Loading [a11y]/accessibility-menu.js
A generative model for 3D urban scene understanding from movable platforms | IEEE Conference Publication | IEEE Xplore

A generative model for 3D urban scene understanding from movable platforms


Abstract:

3D scene understanding is key for the success of applications such as autonomous driving and robot navigation. However, existing approaches either produce a mild level of...Show More

Abstract:

3D scene understanding is key for the success of applications such as autonomous driving and robot navigation. However, existing approaches either produce a mild level of understanding, e.g., segmentation, object detection, or are not accurate enough for these applications, e.g., 3D pop-ups. In this paper we propose a principled generative model of 3D urban scenes that takes into account dependencies between static and dynamic features. We derive a reversible jump MCMC scheme that is able to infer the geometric (e.g., street orientation) and topological (e.g., number of intersecting streets) properties of the scene layout, as well as the semantic activities occurring in the scene, e.g., traffic situations at an intersection. Furthermore, we show that this global level of understanding provides the context necessary to disambiguate current state-of-the-art detectors. We demonstrate the effectiveness of our approach on a dataset composed of short stereo video sequences of 113 different scenes captured by a car driving around a mid-size city.
Published in: CVPR 2011
Date of Conference: 20-25 June 2011
Date Added to IEEE Xplore: 22 August 2011
ISBN Information:

ISSN Information:

Conference Location: Colorado Springs, CO, USA

Contact IEEE to Subscribe

References

References is not available for this document.