depicted in Fig. 2a. The distance between the two parallel
line is one unit. Two cameras are then randomly generated
on a unit sphere centered around the (0.5,0.5,0) with the
principal axis pointing toward that point. For image lines,
we estimate each line from a set of points that lie on the true
image line. 20 points were used to estimate each line. We
add a zero mean Gaussian noise of varying standard devi-
ations to the image coordinates of these points. The noise
standard deviation o is in pixels and we perform experi-
ments for o € (0, 2).

The performance of the algorithm is shown in Fig. 2.
Each data point is based on 1000 trials. Similar to [3, 18] the
lower quartile of the error distributions is displayed since
the targeted use of our algorithm is in hypothesize-and-test
frameworks such as RANSAC. As can be seen the rotation
error is at most 0.7° (0.35° for the lower quartile) while the
translation error is at most 3.5° (1° for the lower quartile).
Since we re-estimate the relative pose from all inliers after
RANSAC, these accuracy rates are sufficient for most ap-
plications. The higher translation error can be explained by
the cascading of error due to the use of the relative rotation
in the computation of the relative translation.

PTZ Camera: The purpose of this experiment is to evaluate
the accuracy and robustness of our method in the case of
small baseline. For that purpose we used a Pan Tilt Zoom
(PTZ) Camera®>. The camera pans 340° only, with a 20°
gap. The sequence consists of 46 frames with the angle

3The camera used is a Sony SNCRZ30N PTZ Camera.
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(b) Rotation Error

(a) Setup

(c) Translation Error

Figure 2: Setup and error plots for the synthetic experiment. (a)
Setup is a single triplet viewed from different positions. Each data
point is the mean of 1000 runs. (b) Error in rotation. (c) Error in
the direction of the translation vector. Both errors are in degrees.

between each pair of frames = 7.55°. To close the loop, the
first frame is also used as the last frame in the sequence.

Fig. 3 shows the computed total rotation as a function of

the frame number and the error per frame using both our al-
gorithm and the 5 point algorithm[18] for comparison*. The
high error for the 5 point algorithm is not surprising, since
the baseline is almost zero making it a near degenerate case
for the 5 point algorithm. On the other hand, our algorithm
can compute the correct rotation even with a zero baseline
with no special handling as was shown before. The mean
error in the rotation is 0.06° for our algorithm compared to
1.9° using the 5 point algorithm. The cumulative error in
closing the loop is < 0.7°.
Lab sequence: The purpose of this sequence is to evaluate
our algorithm under realistic conditions and compare it with
point based methods (See Fig. 4). This sequence consists
of 815 frames captured using a hand-held camera’. Starting
from one point a person holding the camera moves around
a group of cubicles and returns back to the same point (See
Fig.4b). Total distance traversed is around 40 meters. Lines
were automatically detected and tracked. Besides our al-
gorithm we tested the 5 point algorithm [18] using SIFT
features and an available camera tracking software called
Voodoo®.

This sequence is challenging for several reasons. There
is large portions of forward motion and the camera is a typ-
ical amateur camera that exhibits both limited field of view
and radial distortion. Finally, the camera motion is jittery
and exhibits motion blur.

As we hypothesized, Fig. 4 shows that our algorithm is
superior to point based algorithms on this indoor sequence.
The average number of lines per frame is 117 and for points
is 500. Although there are fewer lines per frame, each line
can be a member of many primitive configurations. Many
of the point features are on the textured carpet and is poorly
tracked. The side view shows a relatively small vertical drift
even with such a large motion. The plan view shows that the

45 point code provided by D.Nister at
http://www.vis.uky.edu/"dnister/Executables/RelativeOrientation/

5 An amateur SONY-DSC W55 camera.

Shttp://www.digilab.uni-hannover.de/docs/manual.html
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Figure 3: Best seen in color. (a)(b) Two frames from the sequence. (c) Cumulative rotation for our algorithm and the 5 point algorithm
with ground truth. Note that our result is almost identical to the ground truth. (d) Rotation error per frame. Mean error is only 0.06°. This
is because the zero baseline is not a degenerate case for the rotation computation. The error in closing the loop is < 0.7°.

RN

() (d ©)

Figure 4: Lab sequence consisting of 815 frames captured using a hand-held camera. Distance traversed is around 40 meters. (a) Two
images from the sequence. (b) Floor plan showing approximate trajectory taken with Red dot indicating starting and ending point. (c)(d)(e)
Plan and side views of the reconstructed trajectory using our algorithm, 5-point algorithm and voodoo camera tracker respectively.

(a)

(b) (©

Figure 5: (a)(b) Two frames from the bookcase sequence. (c) Plan
view of the reconstructed camera trajectory. (d) Reconstruction.

error in closing the loop is relatively small. This sequence
shows that our framework may be used for visual odometry
applications.

Bookcase sequence: In this sequence the hand-held camera
was moved in half a circle while being targeted at a book-
case. Fig. 5 shows a plan view of the reconstructed trajec-
tory and the reconstructed result. The reconstruction was
obtained by triangulating the lines from two images. Note
that most of the images consists of planar surfaces with few
point features.

Corridor Sequence: This is a benchmark sequence of 8
frames obtained from a camera that is mounted on a mo-
bile vehicle’. The vehicle moves along the floor slightly
turning to the left. We perform line detection and matching
automatically. Two views of the reconstructed sequence is
shown in Fig. 6. Our result captures the general motion in
the sequence. We take the results provided with the dataset
as the ground truth. The mean error for rotation is 1.36°.

"The corridor sequence and computed reconstruction were obtained
from http://www.robots.ox.ac.uk/"vgg/datal.html
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Figure 6: Corridor Sequence.(a)(b)(c) Three frames from the
corridor sequence with example primitive configuration detected
(shown in red). (d) Plan view of the recovered motion that shows
the leftward motion. (e) Side view of the motion.

(a) (b)

B
(a)

Figure 7: (a) Two frames from the book turntable sequence. (b)
side and plan 3D views of the reconstructed sequence using our
linear algorithm only. (c) side and plan using our algorithm with
inter-frame nonlinear refinement. No bundle adjustment was used.
All frames have between 6 to 8 lines visible which is less than the
13 lines required for the trifocal tensor. The cumulative error in
the rotation is only 3.7 degrees.



(©)

Figure 8: Three books in two views. The books are oriented in
different directions and therefore there is no dominant directions.
(a)(b) The two images that were used with back projected lines.
(c) A perspective view of the three books.

Turntable Book Sequence: The purpose of this sequence is
to evaluate the ability to compute the relative motion when
the trifocal tensor can not be applied. All frames have be-
tween 6 to 8 lines which is less than the minimum num-
ber of lines required to estimate the trifocal tensor. Due
to the clutter in the background that do not rotate with the
turntable, we extracted the lines manually for this dataset
but performed the matching automatically. Fig. 7b, 7c show
two views of the reconstructed motion and structure using
our algorithm with and without nonlinear refinement. Using
our linear algorithm the error in the rotation for last camera
is 3.7°, and the average error over all relative rotations is
1.472°.

Three books: The purpose of this test sequence is to
demonstrate that our algorithm can be applied even when
there are no dominant directions and that we can compute
the relative pose from only two images. Three books were
oriented at different angles and two images were captured.
Fig. 8 shows the images with re-projected lines and a per-
spective view of the reconstruction.

6. Conclusion and Discussion

We have presented a framework for the computation of
the relative motion between two images using a triplet of
lines under minimal assumptions. We show how our al-
gorithm can be used in a RANSAC framework to detect
triplets of lines satisfying this property and compute the rel-
ative pose robustly. The performance of the algorithm was
evaluated using synthetic and real datasets.

We focused in our approach on how to use the existing
structural constraints to improve the relative pose estima-
tion. We proved and demonstrated experimentally that the
relative rotation can be computed in the case of zero base-
line. In indoor environments, which are abundant in lines
and scarce in points, we demonstrated that our algorithms
outperforms point based methods. Finally, our algorithm
can be used as part of any SfM pipeline to make it suitable
for indoor environments.
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