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Abstract
Analysis of gene expression patterns in brain images obtained from high-throughput in situ
hybridization requires accurate and consistent annotations of anatomical regions/subregions. Such
annotations are obtained by mapping an anatomical atlas onto the gene expression images through
intensity- and/or landmark-based registration methods or deformable model-based segmentation
methods. Due to the complex appearance of the gene expression images, these approaches require
a pre-processing step to determine landmark correspondences in order to incorporate landmark-
based geometric constraints. In this paper, we propose a novel method for landmark-constrained,
intensity-based registration without determining landmark correspondences a priori. The proposed
method performs dense image registration and identifies the landmark correspondences,
simultaneously, using a single higher-order Markov Random Field model. In addition, a machine
learning technique is used to improve the discriminating properties of local descriptors for
landmark matching by projecting them in a Hamming space of lower dimension. We qualitatively
show that our method achieves promising results and also compares well, quantitatively, with the
expert’s annotations, outperforming previous methods.

1. Introduction
With the developments in high-throughput in situ hybridization (HITISH) [3], gene
expression patterns can be obtained at cellular resolution to explore the functional
relationship between various genes and disease mechanisms. The gene expression images
are generated with different gene probes that highlight different cells expressing genes at
different levels. Determining the correspondence mapping in these images is necessary for
any meaningful interpretation of multiple gene expression profiles within the cells. The
images can be then organized into a database and queried for similarities in expression
patterns to find potential interactive relationships between different genes in the same
anatomical subregion. However, the expression images exhibit significant variations in
appearance and shape, and do not have significant anatomical information (Fig. 1). In
addition, the acquisition and sectioning process may introduce multiple artifacts related to
smearing and missing parts. Nevertheless, it is required to determine the correspondences of
anatomical regions/subregions (Fig. 2) in the expression images to the annotated anatomical
atlas to gain knowledge about which genes are expressed with a particular expression pattern
[2] in a specific anatomical region/subregion.

Existing methods for gene expression mapping can be broadly classified into approaches
based on image registration and deformable model fitting. Due to the complexity of the
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appearance of the gene expression images, intensity-based registration approaches treat this
problem as a multimodal registration problem [9]. However, due to the lack of information
in many parts of the images, other approaches have additionally incorporated geometric
constraints using signed-distance maps [17] and anatomical landmarks [7, 6]. Though
signed-distance maps are effective in constraining the solution at the boundaries, they lack
information of internal anatomical regions. Bello et al. [1] proposed an atlas deformation
method, where a deformable mesh was fitted using a statistical shape model, anatomical
landmarks, and region boundaries in various stages, successively. The corresponding
landmarks were detected prior to the fitting process via a classification method by
computing features from regions arranged manually for each individual landmark.
Landmarks provide anatomy specific constraints and guide the deformation process in
regions with uneven information. However, most of the landmark-based approaches require
to determine landmark correspondences a priori either interactively or by using an
automated approach.

In this paper, we present a novel method to determine the correspondences for automated
region annotation in gene expression images using a landmark-constrained registration
approach based on the Markov Random Field (MRF) framework. The key difference
between our approach and previous approaches is that it solves the landmark
correspondence and iconic registration problems simultaneously while being rigid transform
invariant. Our method does not require to determine the landmark correspondences a priori.
It only needs to be provided with a few landmark candidates among which there exists at
least one desired candidate. Our approach is based on an optimization step where both
landmark correspondences and iconic registration are optimized through inter-connected
variables. We construct a single graphical model that incorporates intensity-based image
registration in one layer and landmark matching in another layer. Both layers are connected
through a neighborhood system to impose geometric constraints on each other. The rigid
transform invariant formulation is obtained by imposing higher order constraints in the
landmark layer through a prior geometric model that is learned from the relative statistics of
higher order geometry. The landmark candidates are determined based on their local
descriptors’ similarity with the landmarks in a reference image. However, owing to the
variability within the gene expression images, it is difficult to define appropriate descriptors.
Toward this, Hamming embeddings for the descriptors are learned using similarity sensitive
hashing [10] for efficient matching.

Our method partially shares the philosophy in terms of the interaction between the landmark
and the deformation space with that of Sotiras et al. [13]. However, we incorporate robust
higher order constraints through a learned prior model instead of simple pair-wise
regularization constraints. Second, our approach is formulated to be translation, rotation, and
scale invariant, and therefore, removes the need of global registration, unlike [13]. Finally,
landmark candidate selection is context specific and determined through similarity sensitive
hashing, which enhances the distinctiveness of the landmark descriptors specific to a
particular problem.

The remainder of the paper is structured as follows. In Section 2 we describe the methods
for the landmark candidates detection and the construction of the graphical model to solve
the correspondence problem. Experiments on the gene expression images and the validation
results are presented in Section 3, and Section 4 concludes the paper.
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2. Methods
The problem of annotation of anatomical regions and subregions of gene expression images
is formulated as a correspondence matching problem with respect to an annotated reference
image. In this section, we describe our formulation of Markov Random Field model that
simultaneously optimizes for landmark correspondences and iconic registration in a single
two-layer graphical model. First, we describe our approach to generate landmark candidates
from the gene expression images. Then, we present the details of the construction of each
layer of the model and their inter-connections.

2.1. Landmarks and Descriptors
We define landmarks as points in the gene expression images that are locally salient in terms
of appearance or shape characteristics irrespective of the gene being expressed. Two types
of landmarks were chosen through visual inspection [1]: appearance-based landmarks and
boundary-based landmarks. Figure 3 depicts the chosen landmarks on a Nissl-stained
reference image.

Appearance-based landmarks—We use local image descriptors computed from
gradient orientation histograms to represent the appearance-based landmark features [14]. In
this representation, commonly known as DAISY, the polar Gaussian pooling approach is
used to construct the histograms. The measure of (dis)similarity between any two points is
defined as the distance between the distributions of the oriented gradients in their
descriptors. It has been shown to outperform other discriminative local image descriptors
[16]. In addition, it can be computed very efficiently.

Figure 4(a) depicts sample patches from the gene expression images for landmark ‘0’,
whereas Fig. 4(b) depicts the distance map computed with reference to the landmark point in
the reference image. The best candidate for this landmark can be selected as the point that
corresponds to the minimum distance in the distance map. However, it can be observed from
Fig. 4(b) that it may result in false matches, and may not identify the real landmark point in
the image because of complex appearance information, which varies from image to image.

We employ a machine learning approach to construct efficient similarity measures to reduce
both types of errors to enhance the (dis)similarity of the descriptor between (dis)similar
points. An ensemble classifier based on boosting technique is trained on pairs of point
descriptors instead of single point descriptors. The paired learning is performed to select
similarity-relevant features, and to binarize them such that the Hamming distance between
the descriptors of a pair of points is small, if they correspond to the same landmark.

Specifically, we randomly selected eight gene expression images in addition to the reference
image for learning the binary embedding model. We constructed sets of positive pairs and
negative pairs for each landmark from a local patch centered at the landmark points. We
followed a boosting-based approach [10] to learn the transformation of a high dimensional
feature space into a reduced space of binary features. The n-dimensional binary Hamming
embedding is represented as ξ(x) = (ξ1(x), …, ξn(x)), where each dimension is computed by
a binary function parameterized by a projection function φ : X → ℝ, or

Each such function defines a weak binary classifier on pairs of points,
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or simply,

Thus, the Hamming metric between the embeddings ξ(x) and ξ (y) of a pair of points x and y
can be computed as weighted summation of output of the binary classifiers,

(1)

where αi > 0 is the weight for the ith dimension. In each iteration of the boosting, we select a
Hamming embedding ξi for which the binary weak classifier hi maximizes the weighted
correlation,

of labels sk for all pairs. Note that the Hamming embedding ξi is a function of the projection
map φi which is represented by a single feature from the descriptors and a threshold ai for
that feature. Figure 4(c) depicts the Hamming distance map computed using Eq. (1) with
reference to the landmark ‘0’ in the reference image (the expected location and the
minimum of the distance map are depicted as ‘o’ and ‘+’, respectively). It can be observed
that for the depicted images, the candidates selected using the Hamming embeddings are
closer to the expected locations than the candidates selected using the original features.
Additional candidates can be selected for each landmark by finding additional local minima
points in the Hamming distance maps.

Boundary-based landmarks—The curvature value of the boundary contour at the
landmark points is used to represent the boundary-based landmarks. First, the gene
expression image is segmented by applying histogram thresholding, flood-filling and
morphological operations. Then, the boundary of the segmented brain image is obtained
using a border tracing algorithm [12]. The resulting boundary is further smoothed with a
moving average filter. The curvature κi at each point on the smoothed boundary is computed
as:

where, (ẋi, ẏi) and (ẍi, ÿi) are the first order and second order derivatives, respectively. The
candidate points for a boundary landmark in a given image are determined as the points with
maximum convex or concave curvature (depending on the landmark curvature type in the
reference image) in the local search window.
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2.2. Iconic Registration
Consider an image I :Ω → R to be registered to another image J. Using energy minimization
principles, the spatial correspondences between the two images can be obtained by
recovering an optimal transformation T(x) from:

where ψ1(.) is a similarity function that defines the relationship between the intensity
patterns in the two images. For nonlinear registration, the transformation T(x) is defined in
terms of the deformation field D(x), or T(x) = x + D(x). To impose smoothness on the
deformation field, a regularization function is included in the energy function as:

where ψ2(.) is a smoothness function. Considering a deformation grid of control points, 
super-imposed on the image, the deformation field, D(x), at any point in the image can be
interpolated from the deformation vectors of the control points:

where η(.) is a weighting function describing the contribution of the control point c at any
point x in the image and dc is the displacement vector of the control point c. The
appearance-based energy function thus can be redefined as:

where η̂(.) determines the influence of a point x on the control point c.

Next, we describe the construction of the image registration-based graph layer for the MRF
model following the formulation of Glocker et al. [4]. Consider a graph, Ga (here a refers to
the registration layer), whose nodes are the Ma control points from the registration grid.

Let  be a discrete set of Ha labels for that layer. These labels correspond to a
quantized deformation space D = {d1, …, dHa}. For a particular node i, a label assignment 
corresponds to the displacement of the node by . Thus, the goal of the registration is to
find a mapping Fa : Ga → La that is optimal given some criterion to recover the
transformation T(x) defined in terms of the deformation field U(x), or T(x) = x + U(x). The
MRF provides an elegant and efficient mathematical framework for solving such discrete

labeling problems. Any possible assignment  of labels to the random
variables is called a configuration of Fa, and is essentially a realization of the field. Note that
every configuration fa defines a labeling and a denotes the set of all possible
configurations. We also define a neighborhood system N = {Ni | ∀i ∈  for the set of control
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point nodes  where Ni is the set of all neighbors of the node i ∈  The MRF energy
function for image registration is defined as:

where  and  are the first- and second-order clique potential functions representing
the data and the smoothness terms, respectively. The unary or the first-order potentials are
defined as:

where ψ1(·) is an image similarity measure. Though the gene expression images belong to
the same modality, owing to the variations in the observed information caused by the
different types of probing, we can consider that they are acquired from different modalities.
Such a consideration leads us to use the popular multi-modality similarity function defined
in terms of normalized mutual information [8, 15]. In this work, we computed the
normalized mutual information using a simple histogram-based method with 128 bins. The
regularization function for smoothness in the label domain is defined as a function of
distance between the deformation vectors of neighboring control points, or

where λa is a weighting parameter balancing the effects of the appearance-based similarity
and the smoothness of the deformation field.

2.3. Landmark Correspondences
Landmarks are generally used in the registration process to constrain the solution at specific
known locations in the image. The landmark-based constraints are imposed on the
deformation field by adding an additional energy term corresponding to the sum of distances
between the corresponding landmarks. Note that in such methods the location of the
landmarks in the reference image and the given image are assumed to be known a priori
along with their correspondences. If the landmark correspondences are not known a priori, a
pre-processing step is performed to select the best landmark candidate in the given image
corresponding to the landmark in the reference image.

The problem of selecting a single best candidate for each landmark can be formulated as a
discrete labeling problem. Thus, for the landmark-based graph layer, consider a graph Gb (b
refers to the landmark layer) whose nodes are the Mb landmark points = {q1,… ,qMb} in
the reference image, and the discrete labels Lb correspond to the Hb candidate points

 in the given image for each landmark qi. A label assignment  to a
landmark qi corresponds to the selection of the candidate  as the best candidate for that
landmark. The MRF energy function for landmark matching is defined as:
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where  and  are the unary and higher order potential functions, respectively, for the
landmark graph layer and  is the configuration of the triplets forming a clique from a set
of cliques C.

The unary potential for the landmarks is defined by ψ3(.) which measures the candidacy
strengths of the landmark candidates based on the Hamming metric or the curvature
depending on the type of the landmark:

The higher order potential encodes the penalty function of assigning a triplet of labels to a
triplet of connected nodes. The interdependencies between the locations of the various
landmark triplets can be modeled using the probability distribution of the relative lengths of
triangles formed between the landmarks. Specifically, given a triplet of landmark points i, j,
and k belonging to a clique c, the shape of the triangle formed by them can be defined by the
relative lengths of any two sides of the triangle. The relative length for a particular side is
defined by the ratio of the length of that side over the total length of all three sides. Thus, we
represent a triplet forming the clique c by a two element descriptor rc = (rij, rjk), where rst is
the relative length of the side defined by the points s and t.

Using such representation, we can capture spatial variability that is translation, rotation, and
scale invariant by learning the distributions for each rc from a set of training images. Thus,
we learn the distribution, ρc(rc) using a multivariate Gaussian distribution, rc|μc;Σc),
where μc and Σc are the mean and the covariance matrix learned from the training set,
respectively. This prior captures the local relationship between the landmark locations and
constrains the space in which a triplet of landmarks can co-exist. This is especially
advantageous when the strength of landmark candidacy is not strong enough. Thus, the
higher order clique potential is defined to incorporate this prior knowledge to impose a
global prior cost on the locations of the landmark candidates as:

where λb is a positive weight, rc( ) maps the locations of the triplet c to the two element
descriptor formed from relative lengths of the sides.

2.4. Combining Image Registration and Landmark Correspondences
In this section, we describe how to connect the two graph layers such that the control points
and the landmark points influence each other to obtain optimal labeling configuration. The
MRF framework allows us to add an additional layer to the graph. For a given landmark
point qi in the reference image, selection of a particular candidate point  determines the
displacement of that point in the given image. In other words, the point defined as a
landmark in the reference image is then known to be displaced by  in the given
image. Thus, the control points that are in the vicinity of the landmark point should be
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assigned labels that correspond to the displacement that is most similar to uk,i in terms of
magnitude and direction. Similarly, the assignments of the displacement labels to the control
points in the vicinity of the landmark points should also influence the selection of the
landmark candidate based on its displacement vector. Such interactions between the
landmark points and the control points can be defined by a pair-wise potential function
which is a function of the distance between the displacements of the control points and the
landmark points. Thus, we define the pairwise potential function between a landmark point
qi and a control point cj as:

where,

is a weighing function based on the distance between the landmark point and the control
point. The weighting function ϕ (·) can also be used to to determine the edges between the
two layers of the graph. We define a local neighborhood system for the landmarks with
respect to the control points to impose geometrical constraints in order to preserve the local
deformations. Specifically, a landmark point qi is paired with all the control points for which
Nab(qi) = {cj |ϕ(qi, cj) < ε}, where ε is a threshold. Based on the threshold ε, we can increase
or decrease the number of edges between the two layers of the graph. Moreover, such
neighborhood system avoids undesired regularization, especially at the lower grid
resolution.

2.5. MRF Optimization
Finally, we need to define a way to optimize the proposed higher-order MRF energy
function. Toward this, we adopt the general framework proposed by Ishikawa [5]. In this
method, the optimization is performed by: (i) transforming the multi-label MRF problem to
a binary-MRF problem, and (ii) transforming the higher-order MRF to a first-order MRF.
The optimization of the binary MRF is performed using a well-known quadratic pseudo-
boolean optimizer (QPBO) [11] implemented by Vladimir Kolmogorov.

3. Results and Discussion
We evaluated our method on the 2D gene expression images that were acquired as part of
gene expression study [2] and they were provided by Bello et al. [1]. These images are
sagittal sections of postnatal day 7 mouse brains at standard section 9, each revealing the
expression of a single gene after in situ hybridization. The images were acquired using a
light microscope at 3.3 µm per pixel resolution resulting in approximately 2400 × 4000
pixels image size. The images were scaled down to 25% of the original size for computation
purposes.

To capture the local deformations, the control point grid resolution was successively
increased at each iteration. At each grid resolution, multiple optimization cycles were used
with successively decreasing maximum displacement range for each control point. The
maximum displacement range was sampled to provide a total of 25 labels or possible
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displacements for each control point. The landmark candidate points in a given test image
were selected by dividing the local search window into 3 × 3 subregions and picking the two
best candidates from each subregion that have the minimum Hamming distance with respect
to the landmark point in the reference image.

To demonstrate the advantage of the dual graph layers for registration, we compare,
qualitatively and quantitatively, the proposed method with iconic registration performed
without the landmark layer. Figure 5 depicts selected qualitative results for both methods
using checkerboard visualization of the registered gene expression images.

Table 1 depicts the mean distance error in pixels for each landmark averaged over two
cohorts of images - all the 100 images (Cohort A) and a subset of 53 images that excludes
training images and images with severe boundary deformity or tear (Cohort B). Note that the
proposed method performs comparable to or better than the iconic registration method. The
errors for the boundary landmarks, especially landmarks 1 and 2, are higher than those for
the appearance-based internal landmarks. This can be attributed to the high variability in the
local shape and position of the anatomical structures in the mouse brain.

We also compare the performance of the proposed method with the results provided by
Bello et al. [1] in terms of landmark distance errors in pixels. Figure 6 depicts the scatter
plots of distance errors for selected landmarks comparing the two methods for Cohort B
gene expression images. In the scatter plots, the data points below the diagonal represent the
images where the proposed method outperforms the previous method. For few boundary
landmarks, our method has slightly higher error in individual images but the overall mean
error is still significantly lower than the overall mean error of the previous method. Since the
boundary landmarks are described by a weak curvature-based feature, there is possibility of
unreliable candidates which may produce worse results. Thus the proposed method has a
landmark bias which can be put to good use by improving the candidate detection (e.g., by
fusing the shape and appearance information for describing the boundary landmarks).
Incorporating measures of confidence on reliability of the candidates and suitably modifying
the graph structure to accommodate missing landmarks can alleviate the problem of missing
correspondences.

4. Conclusion
In this paper, we have presented a novel method to obtain correspondences between gene
expression images using a landmark-constrained image registration method. We formulate
the registration and landmark matching problem in a single MRF model as a discrete
labeling problem. Our method does not assume the landmark correspondences to be known
prior to registration. The geometric relationships of the landmarks are coded as higher-order
spatial priors imposing translation, rotation, and scale-invariant constraints that are learned
from few training images. Furthermore, a landmark specific similarity model is learnt using
a boosting approach enhancing the descriptors’ discriminative properties for landmark
candidates selection. Finally, our method achieves lower errors for correspondence mapping
as compared to other methods on a challenging dataset of gene expression images.
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Figure 1.
Example images depicting the complex appearance and shape patterns in gene expression
images. Each depicted gene expression image is generated with a different gene probe that
high-lights different cells expressing gene at different levels.
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Figure 2.
Overlay of the boundary contours depicting the anatomical regions annotated manually on
the reference image (from [1]).
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Figure 3.
Manually selected landmarks in tissue sections that are locally salient in terms of appearance
or shape characteristics. The numbers represent the IDs assigned to each landmark location
(from [1]).
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Figure 4.
Depiction of a single candidate selection for landmark ‘0’ in a search window: (a) gene
expression image (left column), (b) distance maps using daisy descriptor (middle column),
and (c) distance maps using binary embedding (right column). The distance maps are
computed by comparing features of each pixel in the search window with the features of the
landmark in the reference image. The symbol ‘o’ depicts the expected location and ‘+’
depicts the obtained location as the minima of the distance map.
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Figure 5.
Checkerboard visualization of the registered images obtained from the image registration
without (top) and with (bottom) the landmark graph layer on selected gene expression
images.
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Figure 6.
Comparison of the distance errors in pixels between our method (vertical axis) and [1]
(horizontal axis) for: (a) landmark 0, (b) landmark 1, (c) landmark 2, (d) landmark 5, (e)
landmark 6, (f) landmark 7, (g) landmark 8, and (h) landmark 9.
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Table 1

Average distance error (in pixels) for each landmark location compared to the manual annotations. The
corresponding locations of the landmarks were obtained using only the registration layer (REG) and both
registration and landmark layers in tandem (LM+REG). Columns A and B refer to results from cohorts A and
B, respectively.

REG LM+REG

ID A B A B

0 9.49 9.60 5.33 5.84

1 20.73 7.68 16.04 7.00

2 17.29 15.04 13.70 10.98

3 10.92 6.83 9.29 6.18

4 9.44 9.35 6.25 6.48

5 9.19 7.38 9.52 7.63

6 12.17 11.11 9.78 8.62

7 8.80 9.71 5.99 6.34

8 9.42 6.63 8.29 5.34

9 5.48 6.19 5.51 6.19
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