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Abstract

We deal with an image jigsaw puzzle problem, which is defined as reconstructing an image from a 

set of square and non-overlapping image patches. It is known that a general instance of this 

problem is NP-complete, and it is also challenging for humans, since in the considered setting the 

original image is not given. Recently a graphical model has been proposed to solve this and related 

problems. The target label probability function is then maximized using loopy belief propagation. 

We also formulate the problem as maximizing a label probability function and use exactly the 

same pairwise potentials. Our main contribution is a novel inference approach in the sampling 

framework of Particle Filter (PF). Usually in the PF framework it is assumed that the observations 

arrive sequentially, e.g., the observations are naturally ordered by their time stamps in the tracking 

scenario. Based on this assumption, the posterior density over the corresponding hidden states is 

estimated. In the jigsaw puzzle problem all observations (puzzle pieces) are given at once without 

any particular order. Therefore, we relax the assumption of having ordered observations and 

extend the PF framework to estimate the posterior density by exploring different orders of 

observations and selecting the most informative permutations of observations. This significantly 

broadens the scope of applications of the PF inference. Our experimental results demonstrate that 

the proposed inference framework significantly outperforms the loopy belief propagation in 

solving the image jigsaw puzzle problem. In particular, the extended PF inference triples the 

accuracy of the label assignment compared to that using loopy belief propagation.

1. Introduction and Problem Formulation

As shown in [5] the jigsaw puzzle problem is NP-complete if the pairwise affinity among 

jigsaw pieces is unreliable. Following [2], we focus on reconstructing the original image 

from square and non-overlapping patches. This type of puzzles does not contain the shape 

information of individual pieces, which is quite important to determine the pairwise 

affinities among them. This makes the problem more challenging, since it is more difficult to 

evaluate pairwise affinities among puzzles. This is different from most of the previous 

approaches [14, 9, 18, 22], where the shape of the puzzle pieces is utilized. While [2] also 

considers priors on the target image layout, we do not assume any prior knowledge on the 

image layout. Thus, only local image content information of the puzzle pieces is available in 

our framework, e.g., see Fig. 1.
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Now we briefly review the PF inference. We begin with a classical tracking example. A 

robot is moving around and taking images at discrete time intervals. The images form a 

sequence of observations Z = (z1, …, zm), where zt is an image taken at time t. With each 

observation zt there is associated a hidden state xt. In our example the value of xt is the robot 

pose (its 2D position plus orientation). The goal of PF inferences, is to derive the most likely 

sequence of the hidden states, i.e., to find a state vector x1:m = (x1, …, xm) that maximizes 

the posterior p(x1:m|Z). We observe that here the observations are ordered following their 

time stamps. In PF inference, this order is utilized to sequentially infer the values of states xt 

for t = 1, …, m. Now imagine that the robot’s clock broke and the time stamps are random. 

Thus, we are given a set of observations Z = {z1, …, zm}, they are indexed but their index is 

irrelevant. Of course, we can still associate state xt with observation zt, but the set of 

observations is not ordered, and consequently, the corresponding states xt are not ordered. 

Thus, we deal with unordered observations. This is exactly the scenario of the image jigsaw 

puzzle problem, e.g., see Fig. 1. We are given m square puzzle pieces described by a set of 

m observations Z = {z1, …, zm}. Each observation zt describes part of the original image 

depicted on piece t and is given by a vector of features, which are the color values of the 

pixels on piece t in our experimental results. The puzzle pieces are numbered with index t, 
but their numbering is random like the numbers in Fig. 1(b). The value of the state xt of 

puzzle piece t is a location of an empty square in the square grid, e.g., the value of xt is the 

index of an empty square in the square gird shown in Fig. 1(c). Our goal is to determine the 

state vector x1:m that maximizes the posterior probability p(x1:m|Z). Since the original image 

is not provided, this probability is determined based on pairwise appearance consistency of 

the local puzzle images, i.e., the posterior distribution is a function of how well adjacent 

pieces fit together once they are placed on the grid. In other words, a vector of grid locations 

x1:m maximizes p(x1:m|Z) if the puzzle pieces placed at these locations form the most 

consistent image. We observe that the posterior distribution p(x1:m|Z) usually is very 

complicated and has many local maxima. This is particulary the case when the local image 

information of the puzzle pieces is not very descriptive.

Our main contribution is a new PF inference framework that works in this scenario. In the 

proposed framework we extend PF to handle the situations where we have unordered set of 

observations that are given simultaneously. One of our key ideas is the fact that it is possible 

to extend the importance sampling from the proposal distribution so that different particles 

explore the state space along different dimensions. Then the particle resampling allows us to 

automatically determine most informative orders of observations (as permutations of state 

space dimensions). Consequently, we can use a rich set of proposal functions in the process 

of estimating the posterior distribution.

The classical PF framework has been developed for sequential state estimation like tracking 

[13, 19] or robot localization [20, 7]. There, the observations arrive sequentially and are 

indexed by their time stamps, as our tracking example illustrates. It is possible to apply the 

classical PF framework as stochastic optimization to solve this problem by utilizing a fix 

order of states. However, by doing so, we would have selected an arbitrary order, and the 

puzzle construction may fail because of the selected order and would require extremely large 

number of particles. Our framework on the other hand can work with fewer particles because 
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each particle explores different order. This gives us a rich set of proposal distributions as 

opposed to having one fixed. Moreover, the observations are given simultaneously at the 

same time. Hence, there is no reason to favor any particular order without utilizing this fact.

In our experimental results, we compare the solutions obtained by the proposed inference 

framework to the solutions of the loopy believe propagation under identical settings on the 

dataset from [2]. In particular, we use exactly the same dissimilarity-based compatibility of 

puzzle pieces. The proposed PF inference significantly outperforms the loopy believe 

propagation in all evaluation measures. The main measure is the accuracy of the label 

assignment, where the difference is most significant. The accuracy using loopy believe 

propagation is 23:7% while that using the proposed PF inference is 69:2%.

The rest of the paper is organized as follows. After introducing the preliminaries in §2, our 

key extensions for permuted PF are explained in §3 and §4. §5 provides implementation 

details. §6 shows and evaluates the experimental results not only the dataset from [2], but 

also an extended dataset. §7 describes related approaches.

2. Particle Filter Preliminaries

In this section we present some preliminary facts about Particle Filters (PFs). They will be 

utilized in the following sections when we introduce the proposed framework. Given is a 

sequence of observations Z = (z1, …, zm), i.e., the observations are ordered. Our goal is to 

maximize the posterior distribution p(x1:m | Z), i.e., to find the values  of states xt such that

(1)

where  is a state space vector and each state xt has a 

corresponding observation zt for t = 1, …, m.

This goal can be achieved by approximating the posterior distribution with a finite number 

of samples in the framework of Bayesian Importance Sampling (BIS). Since it is usually 

difficult to draw samples from the probability density function (pdf) p(x1:m|Z), samples are 

drawn from a proposal pdf q,  for i = 1, …, N. Then approximation to the 

density p is given by

(2)

where  denotes the delta-Dirac mass located at  and
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(3)

are the importance weights of the samples. Typically the sample  with the largest weight 

w(i) is then taken as the solution of (1).

Since it is still computationally intractable to draw samples from q due to high 

dimensionality of x1:m, Sequential Importance Sampling (SIS) is usually utilized. In the 

classical PF approaches, samples are generated recursively following the order of 

dimensions in state vector x1:m = (x1, …, xm):

(4)

for t = 1, … m, and the particles are built sequentially  for i = 1, …, N. 

The subscript t in qt indicates from which dimension of the state vector the samples are 

generated. Since q factorizes as

(5)

we obtain that . In other words, by sampling recursively  from each 

dimension t according to (4) we obtain a sample from q(x1:m|Z) at t = m.

Since at a given iteration we have a partial state sample  for t < m, we also need an 

evaluation procedure of this partial state sample. For this we observe that the weights can be 

recursively updated according to [21]:

(6)

The above equation is derived from (3) using Bayes rule. Consequently, when t = m, the 

weight  of particle (i) recursively updated according to (6) is equal to w(i) (defined in 

(3)). Hence, at t = m, we obtain a set of weighted (importance) samples from p(x1:m|Z), 

which is formally stated in the following theorem [4]:
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Theorem 2.1

Under reasonable assumptions on the sampling (4) and weighting functions (6) given in [4], 

p(x1:m|Z) can be approximated with weighted samples  with any 

precision if N is sufficiently large. Thus, the convergence in (7) is almost sure:

(7)

In many applications, the weight equation (6) is simplified by making a common assumption 

that , i.e., we take as the proposal distribution the 

conditional pdf of the state at time t conditioned on the current state vector . This 

assumption simplifies the recursive weight update to

(8)

and implies that the samples are generated from

(9)

Analogous to (4) pt in (9) indicates the dimension of the state space from which the samples 

are generated.

Now we summarize the derived standard PF algorithm. For every time step t = 1, …, m 
and for every particle i = 1, …, N execute the following three steps:

1. Importance sampling / proposal: Sample followers of particle (i) 

according to (9) (a special case of (4)) and set .

2. Importance weighting / evaluation: An importance weight is assigned to 

each particle  according to (8) (a special case of (6)).

3. Resampling: Sample with replacement N new particles form the current 

set of N particles

according to their weights. We obtain a set of new particles  for i = 1, 

…, N, and renormalize their weights to sum to one. This procedure is a 

variant of Sampling Importance Resampling (SIR) [21]. It is an important 
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part of any PF algorithm, since resampling prevents weight degeneration 

of particles.

3. Key Extension to Permuted States

As stated above, the standard SIS in Eq. 9 and particle evaluation in Eq. 8 utilize the 

sequential order of the states x1:m = (x1, …, xm). Of course, this is the best choice in many 

applications where the order is determined naturally by the time stamp of the observations. 

In contrast, the proposed approach is aimed at scenarios where no natural order of 

observations is given and the observations Z are initially known as in the image jigsaw 

puzzle problem.

The key idea of the proposed approach is not to utilize the fix order of the states x1:m = (x1, 

…, xm) induced by the order of observations Z, but instead explore different orders of the 

states  such that the corresponding sequences of observations  is 

most informative. In particular, we do not follow the order of indices of observations in Z. 

This way we are able to utilize the the most informative observations first allowing us to use 

a rich set of proposal functions. To achieve this we modify the first step of the PF algorithm 

so that the importance sampling is performed for every dimension not yet represented by the 

current particle. Intuitively, for example, if the first puzzle piece has a local image very 

similar to many other puzzle pieces and the second puzzle piece has a very distinctive local 

image that matches only a few other pieces, then our approach will first process the second 

puzzle piece, since it is more informative.

To formally define the proposed sampling rule, we need to explicitly represent different 

orders of states with a permutation σ : {1, …, m} → {1, …, m}. We use the shorthand 

notation σ (1 : t) to denote (σ(1), σ(2), …, σ (t)) for t ≤ m. Each particle (i) now can have a 

different permutation σ(i) of the puzzle pieces in addition to their locations. Thus the 

particles are now represented as . We drop the superscript (i) of σ(i) in the context of a 

particle which already carries the index (i). For example, Fig. 1(c) shows the configuration 

of a particle at time t = 2, where puzzle pieces numbered 3 and 1 in Fig. 1(b) are placed at 

locations (a) and (b), correspondingly. Hence σ(i)(1 : 2) = (3, 1) and . Thus, a 

sequence of states xσ(1:t−1) visited before time t may be any subsequence (i1, …, it−1) of t 
− 1 different numbers in {1, …, m}.

We are now ready to formulate the proposed importance sampling. At each iteration t ≤ m, 

for each particle (i) and for each , we sample

(10)

where , i.e., the indices in 1 : m that are not present 

in σ(i)(1 : t − 1) for t ≤ m. The subscript s at the posterior pdf ps indicates that we sample 
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values for state s. We generate at least one sample for each state . This 

means that the single particle  is multiplied and extended to several follower 

particles . Consequently, at iteration t < m particle (i) has m − t + 1 followers. Each 

follower is a sample from a different dimension of the state (i.e., represents a location of a 

different puzzle piece). Going back to our toy puzzle example, we recall that the current 

state vector of particle (i) in Fig. 1(c) at time t = 2 is , where σ(i)(1 : 2) = (3, 1). 

For sampling at time t = 3, we have . Consequently, we sample four 

followers of particle (i) in (10), one for each state s = 2, 4, 5, 6, where  is the sampled 

location of puzzle piece 2,  is the sampled location of puzzle piece 4, and so on.

In contrast, in the standard application of rule (9), at each iteration t particle (i) has one 

follower. Even when sometimes each particle (i) has many followers, all followers are 

samples from the same state, since there is only one unique state at time t. For our toy 

example, this means for particle (i), only locations of say puzzle piece 2 are sampled and not 

those of puzzle piece 4, since a fixed order of the state dimensions is followed in the 

classical setting.

We do not make any Markov assumption in (10), i.e., the new state  is dependent on all 

previous states  for each particle (i).

4. Particle Filter with State Permutations

Now we are ready to outline the proposed PF with state permutations (PFSP) algorithm. 

In addition to the change is in the importance sampling step, the other two steps are also 

modified. For every time step t = 1, …, m and for every particle i = 1, …, N execute the 

following three steps:

1. Importance sampling / proposal: Sample followers  of particle (i) 

from each dimension  according to (10), which we repeat 

here for completeness,

(11)

and set  and σ(i,s)(t) = s, which means that σ(i,s)(1 : 

t) = (σ(1 : t − 1), s). As stated before, we drop the superscript (i; s) in 

, since it is already present as the particle index.

2. Importance weighting/evaluation: An individual importance weight is 

assigned to each follower particle  according to
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(12)

3. Resampling: Sample with replacement N new particles form the current 

set of N × (m − t + 1) particles

(13)

according to the weights. Thus, we obtain a set of new particles 

. We also renormalize their weights to sum to one. This is a 

variant of the standard Sampling Importance Resampling (SIR) step [21] 

as in the classical PF framework.

We observe that the particle weight evaluation in (12) is analogous to (8) in that the 

conditional probability of observation zs is a function of two corresponding sequences of 

observations and states plus the state xs. The only difference is that the sequences are 

determined by the permutation σ(i)(1 : t − 1).

Sampling more than one follower of each particle and reducing the number of followers by 

resampling is known in the PF literature as prior boosting [10, 1]. It is used to capture multi-

modal likelihood regions. The resampling in our framework plays an additional and a very 

crucial role. It selects the the most informative orders of states. Since the weights of 

 are determined by the corresponding order of observations , and the 

resampling uses the weights to selects new particles , the resampling determines the 

order of state dimensions. Consequently, the order of state dimensions is heavily determined 

by their corresponding observations, and this order may be different for each particle (i). 
This is in strong contrast to the classical PF, where observations are considered only in one 

order Z.

The fact that each particle explores a possibly different order of dimensions σ(i)(1 : m) is 

extremely important for the proposed PFSP, since it allows for use of rich set of proposal 

functions with fewer number of particles. However, at t = m all state dimensions are present 

in each sample . Hence we can reorder the sequence of state dimensions σ(i)(1 : m) to 

form the original order 1 : m by applying the inverse permutation  and obtain 

, i.e., the state values are sorted according to the original state indices 1 : m 
in each sample (i). In analogy to Theorem 2.1, we state the following:
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Theorem 4.1

Under reasonable assumptions on the sampling (11) and weighting functions (12) given in 

[4], p(x1:m|Z) can be approximated with weighted samples  with any 

precision if N is sufficiently large. Thus, the convergence in (14) is almost sure:

(14)

Proof—Due to Th. 2.1, we only need to show that  represent 

weighted samples from p(x1:m|Z).

The key observation is that p and q are probabilities on joint distribution of m random 

variables, and as such the order of the random variables is not relevant. This follows from 

the fact that a joint probability is defined as the probability of the intersection of the sets 

representing events corresponding to the value assignments of the random variables, and set 

intersection is independent of the order of sets. Consequently, we have for every permutation 

σ

(15)

(16)

According to the proposed importance sampling (11),  is a sample from q(xσ(1:m)|Z). 

Consequently, by (16),  is a sample from  for each particle (i).

By the weight recursion in (12), and by (15) and (16)

(17)

Thus  represent weighted samples from p(x1:m|Z).     □

5. Implementation Details

In order to utilize the derived PF algorithm to solve the jigsaw puzzle problem, we need to 

design the proposal pdf in (11) and the conditional pdf of a new observation in (12). Both 

are detailed in this section.
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Given are a set of m puzzle pieces P = {1, …, m} and a rectangular grid with m empty 

squares G = {g1, …, gm}, e.g., see Fig. 1(b,c). In order to solve the image jigsaw puzzle we 

need to assign locations on G to the puzzle pieces in P. The observation associated with each 

puzzle piece (of size K × K) is the color information of the partial image depicted on it, i.e., 

zi is a K × K × 3 matrix of pixel color values and the set of observations is Z = {z1, …, zm}.

A sample particle at time t ≤ m is given by xσ(1:t) = (xσ(1), …, xσ(t)), where σ(i) ∈ P and xσ(i) 

∈ G. This means the puzzle piece σ(i) is placed on the grid square with index xσ(i). The 

corresponding observations zσ(1:t) = (zσ(1), …, zσ(t)) represents the color information of the 

partial images on the puzzle pieces. In this section we drop the particle index (i), since all 

definitions apply to each particle.

We now define an affinity matrix A representing the compatibility of the local images on the 

puzzle pieces. It is a 3D matrix of size m × m × 4 with the third dimension being an 

adjacency type, since two puzzle pieces can be adjacent in four different ways: left/right, 

right/left, top/bottom, and bottom/top, which we denote with LR, RL, TB, and BT.

In order to be able to compare our experimental results to the results in [2] we define A 
following the definitions in [2]. They first define a dissimilarity-based compatibility D. 

Given two puzzle pieces j and i, D measures dissimilarity between their images zj, zi by 

summing the squared LAB color differences along their boundary, e.g., the left/right (LR) 

dissimilarity is defined as

(18)

where u indexes the last column of zj and v indexes the first column of zi. Finally, the 

affinity of the LR connection is given by

(19)

where δ is adaptively set as the difference between the smallest and the second smallest D 
values between puzzle piece i and all other pieces in P, see [2] for more details.

Proposal and weights

The proposal distribution ps(x|xσ(1:t−1)) : G → ℝ is a discrete probability distribution of 

placing puzzle piece s on each grid square x. ps(x|xσ(1:t−1)) = 0 if x is occupied or is not 

adjacent to any square in σ (1 : t−1). Now say x is free and is adjacent and is to the right of 

grid square xσ(j) for some j = 1, …, t. Then

(20)
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Hence this probability is proportional to the LR similarity between puzzle pieces s and σ(j). 
The definition is analogous for the other three adjacency relations LR, TB, BT. If square x is 

adjacent to more than one grid squares in {xσ(j)|j = 1, …, t}, then ps(x|xσ(1:t−1)) is 

proportional to the product of the corresponding A values.

Let xs be a sample from (11) at time t, and as above xs is adjacent and is to the right of grid 

square xσ(j) for some j = 1, …, t. The difference is that xs is occupied now with the puzzle 

piece s. Then

(21)

The definition is analogous for the other three adjacency relations LR, TB, BT. If square xs 

is adjacent to more than one grid squares in {xσ(j)|j = 1, …, t}, then p(zs|xσ(1:t), zσ(1:t−1)) is 

proportional to the product of the corresponding A values.

To summarize the proposal distribution is a function of how well puzzle piece s fits to the 

already placed pieces and assigns the probability of placing s to all grid squares, while in the 

evaluation we already know the grid location of puzzle piece s as well as its adjacent 

squares. We then use this information to compute the evaluation probability according to A. 

Hence, both the proposal and evaluation of a given particle are functions of how well 

adjacent pieces fit together following the order in which the pieces have been added.

For a given image jigsaw puzzle with m pieces, the time complexity of the proposed 

inference framework is O(m2N), where N is the number of particles. It follows form the fact 

that at iteration t < m particle (i) has m − t + 1 followers. We set the number of particles N = 

10 in all our experiments described in the next section.

6. Experimental Results

We compare the image jigsaw puzzle solutions obtained by the proposed PF inference 

framework to the solutions of the loopy believe propagation used in [2] under identical 

settings. We used the software released by the authors of [2] to obtain their results and also 

to compute the affinities defined in Section 5 used in our approach. The results are compared 

on the dataset provided in [2], which we call MIT Dataset. It is composed of 20 images. In 

addition, we also consider an extended dataset composed of 40 images, i.e., we added 20 

images. As we will see below, the results of both methods on the original and extended 

datasets are comparable. Our implementations will be made publicly available on an 

accompanying website.

The experimental results in [2] are conducted in two different settings: with and without any 

prior on the target image layout. In [3] the prior of the image layout is given by a low 

resolution version of the original image. [2] weakens this assumption to a statistics of the 

possible image layout. We focus on the results without any prior of the image layout. 

Consequently, we focus on a harder problem, since we only use the pairwise relations 
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between the image patches, given by pair-wise compatibilities of located puzzle pieces as 

defined in Section 5.

In the probabilistic framework in [2], a puzzle piece is assigned to each grid location. In our 

PF framework, it is more natural to assign a grid location to each puzzle piece. The solutions 

of both methods are equivalent, since a final puzzle solution is a set of m pairs composed of 

(puzzle piece, grid location), where m is the number of the puzzle pieces. We call such pairs 

the solution pairs.

We use three types of evaluation methods introduced in [2]. Each method focuses on 

different aspects of the quality of the obtained puzzle solutions. The most natural and 

strictest one is Direct Comparison. It simply computes the percentage of correctly placed 

puzzle pieces, i.e., for a puzzle with m pieces, Direct Comparison is the number of correct 

solution pairs divided by m. A less stricter measure is Cluster Comparison. It tolerates an 

assignment error as long as the puzzle piece is assigned to a location that belongs to a 

similar puzzle piece. The puzzle pieces are first clustered into groups of similar pieces. 

Moreover, due to lack of prior knowledge of target image, the reconstructed image may be 

shifted compared to the ground truth image. Therefore, a third measure called Neighbor 
Comparison is used to evaluate the label consistency of adjacent puzzle pieces independent 

of their grid location, e.g., the location of two adjacent puzzle pieces is considered correct if 

two puzzle pieces are left-right neighbors in the ground truth image and they are also left-

right neighbors in the inferred image. Neighbor Comparison is the fraction of correct 

adjacent puzzle pieces. This measurement does not penalize the accuracy as long as the 

adjacent patches in original image are adjacent in the reconstructed image.

The results on the MIT Dataset are shown in Table 1 and on the extended dataset in Table 2. 

The proposed PF inference framework significantly outperforms the loopy believe 

propagation in all three performance measures. Moreover, the reconstruction accuracy 

(according to the most natural measure, Direct Comparison) of the original images by our 

algorithm is improved three times.

In order to demonstrate that the considered image jigsaw puzzle problem is also very 

challenging to humans, we show some example results in Fig. 2. There we show the original 

images, but we would like to emphasize that the original images are not used during the 

inference. Fig. 2 also demonstrates that the reconstructed images obtained by the proposed 

algorithm compare very favorably to the results of [2]. In order to demonstrate the dynamic 

of the proposed PF inference, we show reconstructed images of the best particle at different 

times (iterations) in Fig. 3.

Both methods are initialized with one anchor patch, i.e., with one correct (puzzle piece, grid 

location) pair. We always assign a correct image patch to the top left corner of the image. In 

all our experiments we divide each test image into 108 square patches resulting in m = 108 

puzzle pieces.
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7. Related Work

The first work on Jigsaw Puzzle Problem was reported in [8]. Since shape is an important 

clue for accurate pairwise relation, many methods [14, 9, 18, 22] focussed on matching 

distinct shapes among jigsaw pieces to solve the problem. The pairwise relations among 

jigsaw pieces are measured by the fitness of shapes. There also exist approaches that 

consider both the shape and image content [16, 17, 23]. Most methods solve the problem 

with a greedy algorithm and report results on just one or few images. Our problem 

formulation only considers the image content following Cho et. al [2].

Particle filters (PF) are also known as sequential Monte Carlo methods (SMC) for model 

estimation based on simulation. There is large number of articles published on PF and we 

refer to two excellent books [6, 15] for an overview. PF can be viewed as a powerful 

inference framework that is utilized in many applications. One of the leading examples is the 

progress in robot localization and mapping based on PF [21]. Classical examples of PF 

applications in computer vision are contour tracking [12] and object detection [11]. All these 

approaches utilize PF in the classical tracking/filtering scenario with a pre-defined order of 

states and observations. To our best knowledge, the proposed PF framework with state 

permutations is novel and has not been considered before by other authors.

8. Conclusions and Future Work

We introduce a novel inference framework for solving image jigsaw puzzle problem. Our 

key contribution is an extension of the PF framework to work with unordered observations. 

Weighted particles explore the state space along different dimensions in different orders, and 

state permutations that yield most descriptive proposal functions are selected as new 

particles. By exploiting the equivalence of importance sampling under state permutations, 

we prove that the obtained importance samples represent samples from the original target 

distribution. We evaluate the performance of the proposed PF inference on a problem of 

image jigsaw puzzles. As the experimental results demonstrate, it significantly outperforms 

the loopy belief propagation. Image jigsaw puzzle problem is an instance of labeling 

(assignment) problem. Therefore, our future work will focus on a broader spectrum of 

labeling problems.
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Figure 1. 
The goal is to build the original image (a) given the jigsaw puzzle pieces (b). The original 

image is not known, thus, it needs to be estimated given the observations shown in (b). The 

empty squares in (c) form possible locations for the puzzle pieces in (b).
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Figure 2. 
First row: the original images. Second row: the jigsaw puzzle solutions of [2]. Third row: 

our solutions.
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Figure 3. 
The reconstructed images of the best particles at different iterations.
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Table 1

Experimental results on MIT Dataset.

[2] Our algorithm

Direct Comparison 0.2366 0.6921

Cluster Comparison 0.4657 0.7810

Neighbor Comparison 0.6628 0.8620
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Table 2

Experimental results on the extended dataset.

[2] Our algorithm

Direct Comparison 0.2137 0.7097

Cluster Comparison 0.4500 0.8018

Neighbor Comparison 0.6458 0.8770
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