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Abstract

Many computer vision problems can be accounted for or
properly approximated by linearity, and the robust model
fitting (parameter estimation) problem in presence of out-
liers is actually to find the Maximum Feasible Subsystem
(MaxFS) of a set of infeasible linear constraints. We pro-
pose a deterministic branch and bound method to solve
the MaxFS problem with guaranteed global optimality. It
can be used in a wide class of computer vision problems,
in which the model variables are subject to the unit norm
constraint. In contrast to the convex and concave relax-
ations in existing works, we introduce a piecewise linear re-
laxation to build very tight under- and over-estimators for
square terms by partitioning variable bounds into smaller
segments. Based on this novel relaxation technique, our
branch and bound method can converge in a few iter-
ations. For homogeneous linear systems, which corre-
spond to some quasi-convex problems based on L∞-L∞-
norm, our method is non-iterative and certainly reaches
the globally optimal solution at the root node by parti-
tioning each variable range into two segments with equal
length. Throughout this work, we rely on the so-called
Big-M method, and successfully avoid potential numerical
problems by exploiting proper parametrization and prob-
lem structure. Experimental results demonstrate the stabil-
ity and efficiency of our proposed method.

1. Introduction

To identify the maximum cardinality feasible subsystem
of an infeasible linear system Ax ≤ b with a real matrix
A ∈ Rm×n and a real column vector b ∈ Rm is known as
the Maximum Feasible Subsystem (MaxFS) problem [6]. It
has widespread application in mathematical programming,
machine learning and signal processing. However, it is NP-
hard to solve globally. There is an exact mixed integer linear
programming (MILP) formulation for the MaxFS problem
by introducing a binary variable yi, i = 1, 2, · · · ,m, for

each constraint. Specifically,

max
x,y

m∑
i=1

yi,

s.t.,
n∑

j=1

aijxj ≤ bi + (1− yi)Mi,

yi ∈ {0, 1}, i = 1, 2, · · · ,m,

(1)

where aij is the i-th row and j-th column element of A,
bi is the i-th element in b, and Mi is a sufficiently large
constant that deactivates the i-th constraint when yi = 0.
This is called as the Big-M method [6], which is usually not
appealing due to potential numerical problems. To avoid
overly largeMi, one possible solution [3] is to solve the fol-
lowing linear programming (LP) in case of tightly bounded
model parameter x, i.e., xlj ≤ xj ≤ xuj , j = 1, 2, · · · , n,

Mi = max
x

{aix − bi},

s.t., xlj ≤ xj ≤ xuj , j = 1, 2, · · · , n,
(2)

where ai is the i-th row of A, xlj and xuj denote the lower
and upper bounds of xj , respectively. Assuming that nu-
merical instability can be avoided, this MILP formulation is
preferable for medium-scale problems, since existing MILP
solvers can solve it to the globally optimal solution effi-
ciently in presence of dozens or hundreds of binary vari-
ables. See [16] for the latest benchmark tests.

Another well-known formulation of MaxFS is the linear
programme with equilibrium constraints (LPEC) [6], which
is in essence a bilinear programming problem. The LPEC
formulation reads

max
x,y

m∑
i=1

yi,

s.t., yi(aix) ≤ yibi,

0 ≤ yi ≤ 1, i = 1, 2, · · · ,m.

(3)

Although there is no binary variable involved, introducing
m×n bilinear terms never makes the problem much easier.
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Actually, the MaxFS problem is not isolated. The com-
plementary problem of the MaxFS is to find the minimum
number of linear constraints to remove such that the re-
maining subsystem becomes feasible, which is named as
the Minimum Unsatisfied Linear Relation (MinULR) prob-
lem [2]. A simple mathematical formulation is to introduce
m nonnegative variables si, i = 1, 2, · · · ,m, and minimize
the L0-norm of the vector s, i.e., the number of nonzero
elements in s,

min
x,s

∥s∥0

s.t., aix ≤ bi + si,

si ≥ 0, i = 1, 2, · · · ,m.

(4)

The MinULR problem is of the same importance, since it is
implicitly related to sparsity in many topics like sparse cod-
ing and compressive sensing. In spite of the difference in a
literal way, we actually have no need to make too much dif-
ference between MaxFS and MinULR, since they are usu-
ally interchangeable. In the remaining of this work, we shall
focus primarily on the MaxFS problem. Readers can easily
adapt our method to solve the MinULR.

1.1. Related Works

In the past few decades, numerous methods haven been
proposed to solve the MaxFS problem and its variants in
other research fields. The majority of existing algorithms
can only solve them heuristically, without a guaranty of
global optimality, like [15, 3] and the references therein.
Only a few works aimed at solving them deterministically,
typically the branch and cut method proposed by Pfetsch
[20]. However, these methods can not be easily used for
computer vision problems, since the constraints are gen-
erally regarded as being independent. In computer vision
problems, however, one image measurement usually deter-
mines two or even four linear constraints, and we prefer to
maximize the number of measurements while ensuring that
the resulting linear system is feasible.

Now we take a closer view at the robust fitting problem
in computer vision. Although the terminology of MaxFS
seems relatively new in the computer vision community,
the basic conception of MaxFS is identical to many long-
standing robust estimation techniques, such as the well-
known RANSAC [9] and its numerous recent extensions.
Due to their random nature, these methods would usually
not find the maximum feasible set exactly.

Recently, L∞-norm aroused a lot of attention due to the
quasi-convex structures in a class of multiview geometry
problems [11, 12]. In [12], Ke and Kanade pointed out
that outlier removal is actually to find the minimum num-
ber of infeasibility, and alternatively minimized the sum of
infeasibility, which is actually the L1-norm approximation
to the L0-norm. Dalalyan and Keriven [8] theoretically de-

fended the effectiveness of L1-norm for this class of prob-
lems. Based on the quasi-convexity, Kim and Hartley [21]
proposed to remove the measurements with the largest re-
projection error recursively, until feasibility is reached. Ols-
son et al. [18] accelerated the process significantly by using
duality. All these methods are different from random sam-
pling, and they can find a feasible subset, but not necessarily
the largest one.

One of the recent trends is to solve the robust fitting prob-
lem with guaranteed optimality. For problems with pseudo-
convexity, Olsson et al. [17] presented a hit-or-miss strategy
with a polynomial-time bound. When the problem can be
described by a linear system, the robust fitting problem be-
comes the MaxFS. Using the LPEC formulation in eq.(3),
Li [13] proposed a branch and bound method and applied it
to a wide class of problems based on Direct Linear Trans-
formation (DLT). However, too many bilinear terms are in-
volved and a quite rough initial branching region used, both
of which make the convergence quite slow even for slightly
larger problems. In [23], Yu et al. directly solved the MILP
formulation in eq.(1) by using a MILP solver, and reported
satisfactory performance for calibrated photometric stereo.
However, this idea can not be directly extended for other
problems, like those in [13], since we usually do not have
tight variable bounds at hand. Actually, Li [13] chose quite
rough variable bounds (±100 ∼ ±1000) to make sure that
the globally optimal solution is included. Using such wild
bounds in the MILP formulation would cause numerical
problems quite frequently.

1.2. Overview of Our Proposed Method

In this work, we are aiming at the global optimization for
the MaxFS problem, in which the model variables are sub-
ject to the unit norm constraint. The unit norm constraint
provides natural variable bounds with moderate width, and
improves numerical stability in the Big-M method of the
MILP formulation. Note that this desirable property comes
at the costs of introducing additional nonlinearity. We use
a branch and bound method to solve this challenging op-
timization problem. The novelty lies in the piecewise lin-
ear under- and over-estimators for square terms. To tighten
the relaxation, we partition the variable ranges into smaller
segments and transform the resulting disjunctive program-
ming into a MILP problem using the Big-M method again.
Based on the tight relaxation, our branch and bound method
can usually converge in a few iterations by choosing proper
number of segments. More interestingly, for homoge-
neous linear systems, which correspond to some L∞-L∞-
norm based quasi-convex problems, our branch and bound
method certainly converges to the globally optimal solution
at the root node, by partitioning each variable range into
two segments only. This actually means that our branch
and bound method is non-iterative for this special class of
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problems.

1.2.1 To Which Problems Our Method Applicable?

One might think the application of our method is limited
due to the unit norm constraint. However, this unit norm
constraint actually poses little restriction.

DLT Based Geometry Fitting Problems. The model
variables in all the problems in [13] are defined up to a scale.
It is natural to eliminate this scale ambiguity by introducing
the unit norm constraint. Therefore, our method can solve
all those problems, including line fitting, similarity estima-
tion, fundamental matrix estimation and so on.

Quasi-Convex Problems Using L∞-L∞-norm. Other
than the DLT, we can also use the geometrically meaningful
L∞-L∞-norm, under which the robust estimation of some
quasi-convex problems, such as homography estimation and
camera resection, is to find the MaxFS of a homogeneous
linear system Ax ≤ 0 with the unit norm constraint.

The triangulation problem is also quasi-convex. If the
translations of all the cameras are fully calibrated, the trian-
gulated point would usually not satisfy the unit norm con-
straint. However, after introducing an additional variable,
the unit norm can be satisfied. Note that it generally leads
to a nonhomogeneous system. Refer to the following case
for the basic idea.

PCA Based Model Fitting. Linear subspace methods
are widespread in computer vision, and the easiest un-
derlying mathematical tool is principle component analy-
sis (PCA). One example is the well-known Active Shape
Model (ASM) [7]. Assuming that the ASM has been trained
through PCA, we want to fit this model to an observation,
such that ϕ = Λθ + ϕ0, where Λ is the known transforma-
tion matrix and ϕ0 is the known translation vector. ϕ is a
noisy observation, and θ is the unknown low dimensional
latent variable. Generally, θ does not satisfy the unit norm
constraint. However, we can multiply an arbitrary positive
variable λ on both sides as λ(ϕ− ϕ0) = λΛθ. Let ψ = λθ,
and now it is reasonable to enforce that the augmented vec-
tor (λ, ψ) satisfy the unit norm constraint. Given a noise
tolerance δ, the ASM fitting problem can be easily trans-
formed into a MaxFS problem.

Our method can also be easily adapted to solve the pho-
tometric stereo problem in [23]. Certainly, there exist some
other applications to be discovered.

1.2.2 Our Contribution

Our contribution can be summarized as follows:
1. We introduce novel piecewise linear under- and over-

estimator for square terms. In terms of relaxation tightness,
this piecewise relaxation mechanism is superior over the
popular convex and concave relaxations in existing litera-
ture, such as [13, 5, 19].

2. We point out that some L∞-L∞-norm based quasi-
convex problems correspond to homogeneous linear sys-
tems, for which our method becomes non-iterative and
surely reaches the optimal solution at the root node by uni-
formly partitioning each variable bound into two segments.

3. Throughout this work, we rely heavily on the ”notori-
ous” Big-M method [6]. We show that it is actually a very
convenient tool in modeling MILP problem and the numeri-
cal instability can be avoided by taking advantage of proper
parametrization and problem structure.

2. Global Optimization to MaxFS with Unit
Norm Constraint

2.1. Problem Formulation

We are in favor of the Big-M based MILP formulation
in eq.(1). Unlike [23], in which this formulation is directly
used, we introduce the unit norm constraint ||x||2 = 1 , i.e.,

n∑
j=1

x2j = 1. (5)

From eq.(5), all the variables are naturally bounded by

− 1 ≤ xj ≤ 1, j = 1, 2, · · · , n. (6)

Undoubtedly, the globally optimal solution lies in these
bounds. Using these moderate bounds, Mi, 1 ≤ i ≤ m
can be easily determined by solving m linear programming
problems in eq.(2). Due to these mild bounds, in all our ex-
periments, we found that M is quite small, and numerical
problems never appeared. Note that the success in avoid-
ing numerical instability comes with costs, since we have to
handle the nonlinearity in the unit norm constraint (eq.(5)).

After introducing n additional variables wj such that
wj = x2j , the MaxFS problem becomes

min
x,y

−
m∑
i=1

yi

s.t., aix ≤ bi + (1− yi)Mi,

yi ∈ {0, 1}, i = 1, 2, · · · ,m,
n∑

j=1

wj = 1, wj = x2j ,

− 1 ≤ xj ≤ 1, j = 1, 2, · · · , n.

(7)

It is a challenging mixed integer nonlinear programming
problem, for which we develop a branch and bound method.
At each node, we relax the square terms to obtain a MILP
relaxation problem. Note that we do not directly relax the
binary variables yi, but leave them to a MILP solver. Cur-
rently, some decent softwares [16] can solve MILP prob-
lems efficiently, especially for medium-scale problems with
dozens or hundreds of binary variables.
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2.2. Relaxation for Square Terms

Given a region Φ = {x ∈ Rn|xlj ≤ xj ≤ xuj , j =
1, 2, · · · , n}, to build tight relaxation is the key to accelerate
the convergence of a branch and bound method. In existing
computer vision literature ([13, 5, 19]), the mainstream idea
is to build convex and concave relaxations for nonconvex
terms. In the sense of convexity and concavity, the tightest
possible relaxations are the convex and concave envelopes,
the bilinear envelopes in [13, 5, 19] as typical representa-
tives. However, if going beyond convexity and concavity,
we are able to build much more tighter relaxations.

Now we show how to build the under-estimator
under(w) and over-estimator over(w) of a square term
w = x2, xl ≤ x ≤ xu such that under(w) ≤ w ≤
over(w). Note that we omit the subscript j of xj in this
whole section for simplification.

2.2.1 Traditional Convex and Concave Relaxation

Let’s first consider the concave relaxation (or over-
estimator). Considering that the function f(x) = x2, xl ≤
x ≤ xu is convex, the concave over-estimator over(w), as
shown in Fig.1(a), is the chord connecting the two endpoints
(xl, (xl)2) and (xu, (xu)2) [19]. Specifically,

w ≤ (xl + xu)x− xlxu. (8)

The linear convex under-estimator under(w) is com-
posed of the two tangents at the two endpoints (shown in
Fig.1(c))

w ≥ 2xlx− (xl)2, w ≥ 2xux− (xu)2. (9)

We are interested in the relaxation quality. The gap be-
tween the original function and the concave relaxationG(x)
reads

G(x) = −x2 + (xl + xu)x− xlxu, (10)

and it is easy to recognize that the maximum gap is
(xu − xl)2/4. The same result holds for the convex re-
laxation. The observation that the maximum gap shrinks
with smaller bound width leads us to a novel piecewise re-
laxation method, in which each variable range is partitioned
into smaller segments.

2.2.2 Piecewise Linear Relaxation

We partition the variable range [xl, xu] into K smaller seg-
ments. For simplicity, we use uniform partitioning, so that
all these segments are of equal length. Let {[x(k), x(k +
1)], k = 1, 2, · · · ,K} denote these segments, where

x(k) = xl +
xu − xl

K
(k − 1), k = 1, 2, · · · ,K. (11)

Figure 1. Concave and convex relaxations v.s. piecewise linear re-
laxations for a square term. (a) and (c) are the concave and convex
linear over- and under-estimator, respectively. (b) and (d) are the
piecewise linear over- and under-estimator using K=2 segments,
respectively.

Clearly, xmust lie in one of theK segments or at the bound-
ary of two neighboring segments. Now, using the concave
relaxation in eq.(8) for each segment, we obtain the piece-
wise linear over-estimator over(w) (see Fig.1(b) for an ex-
ample with two segments), which can be described as the
following disjunctive programming [4]

OR

∣∣∣∣∣∣
W (k)

w ≤ [x(k) + x(k + 1)]x− x(k)x(k + 1)
x(k) ≤ x ≤ x(k + 1)

∣∣∣∣∣∣ . (12)

W (k) is the boolean variable (true or false) indicating the
status of the k-th disjunction. The OR logic dictates that
only one disjunction holds.

In order to transform the disjunctive logic into a concrete
mathematical programming model, we need to introduce bi-
nary variables and obtain a mixed integer program. Now we
introduce K binary variables such that

λ(k) =

{
1, if x(k) ≤ x ≤ x(k + 1)
0, otherwise

(13)

and
K∑

k=1

λ(k) = 1. (14)

We use the Big-M method again to obtain a MILP model as
follows

w ≤ [x(k)+x(k+1)]x−x(k)x(k+1)+[1−λ(k)]M, ∀k,
(15)
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Figure 2. Using piecewise linear relaxations to avoid degeneracy
for a homogeneous linear system. (a) The degeneracy can not be
avoided, if using traditional convex and concave relaxation. (b)
Using two segments for each variable range, the piecewise linear
relaxation can prevent the degenerate solution. The shaded area
indicates the feasible range after relaxing.

where M is a sufficiently large number so as to deactivate
the constraint when λ(k) = 0. However, to avoid numerical
instability, we should keep M as small as possible.

Through simple differential and limit operations, we note
that among all the over-estimators over the initial variable
range [−1, 1], the steepest one has a slope close to 2 (or -2),
and reaches its minimal value, i.e., -3, when x = −1 (or
x = 1). The maximum of w is 1, therefore, it is sufficient
to set M to 4. Note that such a M always holds effective as
the branch and bound proceeds.

The piecewise linear under-estimator under(w) is much
easier, without involving the disjunctive programming (see
Fig.1(d) for an example with two segments). Applying
the linear convex relaxation in eq.(9) to each segment, the
under(w) is composed of the following K + 1 linear in-
equalities

w ≥ 2x(k)x− x(k)2, k = 1, 2, · · · ,K,
w ≥ 2x(K + 1)x− x(K + 1)2.

(16)

Introducing n × K additional binaries and establishing
the piecewise relaxations for all n square terms in the same
way, we obtain the MILP relaxation problem. It is easy
to recognize that the relaxation becomes tighter when us-
ing more segments, thus expectedly less iterations needed
for convergence. On the other hand, more binary variables
should be introduced and the relaxation problem at each
node becomes harder to solve. To reduce the total time of
the whole branch and bound iterations, we should choose
properly the number of segments and trade off between the
relaxation quality and the size of the relaxation problem.

2.3. Branch and Bound Algorithm

Our branch and bound algorithm is similar to those in
many other computer vision works [13, 5, 19]. We should
note the difference between branch and partition mentioned

above. Actually, partition is a sub-step in the bound pro-
cess, and independent of the branch process.

Initial Branching Region. The region defined by the
natural variable bounds in eq.(6) is the initial region.

Lower Bound and Upper Bound. When solving the
MILP relaxation problem, we obtain the optimal objective
and regard it as the lower bound (LB) for the current region.
We also obtain the optimizer of x, which usually does not
satisfy the unit norm constraint until the globally optimal
solution is reached. However, we can normalize this opti-
mizer to unit norm and then count the number of feasible
constraints. We use this number, actually multiplied by -1,
as the upper bound (UB) for the current region. Unfortu-
nately, we experimentally found that such a simple strategy
causes slow convergence. To remedy this problem, we pro-
pose to refine the current optimizer through local optimiza-
tion. We solve the nonlinear optimization problem com-
posed of the LPEC formulation in eq.(3) and the unit norm
constraint in eq.(5), starting from the optimizer of the MILP
relaxation problem. Through this local optimization, we get
a refined x usually with unit norm. We normalize it to unit
norm just for safety, and count the number of feasible con-
straints. One might worry about the correctness of using the
LPEC formulation, while our objective is to solve the MILP
formulation. We argue that it would not cause any problem,
since we always normalize x to unit norm and then count
the feasible constraints as the upper bound.

Branching Strategy. In the list of sub-regions, we
choose to branch on the one with the lowest lower bound
at the midpoint of its longest side. This simple heuristic
strategy works well in all our experiments.

Convergence. We terminate the branch and bound itera-
tion when the absolute gap between the current best upper
bound and lower bound converges to zero. This zero-gap
tolerance guarantees that our method reports the globally
optimal solution, in contrast to a ε-suboptimal solution in
the majority of existing works, like [5, 19].

Actually, many works using the branch and bound
method have appeared in the computer vision community,
like [13, 5, 19]. Therefore, the detailed procedures are omit-
ted here.

2.4. A Special Case ­ Homogeneous Linear Systems

When b = 0, the linear system degenerates into a homo-
geneous linear system Ax ≤ 0. An important property is
that the homogeneous system always holds when multiply-
ing the left-hand side by any positive constant, which means
that, for this special case, our branch and bound method
surely reaches the zero-gap and thus converges at the root
node. However, we should take care of the degenerate case
that the whole homogeneous linear system is trivially feasi-
ble when x = 0. Interestingly, by using our piecewise linear
relaxations, this trivial solution can be avoided. It is desir-
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Figure 3. Results for robust fundamental matrix estimation. (a) Among 63 tentative point pairs, our optimal method found 55 inliers and 8
outliers. (b) The epipolar lines estimated from the N8P method using 55 inliers (only 4 lines shown). (c) The statistics of RANSAC over
5000 runs. The red arrow indicates the position our result lies. (d) After 10,000 iterations, there still is a wide gap in Li’s method [13]. (e)
Yu et al.’s method [23] had numerical problems, and found 14 ”inliers” only.

Relax. Root Node Whole Algorithm
UB/LB UB/LB Iterations Time(sec.)

Con. -1/-63 -55/-55 535 4729.3
K=2 -49/-56 -55/-55 21 84.0
K=4 -55/-55 -55/-55 0 12.6
K=6 -55/-55 -55/-55 0 31.8

Table 1. Convex/concave relaxations v.s. piecewise linear relax-
ations with varying segments.

able to use as few segments as possible, while making sure
that the degeneracy can be avoided.

What’s the minimum number of segments? The answer
is two. In the MILP relaxation problem, the only con-
straint to prevent x = 0 is the relaxed unit norm constraint∑n

i=1 wi = 1. Using the traditional convex and concave
relaxation, the degenerate solution can not be avoided. As
shown in Fig.2(a), when xj = 0, j = 1, 2, · · · , n, wj can be
any number in the range [−1, 1], therefore, the relaxed unit
norm constraint can be easily satisfied. In contrast, when
using piecewise linear relaxations with two segments for
each variable range (see Fig.2(b)), the relaxed unit norm
constraint can never be satisfied when x = 0. The reason is
that wj must be zero when xj = 0, j = 1, 2, · · · , n.

3. Experimental Results
In this section, we show some applications of our method

in various practical problems. We introduce one binary vari-
able for each image measurements, and maximize the num-

ber of measurements such that the resulting linear system
is feasible. All codes are implemented in Matlab, and run
on a desktop with Intel Quad 9650 3.0GHz CPU and 3GB
RAM. We use the leading LP/MILP solver GUROBI [1] to
solve all the LP and MILP problems. The GUROBI soft-
ware solves MILP problem by using a parallel branch and
cut method and reports the globally optimal solution if it
exists. We enable the parallel mode and report the actual
elapsed time, not the CPU time. As to the local optimization
for refining the upper bound, we use the fmincon function-
ality in Matlab. In addition, whenever possible, we prop-
erly normalize the coordinates of image measurements to
improve the numerical stability further.

3.1. Robust Fundamental Matrix Estimation

As a representative of the class of DLT-based fitting
problems, robust fundamental matrix estimation is consid-
ered here. We assume a perspective fundamental matrix
with 9 variables in the model parameter vector x, in contrast
to the affine fundamental matrix in [13]. The rank-2 con-
straint is not enforced. We use two images from the well-
known Oxford house sequence. 63 tentative point corre-
spondences are established by matching SIFT feature points
with a matching threshold of 0.7 [14]. For this case, we use
a noise tolerance of 0.25, i.e., setting T=0.25 in [13].

First of all, we used our method and found the maximal
inlier set with 55 point pairs(Fig.3(a)). Fig.3(b) shows the
epipolar geometry estimated from the normalized 8-point
(N8P) method [10] using 55 inliers. Table 1 shows the

1830



Figure 4. Results for robust homography estimation. Among 98
tentative correspondences, our optimal method took 21 seconds
and found 83 inliers (shown in green at the left side) and 15 outliers
(shown in red at the right side).

performance of piecewise linear relaxations using various
number of segmentsK, as well as that of the traditional con-
vex and concave relaxation. As expected, using more seg-
ments will generate tighter relaxation, and reduce the num-
ber of iterations, but not necessarily the running time of the
whole branch and bound algorithm. Using K=4 segments
(the best choice for this problem), our method reaches the
globally optimal solution at the root node in 12.6 seconds,
which is much faster than using the traditional convex and
concave relaxation.

After that, we tested the performance of RANSAC by
repeating 5000 times and counting the reported inliers for
each run. Fig.3(c) shows the statistics, from which we see
that RANSAC rarely reports the maximum inlier sets, and
our result is better than those of RANSAC over 5000 runs.

We also implemented the branch and bound method by
Li [13] and the direct solving of the MILP formulation by
Yu et al. [23] for comparison. Since the variable ranges
can not be easily determined for these two methods, we use
the conservative range [−500, 500] for each variable. Note
that in [13], Li even used [−1000, 1000]. For the method
in [13], we need to handle 63×8 bilinear terms, and branch
in a very huge 8-D space defined by the variable ranges,
after setting the last element of the fundamental matrix to
1. Both factors make the convergence quite slow. Fig.3(d)
shows the progress of Li’s method, from which we see that
there is still a wide gap between the upper and the lower
bound after 10,000 iterations (about 1200 seconds). Yu
et al. [23] directly solved the MILP formulation in eq.(1).
However, when solving a problem with so wide variable
ranges, GUROBI reported numerical problems and returned
an inaccurate solution with 14 feasible pairs only (Fig.3(e)),
some of which are actually outliers.

3.2. Robust Homography Estimation

This can be regarded as an example for some L∞-L∞-
norm based quasi-convex problems. The resulting linear
system is homogeneous, thus we use two segments for each
variable range. Our method certainly reaches the globally

Figure 5. Results for robust ASM fitting. For each row, from left
to right are the original noisy observation, (i) direct LLS result
without outlier removal, (ii) LLS result using inliers from L1-norm
method and (iii) LLS result using inliers from our optimal method.

optimal solution at the root node. The traditional convex
and concave relaxations are not appropriate due to degener-
acy described in section 2.4.

We used two views from the Oxford Valbonne Church
sequence and established 98 tentative correspondences by
setting the matching threshold to 0.7. A noise tolerance of
0.2 was used here. Among 98 tentative pairs, our optimal
method took 21 seconds and found 83 inliers and 15 outliers
as shown in Fig.4.

Then, we compared our result with those from the dual-
ity method in [18] and the L1-norm method in [8]. The du-
ality method retained 75 inliers, while the L1-norm method
72 inliers. In spite of their efficiency, our method offers
the best solution, certainly at the cost of reasonably higher
computational burden.

Similar to the previous experiment, we used the conser-
vative range [−500, 500] for each model variable for Li’s
and Yu et al.’s methods. For this problem, Li’s method con-
verged to the optimal solution after 4251 iterations and took
about 1920 seconds. The GUROBI solver reported numeri-
cal problems for Yu et al.’s method and returned an inaccu-
rate solution, which is feasible to 26 point pairs only.

3.3. Robust ASM Fitting for Human Face

As an example of robust PCA based model fitting, we
consider the ASM fitting problem for human face. We used
the dataset provided by Cootes [22]. We used 52 markers on
each image and trained an ASM model with 9 shape modes
through eigenvalue decomposition. After that, we added
some random outliers to simulate noisy observations. We
fit the trained ASM model to each noisy observation sepa-
rately by using the linear least square (LLS) method. We
consider three different strategies: (i) using noisy data di-
rectly without removing outliers, (ii) using inliers reported
by the L1-norm method and (iii) using inliers from our op-
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timal method. The L1-norm method is an approximation to
the L0-norm in eq.(4). Fig.5 illustrates the results for two
test cases. For the case shown in the first row, our opti-
mal method took 67 seconds and found the maximum set
with 48 inliers at the root node by using 6 segments, while
the L1-norm method found 16 inliers only. As expected,
the LLS method using noisy data directly has poor perfor-
mance, while L1-norm method has the risk of removing too
many inliers incorrectly and the final result is meaningless.
For the case shown in the second row, our optimal method
found 49 inliers as the maximum feasible set, while the L1-
norm method found 26 inliers. For this case, these reported
26 inliers provide sufficient information for a satisfactory
fitting. Visually comparing the results shown in Fig.5, the
LLS using inliers from our optimal method always has the
best performance.

4. Conclusion

We have shown a branch and bound method for the maxi-
mum feasible subsystem (MaxFS) problem with application
to robust model fitting (parameter estimation). The novelty
lies in the unit norm constraint to improve numerical stabil-
ity and the piecewise linear relaxations for square terms to
tighten relaxation. Due to this novel relaxation technique,
our branch and bound method can generally converge in a
few iterations. Particularly, for homogeneous linear sys-
tems, our method certainly converges to the globally op-
timal solution at the root node by partitioning each variable
range into two segments with equal length. Experimental
results demonstrated its superiority over two existing opti-
mal methods in terms of numerical stability and (or) com-
putational efficiency.

Currently, our method is reasonably efficient for
medium-scale problems with about one hundred image
measurements and ten variables in the model. For lower
dimensional problems like line fitting and similarity esti-
mation, our method can easily handle hundreds of measure-
ments. One possible method to improve the scalability fur-
ther is to warm-start the MILP solver by using non-optimal
methods, like RANSAC and L1-norm method.
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