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Figure 1. Our video super resolution system is able to recover image details after x4 up-sampling.

Abstract

Although multi-frame super resolution has been exten-
sively studied in past decades, super resolving real-world
video sequences still remains challenging. In existing sys-
tems, either the motion models are oversimplified, or impor-
tant factors such as blur kernel and noise level are assumed
to be known. Such models cannot deal with the scene and
imaging conditions that vary from one sequence to another.
In this paper, we propose a Bayesian approach to adaptive
video super resolution via simultaneously estimating under-
lying motion, blur kernel and noise level while reconstruct-
ing the original high-res frames. As a result, our system not
only produces very promising super resolution results that
outperform the state of the art, but also adapts to a variety
of noise levels and blur kernels. Theoretical analysis of the
relationship between blur kernel, noise level and frequency-
wise reconstruction rate is also provided, consistent with
our experimental results.

1. Introduction

Multi-frame super resolution, namely estimating the
high-res frames from a low-res sequence, is one of the fun-
damental problems in computer vision and has been exten-
sively studied for decades. The problem becomes particu-
larly interesting as high-definition devices such as HDTV’s
dominate the market. There is a great need for converting
low-res, low-quality videos into high-res, noise-free videos
that can be pleasantly viewed on HDTV’s.

Although a lot of progress has been made in the past 30
years, super resolving real-world video sequences still re-
mains an open problem. Most of the previous work assumes
that the underlying motion has a simple parametric form,
and/or that the blur kernel and noise levels are known. But
in reality, the motion of objects and cameras can be arbi-
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trary, the video may be contaminated with noise of unknown
level, and motion blur and point spread functions can lead
to an unknown blur kernel.

Therefore, a practical super resolution system should si-
multaneously estimate optical flow [9], noise level [18] and
blur kernel [12] in addition to reconstructing the high-res
frames. As each of these problems has been well studied in
computer vision, it is natural to combine all these compo-
nents in a single framework without making oversimplified
assumptions.

In this paper, we propose a Bayesian framework for
adaptive video super resolution that incorporates high-res
image reconstruction, optical flow, noise level and blur ker-
nel estimation. Using a sparsity prior for the high-res image,
flow fields and blur kernel, we show that super resolution
computation is reduced to each component problem when
other factors are known, and the MAP inference iterates
between optical flow, noise estimation, blur estimation and
image reconstruction. As shown in Figure 1 and later exam-
ples, our system produces promising results on challenging
real-world sequences despite various noise levels and blur
kernels, accurately reconstructing both major structures and
fine texture details. In-depth experiments demonstrate that
our system outperforms the state-of-the-art super resolution
systems [1, 23, 25] on challenging real-world sequences.

We are also interested in theoretical aspects of super res-
olution, namely to what extent the original high-res infor-
mation can be recovered under a given condition. Although
previous work [3, 15] on the limits of super resolution pro-
vides important insights into the increasing difficulty of re-
covering the signal as a function of the up-sampling factor,
most of the bounds are obtained for the entire signal with
frequency perspective ignored. Intuitively, high frequency
components of the original image are much harder to re-
cover as the blur kernel, noise level and/or up-sampling fac-
tor increases. We use Wiener filtering theory to analyze the
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Figure 2. Video super resolution diagram. The original high-res video sequence is generated by warping the source frame (enclosed by
a red rectangle) both forward and backward with some motion fields. The high-res sequence is then smoothed with a blur kernel, down-
sampled and contaminated with noise to generate the observed sequence. Our adaptive video super resolution system not only estimates
the high-res sequence, but also the underlying motion (on the lattice of original sequence), blur kernel and noise level.

frequency-wise bound, which is further verified through ex-
periments.

2. Related Work

Since the seminal work by Tsai and Huang [26], signif-
icant progress has been made in super resolution. We refer
readers to [20] for a comprehensive literature review.

Early super resolution work focused on dealing with the
ill-posed nature of reconstructing a high-res image from a
sequence of low-res frames [10]. The lack of constraints is
often addressed by spatial priors on the high-res image [22].
Hardie er al. [8] jointly estimated the translational motion
and the high-res image, while Bascle ef al. [4] also con-
sidered the motion blur using an affine motion model. But
these motion models are too simple to reflect the nature of
real-world sequences.

To deal with the complex motion of faces, Baker and
Kanade [2] proposed to use optical flow for super reso-
lution, although in fact a parametric motion model was
adopted. Fransens et al. [6] proposed a probabilistic for-
mulation and jointly estimated the image, flow field and
Gaussian noise statistics within an EM framework. They
assumed that the blur kernel was known, and used Gaussian
priors for both images and flow fields. However, Gaussian
priors tend to over-smooth sharp boundaries in images and
flows.

While most of these motion-based super resolution mod-
els use somewhat standard flow estimation techniques, re-
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cent advances in optical flow have resulted in much more
reliable methods based on sparsity priors e.g. [S]. Accurate
motion estimation despite strong noise has inspired Liu and
Freeman [17] to develop a high quality video denoising sys-
tem that removes structural noise in real video sequences. In
this paper, we also want to incorporate recent advances in
optical flow for more accurate super resolution.

Inspired by the successful non-local means method for
video denoising, Takeda et al. [25] avoided explicit sub-
pixel motion estimation and used 3D kernel regression
to exploit the spatiotemporal neighboring relationship for
video up-sampling. However, their method still needs to
estimate a pixel-wise motion at regions with large motion.
In addition, its data model does not include blur and so its
output needs to be postprocessed by a deblurring method.

While most methods assume the blur kernel is known,
some work considers estimating the blur kernel under sim-
ple settings. Nguyen et al. [19] used the generalized
cross-correlation method to identify the blur kernel using
quadratic formulations. Sroubek et al. [24] estimated the
image and the blur kernel under translational motion mod-
els by joint MAP estimation. However, their models can
barely generalize to real videos due to the oversimplified
motion models.

Significant improvements on blur estimation from real
images have been made in the blind deconvolution commu-
nity. Levin et al. [14] showed that joint MAP estimation of
the blur kernel and the original image favors a non-blur ex-
planation, i.e. , a delta blur function and the blurred image.



Their analysis assumes no spatial prior on the blur kernel,
while Joshi ef al. [11] used a smoothness prior for the blur
kernel and obtained reliable estimates. Moreover, Shan et
al. [23] applied the recent advances in image deconvolution
to super resolution and obtained promising improvement,
but their method only works on a single frame and does not
estimate the noise statistics.

On the theory side, there has been important work on
the limit of super resolution as the up-sampling factor in-
creases [3, 15]. Their analysis focused on the stability of
linear systems while ignoring the frequency aspects of the
limit. In fact, many useful tools have been developed in the
signal processing community to analyze the performance
of linear systems w.r.t. a particular frequency component.
Though our super resolution system is nonlinear, we apply
these analysis tools to a simplified linear problem and obtain
how the blur kernel and noise level affect the reconstruction
at each frequency.

3. A Bayesian Model for Super Resolution

Given the low-res sequence {.J;}, our goal is to re-
cover the high-res sequence {I;}. Due to computational
issues, we aim at estimating [; using adjacent frames
Jon, o S, Jey S, o, Jien. To make the no-
tations succinct, we will omit ¢ from now on. Our
problem becomes to estimate I given a series of images
{J-n, -+, Jn}. Inaddition, we will derive the equations
using gray-scale images for simplicity although our imple-
mentation is able to handle color images.

The model of obtaining low-res sequence is illustrated
in Figure 2. A full generative model that corresponds to
Figure 2 is shown in Figure 3. At time @ 0, frame 1
is smoothed and down-sampled to generate .Jy with noise.
At time i = —N,--- | N, ¢ # 0, frame [ is first warped
according to a flow field w;, and then smoothed and down-
sampled to generate J; with noise and outlier R; (we need to
model outliers because optical flow cannot perfectly explain
the correspondence between two frames). The unknown
parameters in the generative models include the smooth-
ing kernel K, which corresponds to point spread functions
in the imaging process, or smoothing filter when video is
down-sampled, and parameter 6; that controls the noise and
outlier when [ is warped to generate adjacent frames.

We use Bayesian MAP to find the optimal solution

{7 {wi} T K7{6:}7} = argmax p(I,{w;}, K, {0:}{i})
I {w:}, K, {6:} "

where the posterior is the product of prior and likelihood:

p(I,{w:}, K, {0;}{Ji}) < p(I)p(K) Hp(wi) Hp(gi) ’

p(JO‘IaKaGO)Hp(J1|I7KawZval) (2)

i#£0
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Figure 3. The graphical model of video super resolution. The cir-
cular nodes are variables (vectors), whereas the rectangular nodes
are matrices (matrix multiplication). We do not put priors 7, A, &,
aand B on I, w;, K, and 0; for succinctness.

Sparsity on derivative filter responses is used to model
the priors of image I, optical flow field w; and blur kernel
K

p(1)=mexp{—nHVIH}, 3)
p(w;) = Zwl(/\) exp{—A(HVuiH—FHVviH) } , @
P(K,) = ZKl@ exp{—¢||VE,]|}, )

where V is the gradient operator, | VI|| = > IVI(q)|| =
Sy (@) + |1 (@)]) (e = 21,1, = 21 and g is the
pixel index. The same notation holds for u; and v;, the hor-
izontal and vertical components of the flow field w;. For
computational efficiency, we assume the kernel K is x- and
y-separable: K = K, ® K, where K, has the same prob-
ability distribution as K,. Z1(n), Z,(\) and Zx (&) are
normalization constants only dependant on 7, A and &, re-
spectively.

To deal with outliers, we assume an exponential distri-
bution for the likelihood

p(Ji‘IaKaei) =

exp {—91-

Ji — SKFWJH},
(6)

where the parameter 6, reflects the noise level of frame i
and Z(6;) = (20;)~4™(), Matrices S and K correspond
to down-sampling and filtering with blur kernel K, respec-
tively. Fy,, is the warping matrix corresponding to flow w;.
Naturally, the conjugate prior for 6; is a Gamma distribution

= /Ba
ey

Now that we have the probability distributions for both
prior and likelihood, the Bayesian MAP inference is per-

1
Z(0;)

p(0:; ., B) 00" exp{—0:8}.

(7



formed using coordinate descend. Note that in this model
there are only five free parameters: n, A, &, « and 3.

3.1. Image Reconstruction

Given the current estimates of the flow field w;, the blur
kernel K and the noise level 6;, we estimate the high-res
image by solving

I = argminHOHSKI— JOH —&-nHVIH
I

N
+ > 6SKF, I—J|. ®
i=—N,i#0
To use gradient-based methods, we replace the L1 norm
with a differentiable approximation ¢(z?) = V2 + €2
(e = 0.001), and denote the vector ®(|1]2)=[p(1?%(q))].
This objective function can be solved by the iteratively
reweighted least squares (IRLS) method [16], which itera-
tively solves the following linear system:

[GOKTSTWOSK + n(Dg W.D, + D7 WSDy) +
N
3 eingKTSTW,;SKFW}I
i=—N,i#£0
N
= 0K"S"WoJo+ > 0,F, K'STW,J;, (9)
i=—N,i#£0
where the matrices D, and D, correspond to the x-
and y- derivative filters. IRLS iterates between solving
the above least square problem (through conjugate gradi-
ent) and estimating the diagonal weight matrices Wy =
diag(®'(|SKI — Jo|?)), W =diag(®’'(|VI|?)), and W; =
diag(®'(|]SKF,,,I — J;|*)) based on the current estimate.

3.2. Motion and Noise Estimation

Given the high-res image and the blur kernel, we jointly
estimate the flow field and the noise level in a coarse-to-fine
fashion on a Gaussian image pyramid. At each pyramid
level, the noise level and optical flow are estimated itera-
tively. The Bayesian MAP estimate for the noise parameter
6, has the following closed-form solution

g +Ny—1

N,

L&

== s = E
i B+ Ny,x qu:1

where T is sufficient statistics. When noise is known, the
flow field w; is estimated as

wf:argminﬂiHSKFwJ — Ji||+)\||Vui||+)\HVvi||, (11)

(Ji—SKF,,I)(q)|, (10)

where we again approximate |z| by ¢(z?). Notice that this
optical flow formulation is different from the standard ones:
the flow is established from high-res I to low-res J;.

By first-order Taylor expansion

Futaw ] ~ Fu, I + Tdu; + 1,dv;, (12)
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where I, = diag(F,,,I,) and I, = diag(F,,I,), we can
derive (following the conventions in [16])
W1 +GL LW,
IZWJ,E IgWin + (L

dui
d’Ui

- [ Gl || 1 (W,F,, ] —K'STW,J) (13)
where (; = 7+, W; = KT"STW,SK, and L is a weighted

Laplacian matrix. Again, we use IRLS to solve the above
equation iteratively.

One may notice that it is more expensive to solve Eqn. 13
than ordinary optical flow because in each iteration smooth-
ing K and down-sampling S as well as the transposes
ST, K" need to be computed. We estimate optical flow
from J; to Jy on the low-res lattice, and up-sample the es-
timated flow field to the high-res lattice as initialization for
solving Eqn. 13.

3.3. Kernel Estimation

Without loss of generality, we only show how to estimate
the x-component kernel K, given I and Jy. Let each row
of matrix A be the concatenation of pixels corresponding
to the filter K, and define M, : M, K, = K, ® K, = K.
Estimating K, leads to

K = argminHOHAMny - JH + fHVKx , (14
K,

which is again optimized by IRLS.

Although similar Bayesian MAP approach performed
poorly for general debluring problems [14], the spatial
smoothness prior on the kernel prevents kernel estimation
from converging to the delta function, as shown by [11].
Experiments also show that our estimation is able to recover
the underlying blur kernel.

4. Frequency-wise Performance Bounds

Intuitively, super resolution becomes more challenging
when noise increases and blur kernel grows larger. More-
over, the low-frequency components of the signal should be
easier to recover than high-frequency ones. In this section
we will theoretically address these issues. We first show that
super resolution can be reduced to deblurring under certain
conditions and then use frequency-wise analysis to bound
the performance of super resolution.

We assume the scene is fixed and only camera motion is
present (and controllable). For up-sampling rate s, we can
collect s? low-res images by shifting the camera one pixel
at a time to cover the full high-res frame. Concatenating
these s? low-res images we obtain an image Iy, with the
same dimension as the original high-res I. Under this ideal
setup, super resolution is reduced to a deblurring problem

Lops = K+ I +n, 15)



where n is zero-mean, white Gaussian noise. Although this
setting is very ideal with known, controllable motion and
every high-res pixel fully observed, analyzing this system
gives us the upper bound of super resolution. We use matrix
multiplication to represent blur convolution for this linear
system.

We apply the Wiener filter [7], which provides the min-
imum mean square error (MMSE) solution under this set-
ting, to analyze this linear problem. We use the expectation
of the ratio between the output signal by the Wiener filter
and the original input signal to bound the performance of
any estimator at frequency w

B K ()
[K@)E + IN@) /@R

where K (w), N(w) and I(w) are the Fourier transform of
the blur kernel, noise and original image, respectively. We
cannot know the true I (w) for natural images and so use the
power-law spectra |I(w)|? o |w|"%4, which has been fitted
to the Berkeley natural image database [21].

Figure 4 shows the curves for different Gaussian blur
kernels. Generally, higher SNR and smaller blur kernel
make super resolution easier and the high frequency compo-
nents are more difficult to recover. For given blur kernel and
noise level, there exists a cut-off frequency. Any frequency
components above the cut-off frequency are impossible to
recover, while those below it are still possible to estimate.

To test these bounds, we used the checkerboard pattern
as input. We constructed the matrix for the blur kernel
and performed maximum likelihood estimation of the orig-
inal signal by matrix inversion. As shown in Figure 5, this
method perfectly reconstructed the signal at the noise-free
case. Note that the noise-free case will never happen in
practice because of quantization. When we store images as
integers in [0, 255], the quantization error is in [—0.5, 0.5].
This corresponds to o, = 0.001 for pixel values in [0, 1].
For a large blur kernel (o = 2), such tiny noise already
makes it impossible to recover the original checkerboard
pattern. While at a large noise level (o,, = 0.05), the task is
also impossible for a smaller blur kernel (o, = 1). All these
results are consistent with the prediction by the curves in
Figure 4, suggesting that the frequency-wise analysis of the
linear problem by the Wiener filter provides good bounds.

P(w) (16)

5. Experimental Results

We will first examine the performance of our system un-
der unknown blur kernel and noise level and then compare it
to state-of-the-art video super resolution methods on several
real-world sequences. Please refer to the supplemental
materials to view the super-resolved sequences. Please
enlarge and view Figure 7, 8 and 9 on the screen for bet-
ter comparison.

Performance evaluation. We used the benchmark se-
quence city in video compression society to evaluate the
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Figure 4. Performance of the Wiener filter at different frequen-
cies under different blur and noise conditions (1 corresponds to
perfect reconstruction). Last row from left to right: basis images
corresponding to frequency w = 0, 0.5, 1, - - -, 3; note that w = 3
corresponds to a nearly checkerboard pattern, the highest spatial
frequency.
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Figure 5. Reconstruction results of the checkerboard pattern. (2, 0)
means that 0, = 2 and 0, = 0, and corresponds to the right end
point of green curve corresponding to o, = 2 in Figure 4 (see text
for more details).

performance. Rich details at different scales make the city
sequence ideal to observe how different frequency compo-
nents get recovered. We simulated the imaging process by
first smoothing every frame of the original video with a
Gaussian filter with standard deviation oj,. We downsample
the smoothed images by a factor of 4, and add white Gaus-
sian noise with standard deviation o,,. As we vary the blur
kernel o, and the noise level o,, for evaluation, we initialize
our blur kernel K, K, with a standard normal distribution
and initialize noise parameters ; using the temporal differ-
ence between frames. We use 15 forward and 15 backward
adjacent frames to reconstruct a high-res image.

We first tested how our system performs under various
noise levels. We fixed o, to be 1.6 and changed o,, from
small (0) to large (0.05). When o,, = 0, quantization is the
only source of error in the image formation process. As
shown in Figure 7, our system is able to produce fine de-
tails when the noise level is low (o,, = 0.00 or 0.01). Our
system can still recover major image structure even under
very heavy noise (o, = 0.05). These results suggest that
our system is robust to unknown noise. Note that the per-
formance drop as the noise level increases is consistent with
our theoretical analysis.

Next, we tested how well our system performs under var-
ious blur kernels. We gradually increase oy, from 1.2 to 2.4
with step size 0.4 in generating the low-res input. As shown
in Figure 8, the estimated blur kernels match the ground
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Figure 6. Closeup of Figure 9. From top to bottom: city, calendar,
foliage and walk.

truth well. In general, fewer details are recovered as oy,
increase, consistent with our theoretical analysis. However,
the optimal performance (in PSNR) of our system occurs for
0, = 1.6 instead of 1.2. This seems to contradict the pre-
diction of our theoretical analysis. In fact, small blur kernel
generates strong aliasing, a fake signal that can severely de-
grade motion estimation and therefore prevent reconstruct-
ing the true high-frequency details.

Comparison to the state of the art. We compared our
method to two recent methods [23, 25] using the public
implementations downloaded from the authors’ websites
I and one state-of-the-art commercial software, “Video En-
hancer” [1]. Since the 3DKR method [25] produced the best
results amongst these methods, we only display the results
of 3DKR in our paper.

We used three additional real-world video sequences,
calendar, foliage and walk for comparison. The results
are listed in Figures 6 and 9. Although the 3DKR method
has recovered the major structures of the scene, it tends to
over-smooth fine details. In contrast, our system performed
consistently well across the test sequences. On the city se-
quence our system recovered the windows of the tall build-
ing while 3DKR only reconstructed some blurry outlines.
On the calendar sequence, we can easily recognize the ban-
ner “MAREE FINE” from the output of our system, while
the 3DKR method failed to recover such detail. Moreover,
our system recovered the thin branches in the foliage se-
quence and revealed some facial features for the man in
the walk sequence. The 3DKR method, however, over-
smoothed these details and produced visually less appealing
results.

IThe implementation of the 3DKR method [25] does not include the
last deblurring step as described in their paper. We used a state-of-the-art
deconvolution method [13] to post-process its output. We used the default
parameter setting of the 3DKR code to upscale the low-res video and ad-
justed the deconvolution method [13] to produce visually the best result for
each individual sequence. The 3DKR implementation does not have valid
output for pixels near the image boundaries. We filled in the gaps using
gray pixels.
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Table 1. PSNR and SSIM scores. 3DKR-b is the output of the
3DKR method before postprocessing.

PSNR city calendar  foliage walk
Proposed 27.100 21.921 25.888  24.664
3DKR [25] 24.672 19.360 24.887  22.109
3DKR-b [25] 24.363 18.836 24376 21.938
Enhancer [1] 24.619 19.115 24476  22.303
Shan er al. [23] | 23.828 18.539 22.858  21.018
Bicubic 23.973 18.662 24.393  22.066
SSIM

Proposed 0.842 0.803 0.845 0.786
3DKR [25] 0.647 0.600 0.819 0.584
3DKR-b [25] 0.637 0.554 0.797 0.554
Enhancer [1] 0.677 0.587 0.803 0.604
Shan er al. [23] 0.615 0.544 0.747 0.554
Bicubic 0.597 0.529 0.789 0.548

We also observe failures from our system. For the fast
moving pigeon in the walk sequence, our system produced
sharp boundaries instead of preserving the original motion
blur. Since motion blur has not been taken into account
in our system, the sparse spatial prior favors sharp bound-
aries in reconstructing smooth regions such as motion blur.
Furthermore, motion blur can significantly degrade motion
estimation and can result in undesired artifacts.

Tables 1 summarizes the PSNR and SSIM scores® for

these methods on the video frames in Figure 9. Our system
consistently outperforms other methods across all the test
sequences.
Computational performance. Our C++ implementation
takes about two hours on an Intel Core 17 Q820 worksta-
tion with 16 GB RAMs when super resolving a 720 x 480
frame using 30 adjacent frames at an up-sampling factor of
4. The computational bottleneck is solving the optical flow
equation in Eqn. 13, which takes about one minute for a
pair of high-res and low-res frames. Computing flow for all
adjacent frames takes more than half an hour. To compare,
one IRLS iteration for image reconstruction takes about two
minutes.

6. Conclusion

In this paper we demonstrated that our adaptive video
super resolution system based on a Bayesian probabilistic
model is able to reconstruct original high-res images with
great details. Our system is robust to complex motion, un-
known noise level and/or unknown blur kernel because we
jointly estimate motion, noise and blur with the high-res
image using sparse image/flow/kernel priors. Very promis-
ing experimental results suggest that our system outperform
the state-of-the-art methods on a variety of real-world se-
quences. The theoretical bounds on frequency-wise recon-
struction rate are consistent with our experiments, indicat-
ing that they can be good guidelines for analyzing super
resolution systems.

2We discarded rows and columns within 20 pixels to the boundary in
computing these numbers because the 3DKR method did not have valid
output in these regions.
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(a) 0 =0.00 (26.05db, 0.790) (b) 0=0.01 (24.77db, 0.717) (c) 0=0.03 (24.40db, 0.675) (d) 0=0.05 (23.94db, 0.634)

Figure 7. Our video super resolution system is robust to noise. We added synthetic additive white Gaussian noise (AWGN) to the input
low-res sequence, with the noise level varying from 0.00 to 0.05 (top row, left to right). The super resolution results are shown in the
bottom row. The first number in the parenthesis is PSNR score and the second is SSIM score.

(a) 0, =1.2(25.41db, 0.832) (b) o, =1.6 (26.05db, 0.790) (c) 01, =2.0 (24.58db, 0.713) (d) o, =2.4 (24.06db, 0.654)
Figure 8. Our video super resolution system is able to estimate the PSF. As we varied the standard deviation of the blur kernel (or PSF)
o =1.2, 1.6, 2.0, 2.4, our system is able to estimate the underlying PSF. Aliasing causes performance degradation for the small blur

kernel o, = 1.2 (see text for detail). Top: bicubic up-sampling (x4); middle: output of our system; bottom: the ground truth kernel (left)
and estimated kernel (right). The first number in the parenthesis is PSNR score and the second is SSIM score.
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