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Abstract

We consider the problem of human parsing with part-
based models. Most previous work in part-based models
only considers rigid parts (e.g. torso, head, half limbs)
guided by human anatomy. We argue that this represen-
tation of parts is not necessarily appropriate for human
parsing. In this paper, we introduce hierarchical poselets
— a new representation for human parsing. Hierarchical
poselets can be rigid parts, but they can also be parts that
cover large portions of human bodies (e.g. torso + left
arm). In the extreme case, they can be the whole bod-
ies. We develop a structured model to organize poselets
in a hierarchical way and learn the model parameters in a
max-margin framework. We demonstrate the superior per-
formance of our proposed approach on two datasets with
aggressive pose variations.

1. Introduction

Part-based representations, such as cardboard people
[11] or pictorial structure [7], provide an elegant frame-
work for human parsing. A part-based model represents
the human body as a constellation of a set of rigid parts
(e.g. torso, head, half limbs) constrained in some fashion.
The typical constraints used are tree-structured kinematic
constraints between adjacent body parts, e.g. torso-upper
half-limb connection, or upper-lower half-limb connection.
Part-based models consist of two important components:
(1) part appearances specifying what each body part should
look like in the image; (2) configuration priors specifying
how parts should be arranged relative to each other.

Considerable progress has been made in the past few
years in human parsing. Most of the progress can be at-
tributed to improvements on one of these two components.
A representative example of building better part appearance
models is the work by Ramanan [16], which learns color
histograms of parts from an initial edge-based model. Fer-
rari et al. [8] and Eichner et al. [5] further improve the
part appearance models by reducing the search space us-
ing various tricks, e.g. the relative locations of part loca-
tions with respect to a person detection, the relationship be-
tween different part appearances (e.g. upper-arm and torso
tend to have the same color), etc. Andriluka et al. [1] build
better edge-based appearance models using shape contexts.
Sapp et al. [20] develop efficient inference algorithm to al-

low the use of more expensive features. There is also work
[15, 13, 23] on using segmentation for pose estimation.

Most work on improving configuration priors focuses
on developing representations and fast inference algorithms
that by-pass the limitations of kinematic tree-structured
spatial priors in standard pictorial structure models. Ex-
amples include common-factor models [12], loopy graphs
[9, 18, 25, 26], mixtures of trees [28]. There is also work on
building spatial priors that adapt to testing examples [19].

Despite of the success, there is one important issue
overlooked by previous work — the basic representation of
“parts”.  An implicit assumption made by almost all the
previous approaches is that a “part” corresponds to a rigid
piece of the human body that is meaningful in an anatom-
ical sense, e.g. torso, head, half limbs. In this paper,
we challenge this “rigid part assumption” and argue that it
is not necessarily a good representations for human pars-
ing. Rigid parts, usually represented as rectangles (e.g.
[1, 7, 16, 22, 28]) or parallel lines (e.g. [!8]), are inher-
ently difficult to detect. They can be easily confused with
rectangular shapes often found on buildings, windows, etc.

Some recent work [6] has shown tremendous success of
part-based models in object detection. Our work builds on
two important lessons from [6]. First, “parts” do not have
to be semantically meaningful. Second, “parts” should have
multi-level hierarchy to capture different granularity of de-
tails. Similar observations have been made by recent work
on poselet representations for human detection [3, 2]. In
this paper, we extend this line of ideas for human parsing.
We use a part-based model, but our notion of “parts” can
range from basic rigid parts (e.g. torso, head, half-limb),
to large pieces of bodies covering more than one rigid part
(e.g. torso + left arm). In the extreme case, we have “parts”
corresponding to the whole body. We learn a model defined
on this hierarchy of “parts”. For a new image, we infer the
human pose using this hierarchical representation.

Our work can be seen as bridging the gap between two
popular schools of approaches for human parsing: part-
based methods, and exemplar-based methods. Part-based
methods, as explained above, model the human body as a
collection of rigid parts. They use local part appearances
to search for those parts in an image, and use configura-
tion priors to put these pieces together in some plausible
way. But since the configuration priors in these methods
are typically defined as pairwise constraints between parts,
these methods usually lack any notion that captures what a



person should look like as a whole. In contrast, exemplar-
based methods (e.g. [14, 21, 24]) search for images with
similar whole body configurations, and transfer the poses
of those well-matched training images to a new image. The
limitation of exemplar-based approaches is that they require
good matching of the entire body. They cannot handle test
images of which the legs are similar to some training im-
ages, while the arms are similar to other training images.
Our work combines the benefits of both schools. On one
hand, we capture the large-scale information of human pose
via large parts. On the other hand, we have the flexibility to
compose new poses from different parts.

2. Hierarchical Poselet - A New Representation
for Human Parsing

Our pose representation is based on the concept of “pose-
let” introduced by Bourdev and Malik [3]. In a nutshell,
poselets refer to pieces of human poses that are tightly clus-
tered in both appearance and configuration spaces. Poselets
have been shown to be effective at person detection [3, 2].
Variants of poselets have also been developed for solving
other vision problems, e.g. action recognition in static im-
ages [29].

In this paper, we propose a new representation called /i-
erarchical poselets for parsing human poses. Hierarchical
poselets extend the original poselets in several important di-
rections to make them more appropriate for human parsing.
We start by highlighting the important properties of our rep-
resentation.

Beyond rigid “parts”: Most of the previous work in
human parsing are based on the notion that the human
body can be modeled as a set of rigid parts connected in
some way. Almost all of them use a natural definition of
parts (e.g. torso, head, upper/lower limbs) corresponding to
body segments, and model those parts as rectangles, parallel
lines, or other primitive shapes.

As pointed out in [3], this natural definition of “parts”
fails to acknowledge the fact that rigid parts are not nec-
essarily the most salient features for visual recognition. For
example, rectangles and parallel lines can be found as limbs,
but they can also be easily confused with windows, build-
ings, and other objects in the background. So it is inherently
difficult to build reliable detectors for those parts. On the
other hand, certain visual patterns covering large portions
of human bodies, e.g. “a torso with the left arm raising up”
or “legs in lateral pose”, are much more visually distinc-
tive and easier to identify. This phenomenon was observed
even prior to the work of poselet and was exploited to de-
tect stylized human poses and build appearance models for
kinematic tracking [17].

Multiscale hierarchy of ‘“parts”: Another important
property of our representation is that we define “parts” at
different levels of hierarchy to cover pieces of human poses
at various granularity, ranging from the configuration of the
whole body, to small rigid parts. In particular, we define
20 parts to represent the human pose and organize them in
a hierarchy shown in Fig. 1. To avoid terminological con-
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Figure 1: An illustration of the hierarchical pose representation.
The black edges indicate the connectivity among different parts.

The structure layout of the graph reflects the message passing
scheme in Sec. 4.

fusion, we will use “part” to denote one of the 20 parts in
Fig. 1 and use “primitive part” to denote rigid body parts
(i.e. torso, head, half limbs) from now on.

We use a procedure similar to [29] to select poselets for
each part. First, we cluster the joints on each part into sev-
eral clusters based on their relative x and y coordinates with
respect to some reference joint of that part. For example,
for the part “torso”, we choose the middle-top joint as the
reference and compute the relative coordinates of all the
other joints on the torso with respect to this reference joint.
The concatenation of all those coordinates will be the vec-
tor used for clustering. We run K-means clustering on the
vectors collected from all training images and remove clus-
ters that are too small. Similarly, we obtain the clusters for
all the other parts. In the end, we obtain 5 to 20 clusters for
each part. Based on the clustering, we crop the correspond-
ing patches from the images and form a set of poselets for
that part. Figure 2 shows examples of two different poselets
for the part “legs”.

Our focus is the new representation, so we use standard
HOG descriptors [4] to keep the feature engineering to the
minimum. For each poselet, we construct HOG features
from patches in the corresponding cluster and from ran-
dom negative patches. Inspired by the success of multiscale
HOG features [6], we use different cell sizes when comput-
ing HOG features for different parts. For example, we use
cells of 12 x 12 pixel regions for poselets of the whole body,
and cells of 2 x 2 for poselets of the upper/lower arm. This
is motivated by the fact that large body parts (e.g. whole
body) are typically well-represented by coarse shape infor-
mation, while small body parts (e.g. half limb) are better
represented by more detailed information. We then train
a linear SVM classifier for detecting the presence of each
poselet. The learned SVM weights can be thought as a
template for the poselet. Examples of several HOG tem-
plates for the “legs” poselets are shown as the last columns
of Fig. 2. Examples of poselets and their corresponding
HOG templates for other body parts are shown in Fig. 3.

A poselet of a primitive part contains two endpoints. For
example, for a poselet of upper-left leg, one endpoint cor-
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Figure 2: Examples of two poselets for the part “legs”. Each row
corresponds to a poselet. We show several patches from the poselet
cluster. The last column shows the HOG template of the poselet.

responds to the joint between torso and upper-left leg, the
other one corresponds to the joint between upper/lower left
leg. We record the mean location (with respect to the center
of the poselet image patch) of each endpoint. This informa-
tion will be used later when we need to infer the endpoints
of a primitive part for a test image.

3. Model Formulation

We denote the complete configuration of a human pose
as L = {l,}X |, where K is the total number of parts (i.e.
K = 20 in our case). The configuration of each part [;
is parametrized by I; = (x;,v;,2;). Here (x;,y;) defines
the image location, and z; is the index of the corresponding
poselet for this part, i.e. z; € {1,2,...,P;}, where P; is
the number of poselets for the i-th part. In this paper, we
assume the scale of the person is fixed and do not search
over multiple scales. It is straightforward to augment /; with
other information, e.g. scale, foreshortening, etc.

The complete pose L can be represented by a graph G =
{V, &}, where a vertex i € V denotes a part and an edge
(i,j) € & captures the constraint between parts ¢ and j.
The structure of G is shown in Fig. 1. We define the score
of labeling an image I with the pose L as:

F(LI) = o)+ Y (i) (1)

S (i,4)€€

The details of the potential functions in Eq. 1 are as follows.

Spatial prior ¢(l;,1;): This potential function captures
the compatibility of configurations of part ¢ and part j. It is
parametrized as:

¢(li7lj) = O‘iT;j;z,i;zjbin(Ii — L5, Yi — yj) (Za)
Pi Pj

= Z Z ]la(zi)]lb(zj)a;:j;a;bbin(mi —xj,y; —y;)(2b)
a=1b=1

Similar to Ramanan [16], the function bin(-) is a vectorized
count of spatial histogram bins. We use 1,(-) to denote the
function that takes 1 if its argument equals a, and O other-
wise. Here ;j..,.., is a model parameter that favors cer-
tain relative spatial bins when poselets z; and z; are chosen
for parts ¢ and j, respectively. Overall, this potential func-
tion models the (relative) spatial arrangement and poselet
assignment of a pair (4, j) of parts.

Local appearance ¢(l;; I): This potential function cap-
tures the compatibility of placing the poselet z; at the loca-
tion (x;, y;) of an image I. It is parametrized as:

Pi

ol 1) = B fFUI(L) = Zﬂ;;raf(f(li)) Aa(z)  (3)

a=1

where ;.. is a vector of model parameters corresponding
to the poselet z; and f(I(l;)) is a feature vector correspond-
ing to the image patch defined by [;. We define f(I(l;)) as
a length P; + 1 vector as:

fUL) = 1/HUTU)), fo(I(ls)), s fr, (I(5)), 1] ()

Each element f,.(I(l;)) is the score of placing poselet z, at
image location (z;, y;). The constant 1 appended at the end
of vector allows us to learn the model with a bias term. In
other words, the score of placing the poselet z; at image lo-
cation (x;, y;) is a linear combination (with bias term) of the
responses all the poselet templates at (x;, y;) for part i. We
have found that this feature vector works better than the one
used in [29], which defines f(I(l;)) as a scalar of a single
poselet template response. This is because the poselet tem-
plates learned for a particular part are usually not indepen-
dent of each other. So it helps to combine their responses as
the local appearance model.

We summarize and highlight the important properties
of our model and contextualize our research by comparing
with related work.

Discriminative “parts”: Our model is based on a new
concept of “parts” which goes beyond the traditional rigid
parts. Rigid parts are inherently difficult to detect. We in-
stead consider parts covering a wide range of portions of hu-
man bodies. We use poselets to capture distinctive appear-
ance patterns of various parts. These poselets have better
discriminative powers than traditional rigid part detectors.

Coarse-to-fine granularity: Different parts in our
model are represented by features at varying levels of de-
tails (i.e. cell sizes in HOG descriptors). Conceptually, this
multi-level granularity can be seen as providing an efficient
coarse-to-fine search strategy. However, it is very different
from the coarse-to-fine cascade pruning in Sapp et al. [20].
The method in [20] prunes the search space of small parts
(e.g. right lower arm) at the coarse level using simple fea-
tures and apply more sophisticated features in the pruned
search space. However, we would like to argue that at the
coarse level, one should not even consider small parts, since
they are inherently difficult to detect or prune at this level.
Instead, we should focus on large body parts since they are
easy to find at the coarse level. The configurations of large
pieces of human bodies will guide the search of smaller
parts. For example, an upright torso with arms raising up
(coarse-level information) is a very good indicator of where
the arms (fine-level details) might be.

Structured hierarchical model: A final important
property of our model is that we combine information
across different parts in a structured hierarchical way. The
original work on poselets [3, 2] uses a simple Hough voting
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Figure 3: Visualization of some poselets learned from different body parts on the UIUC people dataset, including whole body, large parts
(top to bottom: torso+left arm, legs, torso+head, left arm), and rigid parts (top to bottom: upper/lower left arm, torso, upper/lower left leg,
head). For each poselet, we show two image patches from the corresponding cluster and the learned SVM HOG template.

scheme for person detection, i.e. each poselet votes for the
center of the person, and the votes are combined together.
This Hough voting might be appropriate for person detec-
tion, but it is not enough for human parsing which involves
highly complex and structured outputs. Instead, we have de-
veloped a structured model that organize information about
different parts in a hierarchical fashion. Another work that
uses hierarchical models for human parsing is the AND-
OR graph in [30]. But there are two important differences.
First, the appearance models used in [30] are only defined
on sub-parts of body segments. Their hierarchical model
is only used to put all the small pieces together. As men-
tioned earlier, appearance models based on body segments
are inherently unreliable. In contrast, we use appearance
models associated with parts of varying sizes. Second, the
OR-nodes in [30] are conceptually similar to poselets in our
case. But the OR-nodes in [30] are defined manually, while
our poselets are learned.

4. Inference

Given an image I, the inference problem is to find the
optimal pose labeling L* that maximize the score F'(L, I),
ie. L* = argmaxy, F'(L,I). We use the max-product ver-
sion of belief propagation to solve this problem. We pick
the vertex corresponding to part “whole body” as the root
and pass messages upwards towards this root. The message
from part ¢ to its parent j is computed as:

mz(l]) = max(u(l]) + w(ll, lj)) (Sa)

i

ully) =)+ > mally) (5b)
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Afterwards, we pass messages downward from the root to
other vertices in a similar fashion. This message passing
scheme is repeated several times until it converges. If we
temporarily ignore the poselet indices z; and z; and think
of l; = (x;,y;), we can represent the messages as 2D im-
ages and pass messages using techniques similar to those
in [16]. The image u(l;) is obtained by summing together
response images from its child parts my((;) and its local re-
sponse image ¢(1;). ¢(l;) can be computed in linear time
by convolving the HOG feature map with the template of
z;. The maximization in Eq. 5a can also be calculated in
time linear to the size of u(l;). In practice, we compute
messages on each fixed (z;, z;) and enumerate all the possi-
ble assignments of (z;, z;) to obtain the final message. Note
that since the graph structure is not a tree, this message pass-
ing scheme does not guarantee to find the globally optimal
solution. But empirically, we have found this approximate
inference scheme to be sufficient for our application.

The inference gives us the image locations and pose-
let indices of all the 20 parts (both primitive and non-
primitive). To obtain the final parsing result, we need to
compute the locations of the two endpoints for each primi-
tive part. These can be obtained from the mean endpoint lo-
cations recorded for each primitive part poselet (see Sec. 2).

Figure 4 shows a graphical illustration of applying our
model on a test image. For each part in the hierarchy, we
show two sample patches and the SVM HOG template cor-
responding to the poselet chosen for that part.



Figure 4: A graphical illustration of applying our model on a test image. For each part (please refer to Fig. 1), we show the inferred poselet
by visualizing two sample patches from the corresponding poselet cluster and the SVM HOG template.

5. Learning

In order to describe the learning algorithm, we first write
Eq. 1 as a linear function of a single parameter vector w
which is a concatenation of all the model parameters, i.e.:

F(L,I) =w"®(I,L), where (6a)
w = [ jab; Bisals Vi, 7,a,0 (6b)
O(I,L) = [14(2)Lp(2;)bin(z; — 5,y — y;);  (6¢)

f(I(lz))]la(Zz)]v Vi’jaavb (6d)

The inference scheme in Sec 4 solves L* =
argmaxy w' ®(I,L). Given a set of training images in
the form of {I™, L"}N_,, we learn the model parameters
w using a form of structural SVM [27] as follows:

: 1 2 n
min §||w|| +C;§ , s.t. Vn, VL (7a)

w &I, L") —w ®U™, L) > A(L, L") — £ (7b)
Consider a training image ", the constraint in Eq. 7b en-
forces the score of the true label L™ to be larger than the
score of any other hypothesis label L by some margin. The
loss function A(L, L™) measures how incorrect L is com-
pared with L™. Similar to regular SVMs, &,, are slack vari-
ables used to handle soft margins. This formulation is often
called margin-rescaling in the SVM-struct literature [27].

We use a loss function that decomposes into a sum
of local losses defined on each part A(L,L™) =
Zfil A;(L;, LT). If the i-th part is a primitive part, we
define the local loss A;(L;, LT) as:

Ai(Li, L) = A -1z # 2) + d((@i, 9a), (275 47)) - (8)

where 1(-) is an indicator function that takes 1 if its argu-
ment is true, and O otherwise. The intuition of Eq. 8 is as
follows. If the hypothesized poselet z; is the same as the
ground-truth poselet 2] for the ¢-th part, the first term of

Eq. 8 will be zero. Otherwise it will incur a loss A (we
choose A = 10 in our experiments). The second term
in Eq. 8, d((zi,v:), (z},y}")), measures the distance (we
use [ distance) between two image locations (x;,y;) and
(x,y). If the hypothesized image location (z;,y;) is the
same as the ground-truth image location (x7, y!") for the i-
th part, no loss is added. Otherwise a loss proportional to
the [, distance of these two locations will be incurred.

If the ¢-th part is not a primitive part, we simply set
A(L;, LT) to be zero. This choice is based on the follow-
ing observation. In our framework, non-primitive parts only
serve as some intermediate representations that help us to
search for and disambiguate small primitive parts. The final
human parsing results are still obtained from configurations
l; of primitive parts. Even if a particular hypothesized L
gets one of its non-primitive part labeling wrong, it should
not be penalized as long as the labellings of primitive parts
are correct.

The optimization problem in Eq. 7 is convex and can be
solved using the cutting plane method implemented in the
SVM-struct package [10]. However we opt to use a sim-
pler stochastic subgradient descent method to allow greater
flexibility in terms of implementation.

First, it is easy to show that Eq. 7 can be equivalently
written as:

. ]- 2 n n —
qujnian +Czn:72 (L), where R" (L) = (92)
max (A(L L") + w T ®(1", ) - w T ®(1", 1)) (9b)

In order to do gradient descent, we need to calculate the
subgradient 9,,R™ (L) at a particular w. Let us define:

L = arg max (A(L,L”) +w eI, L)) (10)

Eq. 10 is called loss-augmented inference [10]. It can be
shown that the subgradient 0,,R™(L) can be computed as



OwR(L) = ®(I™,L*) — ®(I™, L™). Since the loss func-
tion A(L, L™) can be decomposed into a sum over local
losses on each individual part, the loss-augmented inference
in Eq. 10 can be solved in a similar way to the inference
problem in Sec. 4. The only difference is that the local ap-
pearance model ¢(I;; I') needs to be augmented with the lo-
cal loss function A(L;, L}"). Interested readers are referred
to [10] for more details.

6. Experiments

There are several datasets popular in the human pars-
ing community, e.g. Buffy dataset [8], PASCAL stickmen
dataset [5]. But these datasets are not suitable for us. First
of all, they only contain upper-bodies, but we are interested
in full-body parsing. Second, as pointed out by Tran and
Forsyth [26], there are very few pose variations in those
datasets. In fact, previous work has exploited this property
of these datasets by pruning search spaces using upper-body
detection and segmentation [8], or by building appearance
model using location priors [5]. Third, the contrast of image
frames of the Buffy dataset is relatively low. This issue sug-
gests that better performance can be achieved by engineer-
ing detectors to overcome the contrast difficulties. Please
refer to the discussion in [26] for more details. In our work,
we choose to use two datasets' containing very aggressive
pose variations. The first one is the UIUC people dataset
introduced in [26]. The second one is a new sport image
dataset we have collected from the Internet.

6.1. UIUC people dataset

The UIUC people dataset [26] contains 593 images (346
for training, 247 for testing). Most of them are images of
people playing badminton. Some are images of people play-
ing Frisbee, walking, jogging, standing, etc. Sample images
and their parsing results are shown in the first three rows
of Fig. 5. We compare with two other state-of-the-art ap-
proaches that do full-body parsing (with published codes):
the improved pictorial structure by Andriluka ez al. [1], and
the iterative parsing method by Ramanan [16]. The results
are also shown in Fig. 5.

To quantitatively evaluate different methods, we measure
the percentage of correctly localized body parts. Follow-
ing the convention proposed in [8], a body part is consid-
ered correctly localized if the endpoints of its segment lies
within 50% of the ground-truth segment length from their
true locations. The comparative results are shown in Ta-
ble 1(a). Our method outperforms other approaches in lo-
calizing most of body parts.

Detection and parsing: An interesting aspect of our ap-
proach is that it produces not only the configurations of
primitive parts, but also the configurations of other larger
body parts. These pieces of information can potentially be
used for applications (e.g. gesture-based HCI) that do not
require precise localizations of body segments. In Fig. 6, we
visualize the configurations of four larger parts on some ex-
amples. Interestingly, the configuration of the whole body

!Available at http://vision.cs.uiuc.edu/humanparse/

On each image, we show bounding boxes corresponding to the
whole body, left arm, right arm and legs. The size of each bound-
ing box is estimated from its corresponding poselet cluster.

Our method [1] [6] [2]
UIUC people 66.8 50.61 | 48.58 | 45.75
Sport image 63.94 59.94 | 45.61 | 39.75
Table 2: Comparison of accuracies of person detection on both
datasets. In our method, the configuration of the poselet corre-
sponding to the whole body can be directly used for person detec-
tion.

directly gives us a person detector. So our model can be
seen as a principled way of unifying human pose estima-
tion, person detection, and many other areas related to un-
derstanding humans. In the first row of Table 2, we show the
results of person detection on the UITUC people dataset by
running our human parsing model, then picking the bound-
ing box corresponding to the part “whole body” as the de-
tection. We compare with the state-of-the-art person detec-
tors in [1, 2, 6]. Since most images contain one person, we
only consider the detection with the highest score on an im-
age for all the methods. We use the metric defined in the
PASCAL VOC challenge to measure the performance. A
detection is considered correct if the intersection over union
with respect to the ground truth bounding box is at least
50%. Tt is interesting to see that our method outperforms
other approaches, even though it is not designed for person
detection.

6.2. Sport image dataset

The UIUC people dataset is attractive because it has very
aggressive pose and spatial variations. But one limitation of
that dataset is that it mainly contains images of people play-
ing badminton. One might ask what happens if the images
are more diverse. To answer this question, we have col-
lected a new sport image dataset from about 20 sport cat-
egories, including acrobatics, American football, croquet,
cycling, hockey, figure skating, soccer, golf, horseback rid-
ing, etc. There are in total 1299 images. We randomly
choose 649 of them for training and the rest for testing. The
last three rows of Fig. 5 show examples of human parsing
results, together with results of [1] and [16] on this dataset.
The quantitative comparison is shown in Table 1(b). We
can see that our approach outperforms the other two on the
majority of body parts.

Similarly, we perform person detection using the poselet
corresponding to the whole body. The results are shown in
the second row of Table 2. Again, our method outperforms
other approaches.
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Figure 5: Examples of human body parsing on the UIUC people dataset (rows 1-3) and the sport image dataset (rows 4-6). We compare
our method with the pictorial structure (PS) by Andriluka ez al. [1] and the iterative image parsing (IIP) by Ramanan [16]. Notice the large
pose variations, cluttered background, self-occlusions, and many other challenging aspects of these two datasets.

Method Torso Upper leg Lower leg Upper arm Forearm Head
Ramanan [16] 441 | 117 73 | 255 251 | 11.3 109 | 259 25 30.8
Andrilukaeral [1T | 709 | 37.3 35.6 | 23.1 227 | 223 30.0 | 9.7 105 | 59.1
Our method 86.6 | 583 543 | 53.8 46.6 | 283 33.2 | 23.1 174 | 68.8
(a) UIUC people dataset
Method Torso | Upper leg Lower leg Upper arm Forearm Head
Ramanan [16] 28.7 74 72 | 17.6 208 | 83 6.6 | 202 21 12.9
Andriluka eral. [1] | 71.5 | 442 43.1 | 30.7 31 28 296 | 173 153 | 63.3
Our method 75.3 | 50.1 48.2 | 42,5 36,5 | 233 27.1 | 122 102 | 475

(b) Sport image dataset

Table 1: Human parsing results by our method and two comparison methods on two datasets. The percentage of correctly localized parts
is shown for each primitive part. If two numbers are shown in one cell, they indicate the left/right body parts.

6.3. Kinematic tracking

To further illustrate our method, we apply the model
learned from the UIUC people dataset for kinematic track-
ing by independently parsing the human figure in each
frame. In Fig. 7, we show our results compared with ap-
plying the method in [16]. It is clear from the results that
kinematic tracking is still a very challenging problem. Both

methods make mistakes. Interestingly, when our method
makes mistakes(e.g. figures with blue arrows), the output
still looks like a valid body configuration. But when the
method in [16] makes mistakes (e.g. figures with red ar-
rows), the errors can be very wild. We believe this can
be explained by the very different representations used in
these two methods. In [16], a human body is represented
by the set of primitive parts. Kinematic constraints are used



Figure 7: Examples of kinematic tracking on the baseball and fig-
ure skating datasets. The 1st and 3rd rows are our results. The 2rd
and 4th rows are results of Ramanan [16]. Notice how mistakes of
our method (blue arrows) still look like valid human poses, while
those of [16] (red arrows) can be wild.

to enforce the connectivity of those parts. But these kine-
matic constraints have no idea what a person looks like as a
whole. In the incorrect results of [16], all the primitive parts
are perfectly connected. The problem is their connectivity
does not form a reasonable human pose as a whole.

In contrast, our model uses representations that capture a
spectrum of both large and small body parts. Even in situa-
tions where the small primitive parts are hard to detect, our
method can still reason about the plausible pose configura-
tion by pulling information from large pieces of the human
bodies.

7. Conclusion

We have presented hierarchical poselets, a new represen-
tation for human parsing. Different poselets in our represen-
tation capture human poses at various levels of granularity.
Some poselets correspond to the rigid parts typically used in
previous work. Others can correspond to large pieces of the
human bodies. Poselets corresponding to different parts are
organized in a structured hierarchical model. The model
parameters are learned in a max-margin framework. The
advantage of this representation is that it infers the human
pose by pulling information across various levels of details,
ranging from the coarse shape of the whole body, to the fine-
detailed information of small rigid parts. Our representation
combines the benefits of both traditional part-based meth-
ods (e.g. pictorial structure) and exemplar-based methods
for human parsing. In addition to localized rigid parts, our
model also outputs other useful information about various
portions of the human bodies. As future work, we would
like to explore how to fully exploit this information for hu-
man parsing, person detection, action recognition, gesture
recognition, human computer interaction, and other tasks
related to understanding humans. We would also like to ex-
tend our representation to the temporal domain and apply it
on videos.
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