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Abstract Sectior 2.1 reviews the relations between wavelet trans-
forms and computer vision descriptors. Section 2.2 in-
A scattering vector is a local descriptor including mul- troduces scattering image representations. Classificatio
tiscale and multi-direction co-occurrence informationt | by scattering model selection is introduced in Section
is computed with a cascade of wavelet decompositions and3, with numerical results. Softwares are available at
complex modulus. This scattering representation is lgcall www.cmap.polytechnique.fr/scattering.
translation invariant and linearizes deformations. A su-
pervised classification algorithm is computed with a PCA 2. Scattering
model selection on scattering vectors. State of the art re-
sults are obtained for handwritten digit recognition ang-te
ture classificatiofl

A scattering transform computes local image descriptors
with a cascade of wavelet decompositions, complex mod-
ulus and a local averaging. The resulting scattering rep-
resentation is locally invariant to translations. It imbhs
coefficients which are similar to SIFT descriptors, togethe

1. Introduction with co-occurrences coefficients at multiple scales and ori

Locally invariantimage descriptors such as SIET [9] pro- €ntations.
vide efficient image representations for image classificati
and registration [9]. These feature vectors as well as mul-
tiscale texture descriptors can be computed with a spatial Image feature vectors such as SIFT and multiscale Gabor
averaging of wavelet coefficient amplitudes. The averagingtextons are obtained by averaging the amplitude of wavelet
reduces the feature variability and provides local traimta  coefficients, calculated with directional wavelets. Wi
invariance, but it also reduces information. these feature vectors as wavelet coefficients helps to under

Scattering operators recover the lost high frequenciesstand and to improve their properties.
and retransform them into co-occurrence coefficients at Let R,z be the rotation of: € R? by an angley. Direc-
multiple scales and orientations. They provide much richer tional wavelets are obtained by rotating a singlalongi
descriptors of complex structures such as corners, jumgtio anglesy € I'. Scaling them by’ yields
and multiscale texture variations. These coefficients@re | 9 ro—j
cally translation invariant and they linearize small defar Vjn(x) = 2779277 Ryz) .
tions. They are computed with a convolution netwdrk [6] The directional wavelet transform gf at a position: for
which cascades contractive wavelet transforms and modu~cglei < 27 is a vector of coefficients
lus operators [11]. Scattering operators provide new repre
sentations of stationary image textures, which can discrim W f(z) = ( frjy(2) ) (1)
inate texture having the same power spectrum. fxos(x) j<J~ET

. The scattermg transform of a class of_ signals is approx- whereo, (z) = 2-27¢(2-7z) is a low-pass filter which
imated by an affine space computed with a PCA. Images arries the low frequencies of above the scale’:
are classified by selecting a best approximation space modeF s(x)de — 1. Let “(3[/ ()2 be the Euclidean norm.of
for their scattering transform. State of the art resultsohre I 7

tained for hand-written digit recognition and for textuis-d this vector which sums the square of its coordinates.  Let

crimination, with important rotation and illumination var f(w) be the Fourier transform off. If wavelets satisfy
ability, and small training sets.

2.1. From Wavelets to SIFT and Textons

i D @w)P + bW <1 )
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then one can verify [11] that These are called scattering coefficients because they resul
from all interferences off with two wavelets[[12]. They
W £I2 = /|WJf(x)|2dx <|IfI? = / |f(2)]? da give co-occurrence information ifi for any pair of scales
271, 272 and any two directions; and~,. This can dis-
tinguish corners and junctions from edges and it character-
izes texture structures. Coefficients are only calculabed f
272 < 271 pecause one can shdw [11] thék;, -, [*¥;,

i iqi 2 1
Many standard image feature vectors are obtained by av-> negligible at s_cale%? 2 27 : .
The convolution withp ; removes high frequencies and

eraging wavelet coefficient amplitudes. SIFT coefficients : o
. . . . thus yields second order coefficients that are locally trans
are obtained from histograms of image gradients calculated” .~ 7. : . . .
lation invariant. High frequencies can again be restored by

at a fine scale?. A histogram bin indexed byy € T ) L ) .
. . finer scale wavelet coefficients, which are regularized by av
stores the local sum of the amplitudes of all gradient vector : : . ) S ) .
eraging their amplitude witkh ;. Applying iteratively this

whose orientations are close4o Several authors [15] ob- rocedurer times vields a veotor of coefficients at each
served that approximate SIFT feature vectors are compute(fJ & y

more efficiently by averaging directly the partial derivati B
amplitudes off along theK directionsy € T, with a low- Sg.0f (@) = ('”f*wjml|*“'*|¢-7q’%|*¢"(x)) pssisy
pass filterg ;. These averaged partial derivative amplitudes b

and this inequality is an equality if1(2) is an equality. The
wavelet transform is then contractive and potentially uni-
tary.

can be written as averaged wavelet coefficients This vector haqu(‘q’) scattering coefficients, comput-
ing interactions betweerf and the successive wavelets
|5 il % da(2), Vi 4,4, - A SCattering vector aggregates all these co-

: . I . ici i < m;
with a partial derivative wavelep(xz) = dg(x)/0z1, with efficients up to a maximum orders. m

g(z) = e~ 1*I"/2 andz = (a1, z,). These averaged wavelet S, f(z) = (S f(a:))
coefficients are nearly invariant to translations or defmrm ! -\
tions which are small relatively . , L .

Partial derivative wavelets are well adapted to detect and the first coefﬂmen_t Is the S|gpal avsra@@J Jf,(x) -
edge type elements, but these wavelets do not have enough * ¢ (7)- The scattering vector size J6, /', K(;,). Af-
frequency and directional resolution to discriminate more €' COJ”VOIUt'On,W'thQS,J the output is subsampled at inter-
complex structures appearing in textures. For texture-anal V&/S2” - If f(n) is an image ofV pixels, thlsJunlform sam-
ysis, wavelets with a better frequency localization aremft  Pling yields a scattering representatidn/ (2 n) including
used[[7]. Complex Gabor functions are examples of such di-2 total of Ny = 272/ N 3701 , K4(7) coefficients.

rectional wavelets obtained by modulating a Gaussian win- A Scattering vector is computed with a cascade of con-
dow at a frequency: volutions and modulus operators over+ 1 layers, like in

convolution network architectures [6, 1]:

0<q<m’

_ gz —|z|?/2
Yle) = emme ® /) - [ *6s(27n)
For stationary texturegf x ¢; 5| x ¢s(x) has a reduced + 7
stochastic variability because of the averaging kegnel |/ x ﬁjl ol - | x Wil * 05(27n)
2.2. Scattering Coefficients ||f * jy 7’yi| * 1/].7'2772| - ||f * Vg1 | * wj2772| * ¢J(2Jn)

The local translation invariance and variability reduntio
of SIFT descriptors and multiscale textons is obtained by
averaging. Scattering operators restore part of the irderm To reduce computations, wavelet convolutions are subsam-
tion lost by this averaging with co-occurrence coefficients pled at intervals proportional to the last scafe, with an

having similar invariance properties. oversampling factor of:

The wavelet transforni]1) shows that high frequencies .

. . . . . . . q
eliminated in| fx1;, -, |*¢ s by the convolution with) ; are IS * Wiyl x e |15, (270 0]

recovered by convolutions with wavelgfs<i;, ., |*%;, ~,

) . v A final low-pass filtering and subsampling yields
at scale®’2 < 27. To become insensitive to local transla- P 9 pingy

tion and reduce the variability of these coefficients, their 11F % s s | % ek [0, 7 | 07 (27 )

complex phase is removed by a modulus, and it is averaged ' '

by ¢;: With an FFT, the overall computational complexity is then
||f*¢jlﬂ1|*¢jzﬂ2|*¢J' O(NIOgN)



2.3. Scattering Distance and Deformation Stability ~ provides co-occurence descriptors. A classifier is obthine

The scattering transform defines a distance between twoby selecting an affine space model which best approximates

imagesf andg. This distance has important invariance and Sl

stability properties that are briefly reviewed. U8y f(x)|? whgz(e:rrleilgil;:tligrlgs;rfir;e; rgz%r%ie;jelbsymaﬂ:znc?;)g vgg;(z_r
be the squared Euclidean norm of the vedgyf (x). The 9 i

scattering distance of andg is tering vectorsS; F;(27n) define an image representation
with a total of N; = 27Ny K‘?(g) coefficients.
1S, f — Sygl|? = / 1Sy f(z) — Syg(x)>dz.  (4) LetE{SJFi(2"n)_} be their expected values. Deformations
of F; are mostly linearized by ; and thus produce a vari-
For discrete images, the integral is replaced by a discreteability S, F; — E{S,F;} which is well approximated in a
sum. The scattering operat§y is contractive because itis linear space of low dimensiof This linear space is com-
a cascade of wavelet transforfits and modulus operators, puted with a PCA by diagonalizing the covariancesoft;.

which are both contractive][8]: We denote by, ; the space generated by tiieovariance
eigenvectors of largest variance. The dimensiois ad-
1Ssf = Ssgll> < |If —g|> = / If(z) — g(2)|* dx . justed so that'; F; is closely approximated by its projection

in the affine space
In particular ||S;f]|? < ||f||?>. If the maximum order
ism = oo t|r|1en (!ne ca|r|1 F|)|I’0V€E [11] that if the wavelet Adi = E{SsFi}+ Vai
transform is unitary then for appropriate complex wavelets in comparison with the error produced by the affine spaces
Ssf112 = |IfII*>. The energy off is thus spread across A, ., i’ # i, corresponding to the other classes.
scattering coefficients of multiple orders, but this energy A signal f will be associated to the classvhich yields
has a fast decay as the co-occurrence ogdacreases. In  the best affine space approximation:
the Caltech101 image database, 98% of the en 2 . .
is carried by scatte%ing coefficients of order 1|e£?1§”2. i(f) = arzgrpmHSJf = Pa, (SifIl- 6)
In applications, we shall thus limit the scattering order to -
m = 2. The energy of all scattering coefficients of or@er
[ f * Uiy 4| * 1/{j2_,72| * ¢, is about 20% _of the energy_of 1S5 f — Pa, . (SiP)l = |Pys (Ssf — E{S;F})|
all order1 coefficients f x ¢;, -, | * ¢.7, which is not negli- ' @
gible. We shall see that order 2 coefficients have indeed anwherevji is the orthogonal complement &f; ;. Mini-
important impact on classification results. mizing the affine space approximation error is thus equiv-

The efficiency of a scattering representation comes fromalent to minimize the distance betweSnf and the class

its invariance to local translations due to convolutionthwi  centroid £{S; F;}, without taking into account the firgt
¢4, and from its ability to linearize deformations. Let principal variability directions. A cross-validation me-
D, f(z) = f(x — 7(z)) be a deformation of with a reg- dure finds the dimensiod and the scal@’ which yields
ular displacement field(z). Itis a pure translation only if  the smallest classification error. This error is computed on
V71 = 0. We write|7|« = sup,, |7(x)| the maximumtrans-  a subset of the training images that is not used for the PCA

Observe that

lation amplitude, andVr|. = sup, |V7(x)| the maxi- calculations.

mum deformation amplitude, whef®¥r(z)| is the matrix Affine space scattering models can be interpreted as gen-
sup norm ofVr7(x). The sup-norm of the Hessian ofis erative models computed independently for each class. As
also written| H7|. It is shown in [11] that the scattering opposed to discriminative classifiers such as an SVM, no in-
metric satisfies teraction between classes is taken into account, besides th

_J choice of the model dimensionality
1S5(D+f)=Ssfll < CmeH(2 |T|°O+J(|VT|°O+|HT|°°))' Classification results are given for hand-written digits
) _J . . _(5), and textures that are deformed, rotated, scaled and have il-
The first term2/|7|. is the translation error which iS | mination variations. Scattering descriptors are coragut
small if 27 >> |7|. The other terms are dominated by the with the complex Gabor waveldfl(3) far= 3 /4, rotated

deformation amplitudéVr|wc. If 27 > |7]oc /|VT|o then — 5i5n4 angles:r/K with 0 < k < K = 6. The lowpass fil-
two deformed signals have a scattering distance essgntiall o, is the Gaussiag; (z) :_/\J exp(—(3z/27+1)2/2) with

proportional to the deformation amplituflé 7| . [ y(x)ds = 1.
3. Classification by Affine Model Selection 3.1. Handwritten digit recognition
A scattering representatiofi; f is invariant to small The MNIST database of hand-written digits is an exam-

translations relatively t@”. It linearizes deformations and ple of structured pattern classification, where most of the



Table 1. Percentage of error as a function of the training iz Table 3. Percentage of errors on an MNIST rotated dataset [5]
MNIST, for a Convolution Network [14], an SVM over scattagin

coefficient form = 2, a PCA form = 1,2,3. Minimum errors PCA PCA PCA Conv.
are in bold. m=1 m=2 m=3 Net.
6.3 3 2.8 8.8
Training | Conv. SVM PCA PCA PCA

size Nett. m=2 m=1 m=2 m=3 Table 4. Percentage of errors for the whole USPS database.
300 7.18 21.5 7.03 6.05 5.97 Tang. SVM PCA PCA PCA
1000 3.21 3.06 2.99 2.39 2.37 Kern. m=2 m=1 m=2 m=3
2000 2.53 1.87 2.11 1.71 1.71 2.4 2.64 3.24 2.74 2.74

5000 1.52 1.54 1.85 1.57 1.22
10000 | 0.85 1.15 1.61 1.17 0.99
20000 | 0.76 0.92 14 0.96 0.82
40000 | 0.65 0.85 1.32 0.78 0.79
60000 | 0.53 0.7 1.4 0.77 0.72

Table[2 gives the dimensias of affine approximation
spaces calculated by cross validation,for= 2. The nor-
malized approximation errer? is the expected approxima-
tion error E{||S;F; — Pa, ,(S;F;)|?} in a class divided
Table 2. Values of the dimensialof affine approximation models, ~ PY the squared norm &f, F;;, averaged over alland all F;
of the intra class normalized approximation erec; and of the in the test set. Tabld 2 shows that the cross-validationealc

ratio A; between inter class and intra class approximation errors, lation of d yields small approximation errors. Talble 2 also
as a function of the training size. gives the relative approximation error

Training | d o2 Y  E{minyzi |SsF — Pa, o (S/F)I}
300 | 24 2-102 24 T T E{|S/F, = Pa, 4 (S;E)|?}

5000 40 5-107% 36 ) .
40000 | 180 6-10-% 4.3 produced by the closest affine model of a different class than

that of F;, averaged over all classes. As expected, when
the training set increases, the dimensibimcreases so
decreases and the relative approximation exgancreases,

intra-class variability is due to local translations anfbde ~ Which reduces the error rate.
mations. It Comprises at most 60000 training samp|es and Rotation invariance in the MNIST database is studied in
10000 test samples. The state of the art is achieved withthe same setting as inl[5]. The authors have constructed

deep-learning convolutional networks [14] and dictionary @ transformed database with 12000 training samples and
learning [10]. 50000 test images, where samples are rotated versions of

Table[1 compares the scattering PCA classifier at max-the digits using a uniform distribution i, 2]. The PCA
imum ordersm — 1. m — 2 andm — 3. Cross valida-  incorporates rotation invariance by increasing the dimen-
tion finds an optimal scattering scalé = 23. Thisvalue  Siond of the affine spacd, ;. Itremoves the main variabil-

is compatible with observed deformations of digits whose ity directions of S f due to rotations. Error rates in Table
amplitude is typically at moss pixels. ForJ = 3, there are smaller with a scattering PCA than with a convolu-

areN/64 second order scattering vectdtsf of dimension ~ tion network [3]. Better results are obtained with = 2
127 each. than withm = 1 because second order coefficients main-

tain enough discriminability despite the removal of a large

Below 5 102 training samples, the scattering PCA clas-

sifier improves results of deep-learning convolutionat net Numberd of principal directions. ,
works. Form — 2, second order scattering coefficients The US-Postal Service dataset is another handwritten

improve classification results obtained with — 1, but a digit dataset, with 7291 training samples f';\nd ZOQ7 test.im-
third orderm = 3 scattering yields marginal improvements. agesl6 x 16 pixels. The state of the art is obtained with

An SVM classifier is also applied on scattering vectors for tapgent distance kgrne\s [2]. Table 4 9“’83 results obdaine
m = 2, with a polynomial kernel whose degree was opti- with the PCA classifier and a polynomial kernel SVM clas-

mized. Minimum errors are obtained with a degteerhe sifier applied to scattering coefficients. The scatteriradesc

SVM error is well above the PCA model selection error up was also set to’ = 3 by cross-validation.
to 60000 samples. For small training sets, it was indeed
shown [13] that generative models, which do not estimate
cross terms between classes, can outperform discriménativ.~ Scattering coefficients provide new texture descriptors,
classifiers such as SVM. carrying co-occurrence information at different scaled an

3.2. Scattering Texture Classification



orientations. A texture can be modeled as a realization of Figure 2. Left and right Brodatz texturésand £ have different
a stationary proces8(z). Scattering coefficients; F'(z) power spectrum. The middle textuF? is obtained by filtering™y
to equallze its power spectrum wiffy.
are obtained with successive convolutions and modulus op--
erators which preserve stationarity. Averagingdyydoes .
not modify expected values sB{S;F(z)} is a vector
whose coefficients do not depend upoand¢ ;. The con-
volution with ¢ ; reduces the coefficient variability and for
a large class of ergodic processes, the variancg;&f(x)
decreases exponentially to zero.ABicreases. As a result,
SyF(x)is a good estimator aE{S;F(x)} whenJ is suf-
ficiently large. Figuréll shows an example of such vector
for a textured image withn, = 3.

Table 5. Normalized distange, of expected scattering vectors of

Figure 1. The right plot gives scattering coefficients, oedeac- orderg, for textures in Figurgl2.

cording to their scattering order Blue coefficients correspond to

q = 1, green coefficients corresponddge= 2 and red coefficients q | pg(F1,F>)  pe(Fi, Fy)
to ¢ = 3. Notice the exponential amplitude decay as the order 1 12 0
increases. ] 2 12 1
2, ’ —= 3 6 2
‘D’J! order3 4 3 2

1o \r.\\h‘:‘.,ﬁ‘\‘;v
R YT I N W

0 500
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Textures having same mean and same power spectru
have nearly the same scattering coefficients of ogder0
andqg = 1. However, different textures typically have co-
occurence coefficients of order> 2 which are different.
Let S, s F; be the vector of scattering coefficients of order
for a textureF;. The distance of scattering vectors of order
q for two texturest andF; is normalized by their variance
GQ(SqJFi)Z

|E{Sq JFl} E{Sq JF2}|
(SqJFl) + ‘72(Sq7JF2)

pq(F1, I2) =

Table[B givey, (F1, F») for two Brodatz textures in Figure

[@, which have different power spectrum. Their expected

scattering vector€{S;F, ;} have a relatively large dis-
tancep, (F1, F») atall orders; > 1. The textureF~1 in Fig-
ure[2 has same power spectrumias Wheng = 1, equal-
izing the power spectrum reduceg i, F») to 0 (up to es-
timation errors) bubq(ﬁl, F,) remains well above zero for

g > 1. Textures having same power spectrum can thus be

discriminated from scattering coefficients of ordes 1.

Texture classification is tested on the CUReT texture
database |7, 16], which includes 61 classes of image tex-

tures of N = 2002 pixels. Each texture class gives images
of the same material with different pose and illumination

conditions. Specularities, shadowing and surface normal

variations make it challenging for classification. Posearar
tions require global rotation invariance. Figlie 3 illases
the large intra class variability, and also shows that thie va
ability across classes is not always important.

State of the art on this database achieves a 2.46% error

mate, obtained in[16] with an optimized Markov Random

Field model. The scattering PCA classifier has a 0.09%
error rate, which is a factor 25 improvement, as shown in
Table6. The database is randomly split into a training and a
testing set, which either comprises 46 training images each
as in [16], or contains 23 training images aslih [3]. Results
are averaged over 10 different splits.
The cross-validation adjusts the scattering seéle- 27

which is the maximum value. Indeed, these textures are
fully stationary and increasing the scale reduces the vari-

Figure 3. Examples of textures from the CUReT database. Each
row corresponds to a different class, showing intra-clas&il-

ity in the form of stochastic variability and changes in pasel
illumination.



Table 6. Percentage of errors on CUReT for different trgnin
sizes.

(4]

Training PCA SVM  LBP MRFs
size m=2 m=2 [3] [L6.3] [5]
23 09+0.1 3.3 18.23 22.43
46 0.09 + 0.05 11 3.96 2.46

(6]

ance of the scattering coefficients variability acrossizaal
tions. Global invariance to rotation and illumination ipr
vided by the PCA affine space models. They include the
main variation directions of scattering vectors due to-+ota
tions or illumination variations.

The dimension of affine approximation space models is
adjusted by cross validation tb= 6 andd = 22 respec-
tively for 23 and 46 training samples. The resulting error
rates are respectively9% and0.09%. With an SVM using
a polynomial kernel, the classification error for 46 tragin
samples per class increased t%. The intra class normal-
ized approximation errar? is only 2.5 - 10~2 when using
46 training samples, about half of the error produced in the
case of23 training samples, in which? is 5.3 - 1073, The
estimated separation ratio }s; = 8 and\; = 5 respec-
tively. Such low approximation errors are possible thanks
to the fast variance decay of scattering coefficients as the
scale increases and to the global invariance properties pro
vided by the affine spaces.

[7]

9]
[10]

[11]

4. Conclusion [12]

A scattering transform provides a locally translation in-
variant representation, which linearizes small defororet;
and provides co-occurrence coefficients which character—[1 ]
ize textures. For handwritten digit recognition and tegtur
discrimination with small training size sequences, a PCA
model selection classifier yields state of the art results.
Besides translations, invariance can be extended to any
compact Lie group&, by combining another scattering [14]
transform defined otr. The cascade of wavelet transforms
in L2(R?2) is then replaced by a cascade of wavelet trans-
forms inL2?(G) [11].

[15]
References
[1] J. Bouvrie, L. Rosasco, T. Poggio: “On Invariance in
Hierarchical Models”, NIPS 2009. [16]

[2] B.Haasdonk, D.Keysers: “Tangent Distance kernels
for support vector machines”, 2002.

[3] Guo,Z., Zhang, L., Zhang,D., “Rotation Invariant tex-
ture classification using LBP variance (LBPV) with
global matching”, Elsevier Journal of Pattern Recog-
nition, Aug. 2009.

K. Jarrett, K. Kavukcuoglu, M. Ranzato and Y. Le-
Cun: “What is the Best Multi-Stage Architecture for
Object Recognition?”, Proc. of ICCV 2009.

Larochelle, H., Bengio, Y., Louradour, J., Lamblin, P.,
“Exploring Strategies for Training Deep Neural Net-
works”, Journal of Machine Learning Research, Jan.
20009.

Y. LeCun, K. Kavukvuoglu and C. Farabet: “Convo-
lutional Networks and Applications in Vision”, Proc.
of ISCAS 2010.

T. Leung, and J. Malik; “Representing and Recogniz-
ing the Visual Appearance of Materials Using Three-
Dimensional Textons”. International Journal of Com-
puter Vision, 43(1), 29-44; 2001.

8] W. Lohmiller and J.J.E. Slotine “On Contraction Anal-

ysis for Nonlinear Systems”, Automatica, 34(6), 1998.

Lowe, D. G., “Distinctive Image Features from Scale-
Invariant Keypoints”, International Journal of Com-
puter Vision, 60, 2, pp. 91-110, 2004

Mairal, J., Bach, F., Ponce, J. , “Task-Driven Dictio-
nary Learning”, Submitted to IEEE trans. on PAMI,
September 2010.

S. Mallat  “Group Invariant
http://arxiv.org/abs/1101.2286.

Scattering”,

S. Mallat, “Recursive Interferometric Representa-
tion”, Proc. of EUSICO conference, Denmark, August
2010.

3] A.Y.Ng and M. I. Jordan “On discriminative vs. gen-

erative classifiers: A comparison of logistic regression
and naive Bayes”, in Advances in Neural Information
Processing Systems (NIPS) 14, 2002.

M. Ranzato, F.Huang, Y.Boreau, Y. LeCun: “Unsuper-
vised Learning of Invariant Feature Hierarchies with
Applications to Object Recognition”, CVPR 2007.

Tola, E., Lepetit, V., Fua, P., “DAISY: An Efficient
Dense Descriptor Applied to Wide-Baseline Stereo”,
IEEE trans on PAMI, May 2010.

M.Varma, A. Zisserman: “A Statistical Approach
To Material Classification Using Image Patch Ex-
emplars”. IEEE Trans. on PAMI, 31(11):2032—-2047,
November 2009.


http://arxiv.org/abs/1101.2286

	1 . Introduction
	2 . Scattering
	2.1 . From Wavelets to SIFT and Textons
	2.2 . Scattering Coefficients
	2.3 . Scattering Distance and Deformation Stability

	3 . Classification by Affine Model Selection
	3.1 . Handwritten digit recognition
	3.2 . Scattering Texture Classification

	4 . Conclusion

