A Brute-Force Algorithm for Reconstructing a Scene from Two Projections

Olof Enqvist

Fangyuan Jiang

Fredrik Kahl

Centre for Mathematical Sciences, Lund University, Sweden
{olofe, fangyuan, fredrik}@maths.lth.se

Abstract

Is the real problem in finding the relative orientation
of two viewpoints the correspondence problem? We argue
that this is only one difficulty. Even with known correspon-
dences, popular methods like the eight point algorithm and
minimal solvers may break down due to planar scenes or
small relative motions. In this paper, we derive a simple,
brute-force algorithm which is both robust to outliers and
has no such algorithmic degeneracies. Several cost func-
tions are explored including maximizing the consensus set
and robust norms like truncated least-squares.

Our method is based on parameter search in a four-
dimensional space using a new epipolar parametrization.
In principle, we do an exhaustive search of parameter
space, but the computations are very simple and easily par-
allelizable, resulting in an efficient method. Further speed-
ups can be obtained by restricting the domain of possible
motions to, for example, planar motions or small rotations.
Experimental results are given for a variety of scenarios in-
cluding scenes with a large portion of outliers. Further, we
apply our algorithm to 3D motion segmentation where we
outperform state-of-the-art on the well-known Hopkins-155
benchmark database.'

1. Introduction

Already in 1981, Longuet-Higgins suggested a simple
and yet elegant solution to the problem of finding the rel-
ative orientation of two viewpoints [10]. The algorithm,
known as the eight point algorithm, still plays a major role
in computer vision [8]. However, the algorithm suffers from
many degeneracies, e.g., if the scene is planar then the algo-
rithm fails. Perhaps even more serious is that the algorithm
assumes that the correspondence problem is already solved.
Therefore, more robust approaches have been developed to
cope with outliers. Here RANSAC methods using minimal
solvers are considered to be state-of-the-art [12, 3]. Still,
the problem of algorithmic degeneracies remains for mini-
mal solvers.

This work was supported by the European Research Council (grant
209480) and the Swedish Foundation for Strategic Research.

2961

Another problem that has been recognized by sev-
eral researchers is the importance of optimizing a suit-
able cost function, where costs based on reprojection er-
rors are preferable to algebraic errors [8]. Bundle adjust-
ment does optimize the statistically correct criterion (given
that measurement errors are independent and normally dis-
tributed), but the method is sensitive to initialization. There-
fore global optimization algorithms have been developed
[9, 7,5, 2] which are not susceptible to local minima.

Looking back at 30 years of algorithmic development
since the eight point algorithm [10], a set of criteria has
emerged that we believe a good relative orientation algo-
rithm should possess:

(i) Robustness to outliers,

(ii) No algorithmic degeneracies,
(iii) Cost function based on reprojection errors,
(iv) Not dependent on a good initialization,

(v) Practical.

For example, RANSAC is designed to fulfill (i), requires no
initialization (iv) and has been successfully applied in many
real systems (v), but the method does not meet objectives (ii)
and (7ii). Similarly, recent global relative orientation meth-
ods [7, 5] do meet criteria (ii)-(iv), but cannot be considered
to be practical (v) since the running times are in some cases
extreme (order of minutes). In practice, a heuristic combi-
nation of different algorithms is often used to overcome the
difficulties in fulfilling these objectives. For example, ho-
mographies are often used to detect if the scene is planar
or if the motion is a pure rotation. Another example of this
phenomena is that particular motions have been examined
separately [15].

In this paper, an algorithm using exhaustive search is de-
veloped and it fulfills (i)-(iv) by design. For example, pro-
vided that the discretization of the parameter space is fine
enough, the method is guaranteed to find the globally opti-
mal solution. The key idea in order to make it practical is
that the expensive computations are done in lower dimen-
sions, and only very simple calculations are required in the
high-dimensional search. The ultimate proof is of course
by showing that it works on real experiments - this is done
in the experimental section. In particular, when applied to

3D motion segmentation, our approach significantly outper-
forms state-of-the-art methods on 104 video sequences in
the Hopkins 155 database [14]. Note that the database con-
tains a variety of relative motions and scenes that are con-
sidered to be degenerate for several of the above standard
algorithms.

2. Preliminaries

Consider two views of a scene. Let denote an image
point - represented by a unit vector - in the first view and
2’ the corresponding image point in the second view. The
assumption is that these are both the projection of some 3D
point X . If we choose a global coordinate system such that
the first camera lies at the origin and the second camera at
t=(0,0,1)T, we get

ARz =X, NRa2 =X-—t, (1)
where R and R’ are 3 x 3 rotation matrices and A and X\
positive reals. Note that A and)\’ are distances rather than
depths. To simplify the derivations, we will assume that
there are no points at infinity, although the method works

just as well with points at infinity.

Theorem 1. Let R and R’ be rotation matrices with row
vectors r1,12,75 and 11,15, 14, respectively and x and '
corresponding points. Then,

(rix,rom) = k(ria’,rha’) with k > 0, 2)
r3x > réz’, 3)
if and only if there exists a 3D point X satisfying (1).
Proof. Clearly
1— 2
po Mowral 12
[|(rya’, roa)| 1 — (rga’)?
Let X be the solution to
Arsz — 1= Nkrja!, 5)

and put X' = A\k. From k < 1 and rgx > 742’ it is straight-
forward to show that A > 0 and hence \' > 0. Now let
X = ARx. To see that (1) is satisfied, consider

AT
X—-t=ARx—t= Arox (6)
Arsx — 1
but by (2) and (5) this is equal to
(Merla’ Merba! Merga' VT = NRZ. ()
This proves the if part and only if follows easily from (1).
O

2962

The description gets even simpler if we switch to spher-
ical coordinates,

sin 6 cos sin &’ cos ¢’
Rz =| sinfsing |, Rz’ =] sin® siny’
cos 6 cos 6’
®)
Now the necessary and sufficient constraints are
p=¢ andf <0)

Remark 1. In this article angles are considered equal if
they are equal modulo 2w but to simplify the presentation
this is not always written explicitly. For example £ € [a, (]
if € + 27k does for some k € 7.

The next step is to allow measurement errors. We say
that corresponding points x and =’ are consistent with a rel-
ative orientation if the reprojection errors are less than some
prescribed threshold, e. In this article we will constrain the
angular reprojection errors, i.e.

Z(Rr,X)<e and Z(R'z', X —t)<e. (10)
Theorem 2. Consider rotation matrices R and R’ and
spherical coordinates as defined in (8). Further define w
in the following way. For 6 < 0,
1D

w = arcsin(sin €/ sin 0) + arcsin(sin €/ sin §’),

if this is defined and otherwise w = . For 0’ < 0 < 6’ +2¢

2¢ — 0 0
W = arccos o8 E, CO,S cos , (12)
sin @ sin ¢’
if this is defined and otherwise 7. Then,
0 <0 + 2
p €l —w, ¢ +wl, (13)

if and only if the angular reprojection errors are less than €.

Proof. See Appendix A. O

3. A Search Algorithm

The proposed method for estimating relative orientation
is to search for rotation matrices R and R’ satisfying Theo-
rem 2 for as many point correspondences as possible.

Naturally, using two rotation matrices to represent a rel-
ative orientation is an overparameterization. In fact if S is
a rotation about the z-axis, then (R, R") and (SR, SR’) de-
scribe the same relative orientation. We will soon see how
to avoid this ambiguity, but first we need a method to ex-
pand a unit vector to a rotation matrix. More precisely, let

I" be a function that maps a given unit vector 7 to a rota-
tion matrix, I',-, having r as its third row. Then any relative
orientation can be written as

R=S.yand R =T (14)

where S, is a rotation by « about the z-axis. Hence the
set of parameters consists of two unit vectors and an angle
a. Now consider the spherical coordinates in (8). Only ¢
depends on . Let ¢(r) denote the value if « = 0. This
changes the last constraint of Theorem 2 to

o(r) +ae o (r) —w, ¢ (r) +wl, (15)

which is easily translated to a constraint & € [aye, Qtyp),
where

ao = ¢'(r') = p(r) —w

aup = @' (1) — p(r) + w. (16)

Each pair of corresponding points yields such an interval
and by sorting these lower and upper bounds for all corre-
spondences, one can find the interval having the maximal
number of inliers; see Algorithm 2.

Algorithm 1. Brute-Force Search

For a given level of discretization and error threshold €, a relative
orientation having the maximal number of inliers nmax is com-
puted.

Compute a discretization, D of 52,
For eachr € D
For each x
Compute ¢(r), (r) and v(r).
For each =’
Compute ¢’ (), ¢’ (r) and v’ (r).
Put nyaz =0
For each pair (r,r') € D x D
For each correspondence (z, z")
0’ (r') +e>0(r) — e
Compute w = v(r) + v’ (v').
A lower bound o, = ¢ (") — (1) — w.
An upper bound ., = ¢’ (r') — (1) + w.
Find the max intersection n, using Algorithm 2.
If n > nmax
Store the current parameters.
Set Nmax = N.

Now we are ready to look at the complete algorithm; see
Algorithm 1. The idea is to perform a search for vectors
r and 7’. Since both vectors have unit length they lie in
52, being the unit sphere in R?, and the search space is a
discretized version of S? x S2. For each pair (r,r’) we
compute the lower and upper bounds on o which are given
in (16). We sort these bounds and compute the maximal
number of inliers. Hence the complexity of the algorithm is

2963

O(k?mlog(m)) where k is the number of points in the dis-
cretization of S? and m is the number of correspondences.

Remark 2. As it matters only rarely and complicates the

description, we ignore case 2 in the computation of w. Thus

w can always be divided into
w=uv+v 17)

where v does not depend on x' and v’ does not depend on
x.

Algorithm 2. Maximal Intersection

Given lower bounds L and upper bounds U, a point is found that
lies in as many intervals as possible. Outputs the number of inter-
secting intervals, n and the point.

Sort £ and U.
Initialize j = 1 and n = 0.
Fori e {1,...,|L|}
While U; < L;
Increase 5 = 5 + 1.
Ifi—j>n
Store L;.
Setn=1—j.

4. Other Cost Functions

So far we have simply counted the number of inliers to
assess the quality of a relative orientation. Inliers are corre-
spondences with the reprojection errors less than some pre-
scribed threshold, €. This approach is simple and generally
yields good results, but it does have its limitations; see [8].
One problem is that the method might be sensitive to the
choice of ¢, but also that the distribution of the inlier errors
are not considered. In [1] a more refined cost function is
proposed. The assumption is that correct matchings have a
clock-shaped error distribution similar to the Gaussian dis-
tribution, whereas incorrect matchings have approximately
uniformly distributed errors. These assumptions lead to the
cost function

C(d) = —log (c + exp (—d?)) (18)
where d is the reprojection error; see Figure 1. In the same
book it is noted that a good approximation of this cost func-
tion can be obtained by truncating the ordinary squared er-
ror. A cost function of this kind cannot be handled di-
rectly by the proposed method, but one can approximate
the function to arbitrary precision. An example of such an
approximation is shown Figure 1. As the reprojection er-
ror increases it changes value three times. This means that
when computing w in Algorithm 1, we should do so for

T

Cost

0

0
Reprojection error

Figure 1. The robust cost function (red) suggested in [1], and a
piecewise constant approximation of it (blue) which can be opti-
mized using the proposed framework.

three thresholds €, €2, €3. Consequently each correspon-
dence will yield three intervals Iy C I C I3 - one for each
time the value of the cost function changes. The different
types of intervals also get a weight indicating how much the
cost function changes when entering this interval.

In Algorithm 2 we get three lists of lower bounds L,
Lo and L3 and similarly for the upper bounds. The differ-
ent lists are sorted separately and then gone through like
before. Passing a lower bound from £;, weight w; is sub-
tracted from the current cost, and passing an upper bound
from U; the same weight is added. The computational cost
will be approximately linear in the number of steps of the
cost function.

5. Restricted Motions

One advantage of the suggested approach to relative ori-
entation estimation, is that restricted motions can be han-
dled easily. In this section we present a few standard re-
strictions and discuss how they can be enforced.

Planar motion. If the rotation axis is known and perpen-
dicular to the translation, this can be used in the following
way. Let f be the rotation axis. We get the following con-
straints,

rsf =0, r5f=0 and a=0 19)
The first two constraints can easily be enforced in the dis-
cretization step. Only epipoles in these planes are gener-
ated. The third constraint reduces the set of angles that has

to be considered in Algorithm 2.

Small motion. In tracking applications, the motion be-
tween consecutive frames is generally small. This can eas-
ily be enforced by adding constraints

Z(r3,m4) < Ymaz and @ < amag- (20)
These constraints reduce the number of pairs that have to be
considered in Algorithm 1.

2964

6. Motion Segmentation

To examine how well the brute-force algorithm works
in practice, it was tried in a simple system for motion seg-
mentation. Given a sequence of images of multiple moving
objects, the aim of motion segmentation is to estimate all
these motions as well as the motion of the camera. More-
over, each detected feature point should be classified as be-
longing to one motion.

Algorithm 1 Multiple Motions

Given two views A and B with multiple moving objects and
point tracks 7, N hypothetical motions are estimated. An
extra view C'is used to validate motions.

Repeat N times
SetH ="T.
For the view pairs (A, B), (A,C), (B,C)
Estimate relative orientation using H and threshold €.
Remove tracks with error larger than €5 from H.
Reestimate a relative orientation between A and B using
‘H and threshold e,. Store this solution.
Set T =T\ H.

Like much of the work in this field, we assume that the
number of motions is known. For the discussion let us as-
sume that this number is three. A seemingly straightforward
approach to segmentation would be to keep track of the top
three motions in our brute-force search, but this turns out
be difficult in practice. The peaks in the relative orientation
space are rather flat and it is hard to distinguish different
motions.

Therefore, we proceed in a sequential manner using Al-
gorithm 3. The first step is to estimate /N hypothetical mo-
tions. This is done in a sequential manner, using Algo-
rithm 1. Typically, N is chosen significantly larger than the
true number of motions not to miss any motion. The next
step is to choose three of these /N motions to perform the
motion segmentation. We do this by going through all pos-
sible choices of three motions and choosing choosing the
ones that yield the lowest number of outliers. Just as in Al-
gorithm 1 outliers are tracks having an error larger than es.
Having decided on three motions we match each point track
to that motion which yields the smallest errors.

The classification obtained in this manner can be refined
by standard bundle adjustment. Details are given in the ex-
perimental section.

6.1. Adding a Spatial Prior

To further improve the motion segmentation results, we
tried using a spatial prior assuming that close points prob-
ably belong to the same motion. We formulate the spatial
prior in an energy minimization framework with a data term

and a smoothness term,

C(x) = Z Cp(ap) + A Z Cpq(p; T4).

peV (p.9)€E

2L

Here G = (V, E) is an undirected graph. The set of
nodes V corresponds to the point tracks and x,, denotes the
label of node p. The edges E describes the neighborhood
relationship. We use the reprojection error of point p as data
term C),(z,) and define the smoothness term as,

0
dmazx 7d(p,q)

dmaax

ifx, =,

if 7, # 2, 22

Cpq(@p, Tq) = {

where d(p, ¢) denotes the Euclidean distance of point p and
q and d,, 4 s a threshold to define the size of the neighbor-
hood. If d(p, ¢) < dmaz, then (p,q) € E. This smoothness
term will penalize the case when two points lie close to each
other but belong to different motions. The constant A deter-
mines the balance between the data and smoothness term.
Energy minimization was performed using a-expansions;
see [?].

7. Parallel Implementation

Normally, the weakness of a brute-force algorithm is
its computational performance. However, studying Algo-
rithm 1 we note that the computations for different pairs
(r,r') are independent, so we can easily parallelize the algo-
rithm using a MapReduce model. In the Map step, the lower
and upper bounds are sorted simultaneously and then inter-
sections are computed simultaneously for all pairs (r,r’).
In the Reduce step, the pair (r, ') that yields most inliers is
picked by reduction operations.

Nvidia’s parallel computing architecture, CUDA, was
used for the parallel implementation. Algorithm 2, was
implemented in a 2-dimensional grid with k by & blocks,
where k is again the number of points in the discretiza-
tion. Each block executes the computation for one pair
of epipoles, (r,r'). Inside each block, a parallel bitonic
sorting algorithm with complexity O(n log(n)?) is imple-
mented since it is well-suited for sorting within a block us-
ing shared memory. To find the maximum intersection, each
thread goes through the upper bound list to find the maxi-
mal intersection for the current lower bound. This is done
using binary search.

In the end, the parallel implementation is up to 30 times
faster than the serial implementation, making the perfor-
mance of our algorithm quite practical. To make sure global
memory access coalescing, we pad the lower and upper
bounds with dummy values. Constant memory is used to
store the epipoles during the computation of spherical coor-
dinates. This works to reduce global memory latency.

2965

8. Experiments

For the testing we primarily used the GPU implementa-
tion. Timings are for 3GHz Core2 Duo with 8§GB Memory
with an NVidia Tesla 2050 with 3GB global memory.

To get some data on the execution times, synthetic data
was generated. First 100 random 3D point were generated
in a cube centered at the origin, having side 300. The cam-
eras were placed randomly at distance of approximately
1000. Gaussian noise with standard deviation 0.0002 was
added to the image points. Figure 2 shows angular errors in
rotation and translation when compared to the ground truth.
The threshold e = 0.005 was used with different degrees of
discretization.

0.4

. . .
1500 2000 2500
Number of discretized samples

o
w

o

Error (radians)
N

o

560 1060 3060
Figure 2. The plot shows errors for different discretizations. The
error in rotation is shown in red and the error in translation is
shown in blue.

o m &

|
|
i
|
+
|

Running time (s)

- 1 ! "
250 300 350 450
Number of points

200 500

Figure 3. Execution times for different discretizations. Starting
from below the curves were generated using 700, 1258, 1976 and
2862 points in the discretization of the unit sphere, S2.

8.1. Other Cost Functions

To verify the possibility of using other cost functions we
tried it on some random data generated as described above.
Using the appoximated truncated Lo norm in the way de-
scribed in Section 4 the rotational error decreased from the
average 0.17 radians to an average of 0.11 radians. This
was using 1100 points in the discretization. The threshold
for the standard method was ¢ = 0.005 and the thresholds
for the approximate truncated Lo was set to €/2, €, 3¢/2 and
2e.

8.2. Outliers

To test the proposed algorithm on data with a lot of out-
liers, synthetic data was generated in the following way.

First 50 random 3D point were generated in a cube centered
at the origin, having side 100. The cameras were placed
randomly at distance of approximately 1000. Then 450 out-
liers were added to each image. They were generated in the
same way as the inliers but separately for the two images.
Gaussian noise with standard deviation 0.0002 was added
to the image points. Figure 4 shows how many of the 50
inliers were found by the proposed algorithm. The thresh-
old € = 0.0005 was used in the algorithm and the average
computation time for the parallel implementation was 6s.

IS
&
T

@
&
T

n
8
T

Number of inliers

3
T

Figure 4. The number of inliers for the 50 outlier experiments. The
list was sorted for better visualization. In each example there were
50 inliers and 450 outliers. The error threshold was e = 0.0005
and 1976 points were used in the discretization of the sphere.

The outlier rate in these experiments was 90%. This
means that using standard RANSAC and a five-point solver,
the expected number of iterations before picking just one
single set with 5 inliers is 100 000 and using reprojection
errors that also means performing 50 million triangulations.

8.3. Planar Motion

The performance on planar scenes was tested on 64 im-
age pairs from eniro.se. These are street-view images taken
from a car so the motion is approximately planar. Since
the images are given with direction information we could
compute the deviation between the estimated rotation ma-
trix and the ground truth. This deviation in radians is given
in Figure 5. The results were produced using 100 points
to discretize the unit circle and a threshold of 0.0005. The
average execution time was 0.47 s for a sequential java im-
plementation.

0.3

0251

0.2

0.15F

Rotational error (radians)

Figure 5. Angular error when comparing with the ground truth
rotation.
8.4. Motion Segmentation

We will now look at the performance of this 3D motion
segmentation algorithm for rigid scenes from the Hopkins

155 database [14]. Current state-of-the-art results are re-
ported in [4] and all the top performers are included in the
comparison below. In each sequence, there are typically 20-
30 frames and a few hundred 2D feature tracks given. The
number of motions in each sequence is also specified.

Some of the sequences contain articulated motions to
which the presented framework does not apply. Therefore
we focus on the subset of checkerboard sequences, 26 se-
quences with 3 motions and 78 sequences with 2 motions,
hence 104 out of the 155 sequences are considered. Based
on [4], one can conclude that the checkerboard sequences
are the most difficult ones as the classification errors are
significantly lower for the remaining ones.

All of the top performing algorithms are based on the
affine camera model. Hence they are not dependent on the
internal calibration of the cameras, whereas we assume cal-
ibrated cameras. To resolve this, the principal point is set to
the middle of the image and the focal length to 700 pixels
for images of size 480 x 640. This is the size for all se-
quences, but the last one, which has frame size 240 x 320
and consequently we halve the focal length for this case.
Note that the true focal length is unknown, so the chosen is
only empirically motivated?.

The thresholds e; = 0.0003 and e; = 0.0015 are the
same for all sequences. Parameters for spatial regulariza-
tion: A = 1.66 x 10~% and d,,,4 = 0.04. These have been
found empirically and fixed for all sequences.

We compare with the following algorithms: Generalized
Principal Component Analysis (GPCA) [16], Local Sub-
space Affinity (LSA) [17], RANSAC [6], Multi-Stage Learn-
ing (MSL) [13], Agglomerative Lossy Compression (ALC)
[11] and two variants of Sparse Subspace Clustering (SSC)
[4]. There are two versions of our brute-force algorithm.
The first one (BF) is implemented according to the descrip-
tion in Section 6 and the second one is with the addition of
a spatial prior (BF-S) as described in Section 6.1.

In Tables 1 and 2, the misclassification rates are pre-
sented. Our brute-force algorithm achieves very low error
rates, both in terms of mean and median error rates. Note
that even though we are only using three frames (the first,
the middle and the last) in each sequence, we are able to
obtain state-of-the-art results. Since we are actually recov-
ering the 3D motion, it is very simple to add spatial regu-
larization to the results. Still, even without such regulariza-
tion, our approach outperforms the competitors, and with
regularization, the error rates are significantly lower.

9. Discussion

Using a brute-force algorithm for computing the relative
orientation of two projections may seem like a step back

2In the dataset, a 3 X 3 calibration matrix is provided, but this calibra-
tion is clearly incorrect since it has an aspect ratio of 0.75.

Ground truth

-

ruth

Figure 6. Eample frame from one sequence with ground t

(left

Brute force

=

- 7:-_: -~ -
), brute-force (middle) and brute-

Spatial prior

S

A E—
force

T ema A
with spatial prior (right). The

colors of the feature points indicate which motion class (blue, yellow, red). Feature points that are misclassified have been colored cyan
(see middle figure). Note that the spatial prior is able to correct for all the errors.

Method | GPCA | LSA | RANSAC | MSL | ALC | SSC-B | SSC-N | BF | BF-S
Mean 31.95 | 5.80 25.78 10.38 | 5.20 4.49 297 | 211 | 0.99
Median | 3293 | 1.77 26.00 461 | 0.67 0.54 0.27 | 0.81 | 0.00

Table 1. Classification errors (%) for the 26 checkerboard sequences with 3 motions.

considering the many sophisticated algorithms that have
been developed over the years. But why is it that none of
the best performing algorithms for 3D motion segmentation
does not use a pinhole camera model? This paper shows
that a pinhole model is the correct choice and the lack of
perspective methods that perform well on the Hopkins 155
benchmark is likely due to algorithmic failure modes, for
example, the incapability of handling planar scenes.

The reported running times of the algorithm are well
within the limits of being a suitable choice for many vi-
sion applications. Of course, the full search space cannot
be used for a real-time system, but restricting the parameter
space to small motions, the brute force approach becomes a
viable and robust alternative for real-time visual odometry.
Such an investigation is left as an avenue of further research.

A. Proof of Theorem 2

Since it is always possible to change coordinates, we can
assume that R = R’ = I. Furthermore, we note that if
we can find points T and Z’ that satisfy the constraints in
Theorem 1 as well as

Z(Z,x) < eand L(Z',2") < e, (23)
then (by Theorem 1) we l_lave also found our point X. This
will prove useful. Let 6, 6, etc denote the spherical coordi-

nates of these points as defined in (8). We assume that Z’ is
fixed and examine what constraints we get on . Recall the

2967

constraints from Theorem 1,

<0 (24)

p=9¢. (25)
From (23) we have that Z’ must lie in a small circle around
2’. Consequently, (25) means that Z must lie in the spherical
wedge shown on the left in Figure 7 and (24) constrains it
to the upper part of that wedge, as shown on the right in
Figure 7.

Figure 7. The constraints imposed on Z being the reprojection of
the 3D point in first camera. Equation (25) constrains Z to the
spherical wedge (left) and (24) to the upper part of that wedge
(right).

But we also want Z(Z,z) < e, which constrains T to
a small circle around x. This means we must require the
wedge from above to intersect this small circle. To complete
the proof we need to translate this constraint to a constraint
in the spherical coordinates. We get three cases.

Case 1: 6 < 6’ Figure 8 shows the critical case. If the
difference between ¢ and ¢’ is larger than this, then the two

Method | GPCA | LSA | RANSAC | MSL | ALC | SSC-B | SSC-N | BF | BF-S
Mean 6.09 | 2.57 6.52 446 | 1.55 0.83 1.12 | 0.85 | 0.43
Median | 1.03 | 0.27 1.75 0.00 | 0.29 0.00 0.00 | 0.00 | 0.00

Table 2. Classification errors (%) for the 78 checkerboard sequences with 2 motions.

Figure 8. Case 1. Here the sphere from Figure 7 are viewed from
above, i.e. the z-axis is pointing out of the paper. The green areas
show the constraints on Z. For the two constraints to intersect they
must not be further apart than this. The left image shows the setup
for computing this limit angle.

sets have empty intersection. The limit can be computed by
considering two right-angled triangles, see Figure 8. Let v
denote the blue angle in that figure and v’ the yellow one.
The spherical law of sines yield,

sin €

no’
and if we define w = v + ¢’, we can write the constraint
lo — ¢'| < w. Note that, if either sin 6 or sin 8’ is smaller
than sin e then w is not defined. In these cases one of the
triangles is degenerated and the intersection is non-empty
regardless of the ¢’s. One way to describe this is to set
w=T.

Case 2, 0" < 6 < 0" + 2¢: Figure 9 illustrates the crit-

ical position. Using the spherical law of cosines, we can
compute w,

(26)

. sin e .y
sinv = —— and sinv’ =
sin 0

cos @ cos @ +sinfsinb’ cosw = cos 2e. 27

2¢

Figure 9. Case 2, see caption of Figure 8.

Case 3, 6 > 6'+2¢: In this case the intersection is empty,
regardless of p and .

References

[1] A. Blake and A. Zisserman. Visual Reconstruction. MIT
Press, Cambridge, USA, 1987.

[2] A. Chiuso, R. Brockett, and S. Soatto. Optimal struc-
ture from motion: local ambiguities and global estimates.
39(3):195-228, 2000.

[3] O. Chum and J. Matas. Optimal randomized ransac.
IEEE Trans. Pattern Analysis and Machine Intelligence,
30(8):1472-1482, 2000.

2968

[4] E. Elhamifar and R. Vidal. Sparse subspace clustering.
In Conf. Computer Vision and Pattern Recognition, Miami,
Florida, 2009.

0. Enqvist and F. Kahl. Two view geometry estimation with
outliers. In British Machine Vision Conf., London, UK, 2009.
M. A. Fischler and R. C. Bolles. Random sample consen-
sus: a paradigm for model fitting with application to image
analysis and automated cartography. Commun. Assoc. Comp.
Mach., 24:381-395, 1981.

R. Hartley and F. Kahl. Global optimization through rotation
space search. Int. Journal Computer Vision, 82(1):64-79,
2009.

R. I. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2004. Sec-
ond Edition.

F. Kahl and R. Hartley. Multiple view geometry under the
Loo-norm. IEEE Trans. Pattern Analysis and Machine Intel-
ligence, 30(9):1603-1617, 2008.

H. Longuet-Higgins. A computer algorithm for reconstruct-
ing a scene from two projections. Nature, 293:133-135,
1981.

Y. Ma, H. Derksen, W. Hong, and J. Wright. Segmentation
of multivariate mixed data via lossy data coding and com-
pression. IEEFE Trans. Pattern Analysis and Machine Intelli-
gence, 29(9):1546-1562, 2007.

D. Nistér. An efficient solution to the five-point relative pose
problem. IEEFE Trans. Pattern Analysis and Machine Intelli-
gence, 26(6):756-770, 2004.

Y. Sugaya and K. Kanatani. Geometric structure of degen-
eracy for multi-body motion segmentation. In In Workshop
on Statistical Methods in Video Processing. Springer-Verlag,
2004.

R. Tron and R. Vidal. A benchmark for the comparison of 3-
d motion segmentation algorithms. In Conf. Computer Vision
and Pattern Recognition, Minneapolis, USA, 2007.

A. Vedaldi, G. Guidi, and S. Soatto. Moving forward in
structure from motion. In Conf. Computer Vision and Pat-
tern Recognition, June 2007.

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

[16] R. Vidal and R. Hartley. Motion segmentation with missing
data using powerfactorization and gpca. In Conf. Computer
Vision and Pattern Recognition, volume II, pages 310-316,
Washington DC, USA, 2004.

J. Yan and M. Pollefeys. A general framework for motion
segmentation: Independent, articulated, rigid, non-rigid, de-
generate and nondegenerate. In European Conf. Computer
Vision, pages 94—106, Graz, Austria, 2006.

(17]

